Andrei Catalin Coman
2025
Fast-and-Frugal Text-Graph Transformers are Effective Link Predictors
Andrei Catalin Coman
|
Christos Theodoropoulos
|
Marie-Francine Moens
|
James Henderson
Findings of the Association for Computational Linguistics: ACL 2025
We propose Fast-and-Frugal Text-Graph (FnF-TG) Transformers, a Transformer-based framework that unifies textual and structural information for inductive link prediction in text-attributed knowledge graphs. We demonstrate that, by effectively encoding ego-graphs (1-hop neighbourhoods), we can reduce the reliance on resource-intensive textual encoders. This makes the model both fast at training and inference time, as well as frugal in terms of cost. We perform a comprehensive evaluation on three popular datasets and show that FnF-TG can achieve superior performance compared to previous state-of-the-art methods. We also extend inductive learning to a fully inductive setting, where relations don’t rely on transductive (fixed) representations, as in previous work, but are a function of their textual description. Additionally, we introduce new variants of existing datasets, specifically designed to test the performance of models on unseen relations at inference time, thus offering a new test-bench for fully inductive link prediction.
2021
Imposing Relation Structure in Language-Model Embeddings Using Contrastive Learning
Christos Theodoropoulos
|
James Henderson
|
Andrei Catalin Coman
|
Marie-Francine Moens
Proceedings of the 25th Conference on Computational Natural Language Learning
Though language model text embeddings have revolutionized NLP research, their ability to capture high-level semantic information, such as relations between entities in text, is limited. In this paper, we propose a novel contrastive learning framework that trains sentence embeddings to encode the relations in a graph structure. Given a sentence (unstructured text) and its graph, we use contrastive learning to impose relation-related structure on the token level representations of the sentence obtained with a CharacterBERT (El Boukkouri et al., 2020) model. The resulting relation-aware sentence embeddings achieve state-of-the-art results on the relation extraction task using only a simple KNN classifier, thereby demonstrating the success of the proposed method. Additional visualization by a tSNE analysis shows the effectiveness of the learned representation space compared to baselines. Furthermore, we show that we can learn a different space for named entity recognition, again using a contrastive learning objective, and demonstrate how to successfully combine both representation spaces in an entity-relation task.