This paper introduces UnSeenTimeQA, a novel data contamination-free time-sensitive question-answering (TSQA) benchmark. It differs from existing TSQA benchmarks by avoiding web-searchable queries grounded in the real world. We present a series of time-sensitive event scenarios based on synthetically generated facts. It requires large language models (LLMs) to engage in genuine temporal reasoning without depending on the factual knowledge acquired during the pre-training phase. Our data generation framework enables on-demand generation of new samples, mitigating the risk of data leakage. We designed three types of time-sensitive questions to test LLMs’ temporal reasoning abilities over sequential and parallel event occurrences. Our evaluation of five LLMs on synthetic fact-based TSQA reveals mixed results: while they perform well on simpler subsets, their overall performance remains inferior as compared to real world fact-based TSQA. Error analysis indicates that LLMs face difficulties in reasoning over long-range event dependencies and parallel events.
This study evaluates Direct Preference Optimization (DPO) and its variants for aligning Large Language Models (LLMs) with human preferences, testing three configurations: (1) with Supervised Fine-Tuning (SFT), (2) without SFT, and (3) without SFT but using an instruction-tuned model. We further investigate how training set size influences model performance. Our evaluation spans 13 benchmarks—covering dialogue, reasoning, mathematical problem-solving, question answering, truthfulness, MT-Bench, Big Bench, and the Open LLM Leaderboard. We find that: (1) alignment methods often achieve near-optimal performance even with smaller subsets of training data; (2) although they offer limited improvements on complex reasoning tasks, they enhance mathematical problem-solving; and (3) using an instruction-tuned model improves truthfulness. These insights highlight the conditions under which alignment methods excel, as well as their limitations.
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks. However, they have been shown to suffer from a critical limitation pertinent to ‘hallucination’ in their output. Recent research has focused on investigating and addressing this problem for a variety of tasks such as biography generation, question answering, abstractive summarization, and dialogue generation. However, the crucial aspect pertaining to ‘negation’ has remained considerably underexplored. Negation is important because it adds depth and nuance to the understanding of language and is also crucial for logical reasoning and inference. In this work, we address the above limitation and particularly focus on studying the impact of negation in LLM hallucinations. Specifically, we study four tasks with negation: ‘false premise completion’, ‘constrained fact generation’, ‘multiple choice question answering’, and ‘fact generation’. We show that open-source state-of-the-art LLMs such as LLaMA-2-chat, Vicuna, and Orca-2 hallucinate considerably on all these tasks involving negation which underlines a critical shortcoming of these models. Addressing this problem, we further study numerous strategies to mitigate these hallucinations and demonstrate their impact.