This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Reasoning about images with rich text, such as charts and documents, is a critical application of vision-language models (VLMs). However, VLMs often struggle in these domains due to the scarcity of diverse text-rich vision-language data. To address this challenge, we present CoSyn, a framework that leverages the coding capabilities of text-only large language models (LLMs) to automatically create synthetic text-rich multimodal data. Given input text describing a target domain (e.g., “nutrition fact labels”), CoSyn prompts an LLM to generate code (Python, HTML, LaTeX, etc.) for rendering synthetic images. With the underlying code as textual representations of the synthetic images, CoSyn can generate high-quality instruction-tuning data, again relying on a text-only LLM. Using CoSyn, we constructed a dataset comprising 400K images and 2.7M rows of vision-language instruction-tuning data. Comprehensive experiments on seven benchmarks demonstrate that models trained on our synthetic data achieve state-of-the-art performance among competitive open-source models, including Llama 3.2, and surpass proprietary models such as GPT-4V and Gemini 1.5 Flash. Furthermore, CoSyn can produce synthetic pointing data, enabling VLMs to ground information within input images, showcasing its potential for developing multimodal agents capable of acting in real-world environments.
Authorship misattribution can have profound consequences in real life. In forensic settings simply being considered as one of the potential authors of an evidential piece of text or communication can result in undesirable scrutiny. This raises a fairness question: Is every author in the candidate pool at equal risk of misattribution? Standard evaluation measures for authorship attribution systems do not explicitly account for this notion of fairness. We introduce a simple measure, Misattribution Unfairness Index (MAUIk), which is based on how often authors are ranked in the top k for texts they did not write. Using this measure we quantify the unfairness of five models on two different datasets. All models exhibit high levels of unfairness with increased risks for some authors. Furthermore, we find that this unfairness relates to how the models embed the authors as vectors in the latent search space. In particular, we observe that the risk of misattribution is higher for authors closer to the centroid (or center) of the embedded authors in the haystack. These results indicate the potential for harm and the need for communicating with and calibrating end users on misattribution risk when building and providing such models for downstream use.
Recent state-of-the-art authorship attribution methods learn authorship representations of text in a latent, uninterpretable space, which hinders their usability in real-world applications. We propose a novel approach for interpreting learned embeddings by identifying representative points in the latent space and leveraging large language models to generate informative natural language descriptions of the writing style associated with each point. We evaluate the alignment between our interpretable and latent spaces and demonstrate superior prediction agreement over baseline methods. Additionally, we conduct a human evaluation to assess the quality of these style descriptions and validate their utility in explaining the latent space. Finally, we show that human performance on the challenging authorship attribution task improves by +20% on average when aided with explanations from our method.
Style embeddings are useful for stylistic analysis and style transfer, yet they only exist for English. We introduce Multilingual StyleDistance (mStyleDistance), a method that can generate style embeddings in new languages using synthetic data and a contrastive loss. We create style embeddings in nine languages and a multilingual STEL-or-Content benchmark (Wegmann et al., 2022) that serves to assess their quality. We also employ our embeddings in an authorship verification task involving different languages. Our results show that mStyleDistance embeddings outperform existing style embeddings on these benchmarks and generalize well to unseen features and languages. We make our models and datasets publicly available.
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications.
Large language models (LLMs) have become a dominant and important tool for NLP researchers in a wide range of tasks. Today, many researchers use LLMs in synthetic data generation, task evaluation, fine-tuning, distillation, and other model-in-the-loop research workflows. However, challenges arise when using these models that stem from their scale, their closed source nature, and the lack of standardized tooling for these new and emerging workflows. The rapid rise to prominence of these models and these unique challenges has had immediate adverse impacts on open science and on the reproducibility of work that uses them. In this ACL 2024 theme track paper, we introduce DataDreamer, an open source Python library that allows researchers to write simple code to implement powerful LLM workflows. DataDreamer also helps researchers adhere to best practices that we propose to encourage open science and reproducibility. The library and documentation are available at: https://github.com/datadreamer-dev/DataDreamer.
The goal of text style transfer is to transform the style of texts while preserving their original meaning, often with only a few examples of the target style. Existing style transfer methods generally rely on the few-shot capabilities of large language models or on complex controllable text generation approaches that are inefficient and underperform on fluency metrics. We introduce TinyStyler, a lightweight but effective approach, which leverages a small language model (800M params) and pre-trained authorship embeddings to perform efficient, few-shot text style transfer. We evaluate on the challenging task of authorship style transfer and find TinyStyler outperforms strong approaches such as GPT-4. We also evaluate TinyStyler’s ability to perform text attribute style transfer (formal ↔ informal) with automatic and human evaluations and find that the approach outperforms recent controllable text generation methods.
Style representation learning builds content-independent representations of author style in text. To date, no large dataset of texts with stylometric annotations on a wide range of style dimensions has been compiled, perhaps because the linguistic expertise to perform such annotation would be prohibitively expensive. Therefore, current style representation approaches make use of unsupervised neural methods to disentangle style from content to create style vectors. These approaches, however, result in uninterpretable representations, complicating their usage in downstream applications like authorship attribution where auditing and explainability is critical. In this work, we use prompting to perform stylometry on a large number of texts to generate a synthetic stylometry dataset. We use this synthetic data to then train human-interpretable style representations we call LISA embeddings. We release our synthetic dataset (StyleGenome) and our interpretable style embedding model (LISA) as resources.
We propose a two-stage approach for training a single NMT model to translate unseen languages both to and from English. For the first stage, we initialize an encoder-decoder model to pretrained XLM-R and RoBERTa weights, then perform multilingual fine-tuning on parallel data in 40 languages to English. We find this model can generalize to zero-shot translations on unseen languages. For the second stage, we leverage this generalization ability to generate synthetic parallel data from monolingual datasets, then bidirectionally train with successive rounds of back-translation. Our approach, which we EcXTra (uE/unglish-uc/uentric Crosslingual (uX/u) uTra/unsfer), is conceptually simple, only using a standard cross-entropy objective throughout. It is also data-driven, sequentially leveraging auxiliary parallel data and monolingual data. We evaluate unsupervised NMT results for 7 low-resource languages, and find that each round of back-translation training further refines bidirectional performance. Our final single EcXTra-trained model achieves competitive translation performance in all translation directions, notably establishing a new state-of-the-art for English-to-Kazakh (22.9 10.4 BLEU). Our code is available at [this URL](https://github.com/manestay/EcXTra).
Acquiring training data for natural language processing systems can be expensive and time-consuming. Given a few training examples crafted by experts, large corpora can be mined for thousands of semantically similar examples that provide useful variability to improve model generalization. We present TopGuNN, a fast contextualized k-NN retrieval system that can efficiently index and search over contextual embeddings generated from large corpora. TopGuNN is demonstrated for a training data augmentation use case over the Gigaword corpus. Using approximate k-NN and an efficient architecture, TopGuNN performs queries over an embedding space of 4.63TB (approximately 1.5B embeddings) in less than a day.
Vector space embedding models like word2vec, GloVe, and fastText are extremely popular representations in natural language processing (NLP) applications. We present Magnitude, a fast, lightweight tool for utilizing and processing embeddings. Magnitude is an open source Python package with a compact vector storage file format that allows for efficient manipulation of huge numbers of embeddings. Magnitude performs common operations up to 60 to 6,000 times faster than Gensim. Magnitude introduces several novel features for improved robustness like out-of-vocabulary lookups.