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Abstract

Large language models are trained on massive
scrapes of the web, as required by current scal-
ing laws. Most progress is made for English,
given its abundance of high-quality pretraining
data. For most other languages, however, such
high quality pretraining data is unavailable. In
this work, we study how to boost pretrained
model performance in a target language with
insufficient pretraining data for training a high
performing language model, by enlisting data
from an auxiliary language for which high qual-
ity data is available. We study this by quantify-
ing the performance gap between training with
data in a data-rich auxiliary language compared
with training in the target language, exploring
the benefits of translation systems, studying the
limitations of model scaling when data is lim-
ited in the target languages, and proposing new
methods for upsampling data from the auxil-
iary language. Our results show that stronger
auxiliary datasets result in performance gains
without modification to the model or training
objective for close languages.

1 Introduction

The abundance of high quality English data has
given rise to exceptional language modeling per-
formance in English (Brown et al., 2020; Bubeck
et al., 2023; OpenAI, 2023). However, there are
many other languages for which a reasonably large
amount of data is available, yet not in equally large
amounts as for English. Taking mC4 (Xue, 2020)
as an example, languages like German, French,
Chinese, and Japanese have ∼10-100 times less
data than English. Consequently, most non-English
progress comes from relatively small bilingual
models (e.g., Le et al., 2019; De Vries et al., 2019;
Martin et al., 2019; Scheible et al., 2020; Wei et al.,
2023a; Faysse et al., 2024), or larger massively mul-
tilingual models (e.g., Le Scao et al., 2023; Intrator

*Equal contribution

et al., 2024; Üstün et al., 2024). Other LLMs such
as Llama-2, GPT-3, and PaLM-2 that perform well
across a variety of languages are trained primarily
on English, with less than 20% of data from other
languages (Xu et al., 2024).

Several works study cross-lingual transfer, but
are limited to finetuning smaller models (∼100M
parameters) with limited data, or classical NLP
tasks, such as part-of-speech tagging, named entity
recognition, and natural language inference (e.g.,
Chang et al., 2023; de Vries et al., 2022; Faisal
and Anastasopoulos, 2024). They do not evalu-
ate pretrained language models on contemporary
knowledge-based downstream tasks. It is still un-
clear how to optimally make use of bi- or mul-
tilingual data, to optimally increase performance
in a target language. This is especially relevant
in data constrained settings. For example, imag-
ine one has access to only 500K documents in a
target language, and wants to pretrain a language
model for this language. 500K documents is suf-
ficient to attain a reasonable perplexity score, but
this amount of data is insufficient to do well on
modern knowledge-based downstream tasks. Many
languages in the tail of mC4 fall in this category.
Currently, a systematic analysis of how to use an
auxiliary language in this scenario is lacking, leav-
ing practitioners to a trial-and-error based approach,
mostly based on intuition.

In this work, we provide such a systematic anal-
ysis. In particular, we are interested in whether
“higher quality” auxiliary data also leads to higher
model performance in the target language. We
choose English as the main auxiliary language,
matching a common practical setting. To inves-
tigate the effect of linguistic similarity, we also
experiment with Chinese as the auxiliary language,
although being somewhat bottlenecked by the
amount of available data in Chinese.

To measure the impact of “better” auxiliary data,
we explore well-tested filtering techniques for a
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(a) Data Pipeline (b) Auxiliary Data Pretraining (c) Data Transforms

Figure 1: (a) Data Pipeline: English data pipeline used for building large pretraining corpora in (Penedo et al.,
2024). (b) Auxiliary Data Pretraining: Combining high quality domain-specific pretraining data with a small
amount of data from the target language for pretraining with limited target data. (c) Data Transforms: Many
considerations when building datasets in languages with limited data.

monolingual, English, setting. We focus on the
impact of dataset size, filtering for data quality and
style, and data selection for specialized informa-
tion relevant to downstream evaluations (Figure 1c),
matching recent advancements in state-of-the-art
open-source English datasets such as FineWebEDU
(Penedo et al., 2024), and DataComp (Li et al.,
2024) (Figure 1). Currently, it is still unclear how
these techniques extend to a bilingual setting; as we
confirm in our experiments, not every filtering tech-
nique that performs well in a monolingual setting
performs well in a bilingual setting. Specifically,
our key findings are:
1. Auxiliary English data that is generated by

some of the existing model-based data filtering
pipelines for English can be helpful to comple-
ment limited data in a target language (§3.2);

2. Findings are not the same across multiple target
languages. We hypothesize that for languages
that are “far” from English, gains from better
English datasets do not help (§3.3);

3. When training with high quality auxiliary data,
there is a marginal gap between upsampling rel-
evant information and filtering for high quality
instructional text (§4.1-4.2);

4. There are limits to the model sizes that are practi-
cal to pretrain with limited target data: data size
should scale linearly with model size (Kaplan
et al., 2020), and performance in the target lan-
guage saturates without increasing target data,
regardless of increasing auxiliary data (§5.2).

2 Related Work

Multilingual Language Models While much
of the LLM research has focused on English,
large-scale transformer-based multilingual lan-
guage models have been trained on large multi-
lingual corpora including mBERT (Pires, 2019),

XLM (Conneau and Lample, 2019), mT5 (Xue,
2020), PolyLM (Wei et al., 2023b), and Bloom
(Le Scao et al., 2023). These works focus on train-
ing models that are language balanced and that
perform well across multilingual benchmark tasks
in over 100 languages. Other SOTA language mod-
els such as Llama 2 (Touvron et al., 2023), Falcon
(Almazrouei et al., 2023), and Palm 2 (Anil et al.,
2023) have multilingual capabilities, but over 90%
the training data is English, and these models per-
form poorly across a variety of languages, such as
south east Asian languages (Nguyen et al., 2023).

Other works focus on training smaller bilingual
language models in French (Faysse et al., 2024; Le
et al., 2019; Martin et al., 2019), German (Scheible
et al., 2020), Dutch (De Vries et al., 2019), or Chi-
nese (Wei et al., 2023a), but require a substantial
amount of bilingual data: English and the respec-
tive language for pretraining. Other works focus on
understanding languages LLMs reason in (Wendler
et al., 2024), and languages LLMs cannot learn
(Borenstein et al., 2024; Kallini et al., 2024). Still,
little work has examined how information seen
during pretraining in one language can help down-
stream task performance in another language.

Cross-Lingual Transfer Philippy et al. (2023)
present a comprehensive survey on cross-lingual
transfer in multilingual language models. The sur-
vey explains that cross-lingual transfer is a well
studied topic for classic NLP tasks, such as part-of-
speech tagging, named entity recognition, depen-
dency parsing, machine translation, etc., although
findings are not always consistent. Cross-lingual
transfer is less well studied for the language model-
ing objective, and for modern downstream eval-
uation tasks, such as ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), PIQA (Bisk
et al., 2020), SCIQ (Welbl et al., 2017), Wino-
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Grande (Sakaguchi et al., 2021), etc. Philippy et al.
end with a number of recommendations, one of
which is to study cross-lingual transfer in more
detail for generative models, given their recent ex-
ceptional performance. Our work differs from prior
work on cross-lingual transfer in three ways: (i) we
do not directly study cross-lingual transfer as we
do not first train on the auxiliary language, and then
on the target language, (ii) we pretrain 1B and 3B
parameters models that are 10-30x the size of typ-
ical BERT models, and (iii) instead of finetuning,
we focus on how models learn languages during
pretraining.

Data Selection Selecting high quality data for
pretraining LLMs remains an active area of re-
search. Early research on data selection was based
on heuristics. For example, the original GPT-
2 model was pretrained on outbound links fil-
tered from Reddit, based on heuristic indicators
of whether users found the links interesting, ed-
ucational, or funny (Radford et al., 2019). Prior
approaches also upsampled documents from high
quality sources like Wikipedia (Gururangan et al.,
2022), or used combinations of heuristics such
as absence of stop words, document length, word
length, etc. (Rae et al., 2021). Other works select
data based on quality filters and time of collection
(Longpre et al., 2023), model-based quality filter-
ing (Sachdeva et al., 2024; Li et al., 2024), or text-
book quality knowledge (Gunasekar et al., 2023;
Li et al., 2023b; Kong et al., 2024). An alterna-
tive approach to data selection is re-weighting data
samples to select the best data mixtures for training
(Fan et al., 2023; Xie et al., 2024), or importance
sampling based on a downstream task (Xie et al.,
2023; Grangier et al., 2024a,b). Still a majority of
these filtering techniques are applied to English-
only datasets, and multilingual datasets such as
mC4 have limited data filtering (Xue, 2020).

3 Using English Data Selection Pipelines
to Complement Limited Target Data

Existing data selection pipelines have been shown
to be effective in monolingual (English) pretraining.
We investigate whether these pipelines are useful
in the bilingual setup with limited target data. In
§3.2, we report our findings for experiments with
English as the auxiliary language and German as
the example target language. In §3.3 we discuss
how our findings extend across multiple languages.

3.1 General Implementation Details

Model. We train decoder-only transformer mod-
els (Vaswani et al., 2017) with 1.3B parameters.
Models use the PolyLM tokenizer (Wei et al.,
2023b), with a total vocabulary size of 256K to-
kens using BPE, covering the unified vocabulary
over all languages that we include in our experi-
ments, which allows us to use the same tokenizer
across experiments. Models are trained for 100K
steps with batch size 1024. Additional hyperpa-
rameters and model details are in Appendix A. We
report results for the 1.3B model in the main body,
and refer to Appendix G for results on a 300M
model trained for 30K steps. These model sizes are
chosen as they provide reasonable (above random)
performance on several benchmark QA tasks, and
are commonly used for benchmarking and ablat-
ing pretraining of language models (Penedo et al.,
2023, 2024).

Data. To meaningfully and systematically study
a data constrained scenario, we impose the follow-
ing trade-off: (i) the number of tokens in the target
language needs to be sufficient to start training a
language model in the target language (i.e., per-
plexity needs to go down sufficiently), and (ii) the
number of tokens in the target language should
be small enough to expect meaningful differences
from the auxiliary language. Through empirical ex-
ploration, we choose to include 250M tokens in the
target language. Not only does this choice satisfy
the trade-off posed above, but it also simulates a
realistic scenario, as 250M tokens is representative
for the amount of data that exists in the tail of mC4
(∼20 languages). For our experiments, we choose
languages with more than 250M tokens available
in mC4. This allows us to compare with a mono-
lingual setting, to better assess the impact of the
auxiliary language. We report additional results for
125M tokens in the target language in Appendix H.

We consider three baselines: (i) Target (S): 250M
tokens from the target language, (ii) Target (L):
enough target language for 1 training epoch, and
(iii) Auxiliary (L): enough auxiliary language for
1 training epoch. For the other experiments, we
consider ∼250M tokens from the target language,
as stated above, which is repeated to account for
5% of the training steps. The remaining 95% of
the training steps consists of the auxiliary data. We
refer to the small 250M target language data as
“(S)” and to the large (auxiliary) data pool as “(L)”.
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Evaluation. We consider the average over six
general understanding QA tasks: ARC-Easy, ARC-
Challenge, Hellaswag, PIQA, SciQ, and Wino-
grande. These are knowledge-based tasks that
small models with limited data still perform well on.
Non-English evaluations are conducted via transla-
tion of the original dataset for which we use a mix
of proprietary large language models. Additional
details are provided in §B.2.

3.2 Better English Datasets
Methodology. We first compare the performance
of models trained on combinations of German (tar-
get) and English (auxiliary) with varying existing
English datasets based on the common crawl: mC4
(Xue, 2020), RedPajamav2 (RPJv2) (Computer,
2023), RefinedWeb (RFW) (Penedo et al., 2023),
and FineWebEDU (FWE) (Penedo et al., 2024).
These datasets have been constructed following a
pipeline of different filtering steps outlined in Fig-
ure 1a. The resulting datasets are of higher quality
and cover different snapshots of the common crawl.
Further details are available in Appendix B.

Findings. We report results in Figure 2. For En-
glish evaluations, better quality English datasets
attain substantially higher performance on the En-
glish tasks (up to 9%). For the same benchmarks
translated into German, the performance increase
is around 2%. Of all compared English datasets,
FineWebEDU achieves the best average down-
stream performance, and within 1% of the DE
(L) comparison. There are two primary factors
we hypothesize contribute to FineWebEDU achiev-
ing better performance on downstream tasks: high-
quality data filtering, and relevant information fil-
tering. We investigate this in more detail in §4.

3.3 Experiments Across Multiple Languages
Motivation. We add seven languages, across four
language families: French, Italian, Portuguese,
Spanish (Indo-European, same as German), Chi-
nese (Sino-Tibetan), Japanese (Japonic), and Ko-
rean (Koreanic) (Lewis et al., 2015). We choose
these languages because of their variety in language
families, the amount of data available in mC4, and
the access to translated evaluation data.

Methodology. We train with approximately
250M tokens1 from the mC4 corpus in the respec-

1Note that data distributions from the ∼250M data in mC4
looks similar for each language and are not specialized to
any particular domain as evidenced by the cluster distribution

Figure 2: Zero-shot accuracy of models trained with
higher quality English auxiliary data. Results are aver-
aged over six eval datasets. We compare training with
different auxiliary datasets on English and German eval-
uations. Better English datasets show large increases in
English and smaller increases in German.

Figure 3: Average zero-shot accuracy in the target lan-
guage summarized for eight languages. Models trained
on 100B tokens. Comparisons between a small and large
amount of monolingual data from the target language, a
small amount of data from the target language and mC4
English data (same distribution), and a small amount of
data from the target language and FineWebEDU.

tive language and denote these models as “target
language (S)”. The monolingual models are de-
noted as “target language (L)”. The Chinese and
Korean mC4 corpora contain fewer than 100B to-
kens and thus the data is repeated for multiple
epochs in the base language experiments. Based
on our previous results, we use FineWebEDU as
the auxiliary language source. We also conduct ad-
ditional experiments with Chinese as the auxiliary
language and Japanese as the target language, to
investigate the effect of linguistic similarity. Al-
though beyond the immediate scope of our inves-
tigation, we also investigate a multilingual setup
(instead of bilingual) in Appendix I.3.

Findings. We report results for multiple target
languages and Chinese auxiliary data in Figure 3-4.
We only observe improvements from FineWebEDU
for the Indo-European languages in our set, with

visualized in Appendix E.
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Figure 4: Average accuracy over zero-shot benchmark
tasks in translated Japanese, comparing Chinese and
English auxiliary data.

English as the auxiliary language (Figure 3). Fig-
ure 4 shows better performance for Chinese instead
of English FineWebEDU as the auxiliary language
for Japanese. This is a first indication of the ap-
plicability of using different auxiliary languages,
based on linguistic similarity.

4 The Effect of Individual Data
Transformations

In §3.2 we investigated the effect of using existing
data filtering pipelines in the auxiliary language,
but this does not isolate which components of the
pipeline provide the best downstream improve-
ments. Here, we study individual data transforma-
tions that comprise the training pipeline, including
model based quality filtering and educational con-
tent upsampling, as well as transformations on top
of auxiliary data, such as translation. For all exper-
iments, we use the same experimental setup and
baselines as in §3, and we focus on German as the
target and English as the auxiliary language.

4.1 High Quality Filtering
Motivation. Prior work shows that model-based
filters and higher quality data lead to better perfor-
mance in English. A key component of FineWeb
is custom filters based on text quality (Penedo
et al., 2024), and DCLM models are trained on
data which has been highly filtered based on heuris-
tic and model-based filters (Li et al., 2024). To
isolate the impact high quality auxiliary data can
have on target language performance, we apply a
recent model-based quality filter on top of mC4 En-
glish. We choose this filter as it aims primarily at
stylistic quality, and filtering with this model leads
to better performance than training with RFW and
FWE (Li et al., 2024), two of the best performing
datasets in Figure 2. Note that while filtering strate-
gies achieve strong results on English downstream

Figure 5: Zero-shot accuracy of models trained with
model based filtering of English auxiliary data. Results
are averaged over six evaluation datasets. For each
setting evaluation is done in English and German.

evaluations, training a filtering model can require
more data than available, and high quality datasets
may not be available in the target language.

Methodology. To test the impact of quality fil-
tering, we use the DCLM fast text classifier. This
filters data that is aimed at instruction following
and high scoring posts in r/ExplainLikeImFive,
and was found to be the best quality filter over RFW
and other model-based filters (Li et al., 2024). We
compare the performance of models trained with
English filtering and without, holding the German
data the same for evaluation. We refer to this as
DCLM Filter (following (Li et al., 2024)) and filter
to the top 10% of mC4.

Findings. The results are in Figure 5. English
evaluations improve by 3%. Translated German
evaluations are under 1%, within 1 standard error.2

4.2 Clustered Dataset Importance Sampling

Motivation. Prior work shows that LLMs reason
in English and that information may be stored in
a language agnostic space (Wendler et al., 2024).
However, it is unclear whether the relevant infor-
mation is only seen in English (the predominant
language), or also in other languages. Our exper-
iments on FineWebEDU indicate the presence of
information sharing, but FineWebEDU filters for
both high quality data and for educational quality
content (Penedo et al., 2024). In this section we
experiment with isolating the information sharing.

Methodology. To explicitly test whether infor-
mation is shared between auxiliary and target lan-
guages, we upsample topics in English and evaluate
on the target language. Given access to some small

2Standard errors obtained following (Gao et al., 2024).
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Figure 6: Zero-shot accuracy of models trained with
upsampling of English auxiliary data. Results are av-
eraged over six evaluation datasets. For each setting
evaluation is done in English and German.

target set, importance sampling weights are com-
puted based on the amount of data from a target
evaluation set that is assigned to each cluster fol-
lowing (Grangier et al., 2024b).

To train the clustering model, we take a small
subset of the training set, produce embeddings
from a smaller sentenceBERT model (Reimers and
Gurevych, 2020), and cluster the data according to
the embeddings. We upweight a subset of roughly
300B tokens from the English dataset. Given a
small target set (typically on the order of 1000-
10000 samples), we assign each sample to a cluster
and upweight the original training set based on the
cluster assignment proportions. In practice, we do
not optimize for the cluster parameters jointly with
the model weights, and instead precompute them
based on the pretraining and target task data.

For clustering hyperparameters, we use a
lightweight SentenceTransformers multilingual
model3 for extracting features (Reimers and
Gurevych, 2019), and a balanced K-means algo-
rithm to cluster the embeddings into 64 clusters.

Upsampling is done with evaluation data only
in English, to facilitate having specialized informa-
tion in the auxiliary language that is unavailable
in the target language. We compare two settings:
(i) upsampling based on HellaSwag (general knowl-
edge and instruction style), and (ii) upsampling
based on ARC Easy (general science knowledge).
We also add a comparison where we downsample
relevant data to the target task, to compare with
having only low quality data, which we call “no
ARC DE (L)”.

3The particular model is called
paraphrase-multilingual-MiniLM-L12-v2
model and is obtained from https://
huggingface.co/sentence-transformers/
paraphrase-multilingual-MiniLM-L12-v2.

Figure 7: Zero-shot accuracy of models trained with
synthetic data upsampling of English auxiliary data.
Results are averaged over six evaluation datasets. For
each setting evaluation is done in English and German.

Findings. Figure 6 shows the results. We see 4%
improvement in English evaluations, and 2% im-
provement in the target language. This highlights
that models can take advantage of information in
the auxiliary language, and the performance im-
provements are higher for the information upsam-
pling than for model-based filtering.

In Appendix I.4 we report the results for an ad-
ditional seven target languages. Generally, our
findings indicate that filtering high quality data im-
proves performance in the target language. There is
a slight improvement in five of the eight languages
for data selection over relevant topics but perfor-
mance overall is similar between filtering strategies
and better than no filtering baselines.

4.3 Upsampling with Synthetic Examples

Motivation. While we achieved performance im-
provements by selecting data based on target down-
stream evaluations, having such data available at
pretraining can be restrictive. For this reason, it can
be desirable to be able to generate the necessary
data for upsampling. While prior work has exam-
ined the use of LLM-generated data for pretraining
(Maini et al., 2024) and finetuning (Li et al., 2023a;
Yuan et al., 2024) language models, to our knowl-
edge there is no prior work that investigates data
selection based on synthetic examples.

Methodology We generate a small set of syn-
thetic examples, following the approach in (Maini
et al., 2024). The synthetic data is created by
prompting an off-the-shelf instruction finetuned
language model to generate sets of questions re-
lating to the topic of interest. We use the prompts
in Appendix D. Generating synthetic data using
an off-the-shelf language model can be both com-
putationally expensive and challenging. However,
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for the purpose of computing sampling weights, a
small number of questions is sufficient.

For our experiments, we generate data using a
frozen Mistral-7B instruction tuned model4 (Jiang
et al., 2023). We create around 2000 science QA
pairs while filtering to confirm only a question and
answer are specified. We refer to this setting as “S
EN (L)”, S referring to Science.

We also generate general instruction data, aimed
at broad QA style data, and general factual infor-
mation helpful for downstream tasks. This data is
generated in two stages: we use the frozen Mistral-
7B model to generate a set of questions, and then
the model is prompted to answer the questions.

Using the sets of questions, we identify the clus-
ter sample weights and upsample data accordingly
as in §4.2. We refer to this setting as “S+I EN (L)”.

Findings We show results in Figure 7. Com-
paring synthetic data upsampling with upsampling
from the downstream tasks (Figure 6) demonstrates
that synthetic data can be sufficient for incorporat-
ing information into the auxiliary English dataset.
Upsampling synthetic data is within 1% for the En-
glish downstream tasks, and within 0.5% for the
translated German evaluations. Results for trans-
formations in other languages are reported in §I.4.

4.4 Translation Systems

Motivation. Training directly on auxiliary lan-
guage data can lead to improvements. An alterna-
tive strategy is to translate the auxiliary data into
the target language, assuming a machine transla-
tion system is available. This approach offers the
benefit of training the model exclusively in one
language, and, if the translation system is of high
quality, it allows for training on high-quality data
in the target language at the expense of translating
the corpus. It is, therefore, important to also as-
sess the level the translation system must possess
to effectively translate data for pretraining.

Methodology. For our experiments, we use light-
weight translation systems of roughly 100-200M
parameters. We consider three models with BLEU
scores 16.0, 26.5, and 31.6 on the WMT-17 EN-DE
benchmark task. We denote these models as v1, v2,
and v3, corresponding to increasing BLEU score.
All models are trained on translated versions of
the mC4 English corpus. No other English data

4https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

Figure 8: Zero-shot accuracy of models trained with
translations of English auxiliary data. Results are av-
eraged over six evaluation datasets. For each setting
evaluation is done in English and German.

is included in the dataset, but we keep the 250M
tokens of real German data as in prior experiments.

Findings. Figure 8 shows the results. We find
little difference from the quality of the translation.
Both stronger translation models achieve similar
performance. The v1 model performs comparably
to training on real German data, and the data trans-
lated by the v2 and v3 models obtain around 1%
improvement in comparison to real German data.

We hypothesize a few reasons this may be possi-
ble, but leave investigation of each of these to future
work: (1) English CC data is of higher quality than
German CC data, as there may be more data from
more diverse sources. (2) Translated German data
has a different distribution from real German data,
and this better matches the translated test evalua-
tions. (3) Translated data from a small translation
system might simplify language, which makes it
easier for models to learn, following (Eldan and
Li, 2023). (4) Portions of the dataset could not be
translated by the systems and are removed. These
portions might be noisy, and some unintended fil-
tering may lead to slightly higher performance.

5 Data and Model Scaling

To study the impact of data and model scaling, we
investigate two scaling questions: (1) How does
the required quantity of additional auxiliary data
relate to the amount of data required if one had
enough target language data to train on? (§5.1)
(2) How do findings extend to a larger bilingual
model? (§5.2) Following our setup in the previ-
ous section, we target our investigation to German
(target) and English (auxiliary).
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Figure 9: Average accuracy over zero-shot benchmark
tasks in translated German, with increasing number of
tokens in both target and auxiliary languages. Models
are trained for 100B tokens.

5.1 Auxiliary Data Scaling

Motivation. We measure the amount of data
needed in the target language to match training on
high quality auxiliary data. Our goal is to quantify
the advantage of training models with additional
target data, beyond the 250M tokens used before.

Methodology. We investigate data scaling over
mC4 and FineWebEDU. We train models at differ-
ent dataset sizes, from 0.1B to 100B tokens.

Findings. Our results are summarized in Figure 9.
Models trained on the English mC4 data achieve
similar performance to models trained with only
5B tokens of German mC4 data. In contrast, train-
ing on a high quality data such as FineWebEDU
increases the amount of German data needed to
around 10B tokens, 2x the amount of German data.
Note that the curves all plateau quickly at around
10B tokens, corresponding to around 10 repetitions
of the data, matching (Muennighoff et al., 2024).

There are two important data scaling considera-
tions from Figure 9 that justify training with aux-
iliary language data. First, for languages that are
data constrained, it may be infeasible to collect
twice as much data. Second, models trained on
FineWebEDU attain similar performance at a rate
of 5x the number of tokens (roughly 50B tokens
of FineWebEDU matches the performance of 10B
tokens of mC4 German data). An important avenue
is to investigate data scaling at larger quantities
of tokens. In particular, the FineWebEDU corpus
totals 5.4T tokens and would require access to 1T
tokens of German data, which is 3x the amount of
data in mC4. As a result, while the data scaling
shows large improvements from little German data,
the large amount of readily available English data
can make training on auxiliary data practical.

Figure 10: Zero-shot accuracy for 1B and 3B models
trained with 250M or 1B tokens in the target language
denoted in brackets. Models are trained on the target
language data for different ratios of the training steps .
See §F for details on data ratios.

5.2 Model Size Scaling
Next, we investigate to what extent results scale
for training larger language models when data re-
mains constrained in the target language. Given
a fixed amount of data from the target language
(250M tokens) training a larger model may be im-
practical, as, according to Chinchilla scaling laws
(Kaplan et al., 2020), increasing model size neces-
sitates increasing the number of tokens seen during
training. This is challenging for data constrained
languages, as the number of repetitions increases
with increased amount of training. This can lead to
overfitting and saturated model performance.

We train a ∼2.7B parameter model for 150K
steps, matching the same scaling ratio as for the
1.3B model. We train models following the DE
(S) + EN (L) setup. Our main results after experi-
menting with multiple data ratios and sizes are in
Figure 10.

To demonstrate that training larger models for
data constrained models may be infeasible, and
illustrate the performance differences at different
scales in Figure 10, we first show the perplexity
of training and validation data in Figure 11 for
the 1.3B (left) and 2.7B models (right). For 1.3B
models, we see little to no overfitting at 5% ratio
of training steps, and the model achieves slightly
lower perplexity than a model trained with a lower
ratio of 1.5% target language data. In contrast, for
the 2.7B model, there is clear overfitting from as
early as 25% of the training steps with 5% ratio
of training steps for the data constrained language.
This indicates that the number of repetitions is too
high for the 2.7B model and performance may de-
grade.

To show this, we evaluate both 1.3B and 2.7B
models with 5% data ratios with 250M tokens in
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(a) 1B Model Perplexity (b) 3B Model Perplexity

Figure 11: Train and validation perplexity for 1.3B and 2.7B parameters with varying amount of data.

(a) 250M Tokens (b) 1B Tokens

Figure 12: Average accuracy over zero-shot benchmark tasks in English and translated German comparing 1.3B and
2.7B models trained with 5% of the training steps using (a) 250M tokens, and (b) 1B tokens in German.

the target language. Results in Figure 12 show that
the 2.7B model performs slightly worse than the
1.3B model with the same 250M amount of target
language data matching the similar perplexity val-
ues between the two models. However, increasing
to 1B tokens results in larger improvements when
increasing model size from 1.3B to 2.7B, as shown
in Figure 12b.

We further conduct a comparison with differ-
ent data ratios. We experiment with different data
ratios beyond 5% used during training. For this
experiment, we study the 1.3B parameter model
and 2.7B parameter model. Zero-shot accuracy
is provided in Figure 17 for all data ratios in the
appendix. We see that performance is around the
same for 1.3B models regardless of ratio, but 2.7B
models perform better with lower data ratios. Our
final results training 2.7B models with reduced pro-
portion of steps are in Figure 10.

In summary, there is a limit to the size of models
that can be trained with limited target data. Model
performance for 250M tokens (more than available
in mC4 for ∼20 languages) shows limited improve-
ment when scaling up from a 1.3B to a 2.7B pa-
rameter model. In contrast, increasing to 1B tokens
doubles improvement when increasing model size

to a 2.7B parameter model. Training a 2.7B pa-
rameter model necessitates training on at least 1B
tokens of data to see larger gains in performance
(more than available in mC4 for ∼40 languages).

6 Conclusion

This work studies how an auxiliary language for
which an abundance of training data is available can
boost pretraining for a target language for which
only limited data is available. We find that adding
auxiliary high quality data obtained by data fil-
tering can improve performance in a target lan-
guage. However, we find that results are incon-
sistent across target languages. We hypothesize
that for languages further from English, better En-
glish datasets are not as helpful as information is
not shared between them. Finally, we find limita-
tions to scaling models for languages that are data
constrained. This work takes a step towards pre-
training language models in languages with limited
data, and can inspire more research into bilingual
learning under data constraints.

7 Limitations

In this section we list some limitations of our work.
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Evaluation data. When evaluating language
models for languages other than English, one often
needs to rely on translated evaluation sets. Not
only may this introduce translation mistakes, the
resulting evaluation set might also contain cultural
biases. As a result, certain aspects of the evalua-
tion may lead to improved performance when using
English auxiliary or translated data. Additionally,
translated data often exhibits a distribution differ-
ent from that of real data in the target languages.
Therefore, an important direction for future work is
the development of evaluation datasets that are not
based on translation, which is essential for more ac-
curate evaluation of bi- and multilingual language
models.

Languages included. The focus of this work is
on training language models for data constrained
languages. We note that there are many languages
within mC4 (and more broadly) which can benefit
from having auxiliary English data for pretrain-
ing. Due to the aforementioned limited evaluation
benchmarks and availability of target language data
for comparison, we leave investigation for these
languages to future work.
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A Hyperparameters and Training Details

The medium-scale (300M non-embedding parame-
ter) model consists of 24 layers, 16 attention heads,
and a hidden dimension size of 1024. The XL-scale
(1.3B non-embedding parameter) model consists of
24 layers, 16 attention heads, and a hidden dimen-
sion size of 2048. Both models have a maximum
sequence length of 1024.

The baseline models are trained using NVIDIA’s
Megatron-LM5 repository for pretraining language
models. The medium size models are trained for a
total of 30K steps, and 100K steps for the XL mod-
els at a batch size of 1024. All models are trained
using a maximum learning rate of 0.0003 for the
medium model and 0.0002 for the XL model, and
a minimum learning rate of 0.00001 with a cosine
learning rate scheduler and warmup for 1% of the
total steps. For regularization, we use a weight de-
cay of 0.01, along with a gradient clipping norm of
1.0. Models are trained with the Adam optimizer
using β1 = 0.9 and β2 = 0.999.

The 2.7B parameter model consists of 32 lay-
ers with 2560 hidden dimension and 32 attention
heads. 2.7B parameter models are trained for a
total of 150K steps with a batch size of 1024 and
context length of 2048. All models are trained
using a learning rate of 0.00016 with the same op-
timization recipe as other models.

The total training time for 2.7B parameter mod-
els for 100K steps is roughly 3000 GPUh on Nvidia
H100 GPUs. XL models trained on roughly 100K
steps are around 1000 GPUh. For medium size
models, the total training time is around 200 hours
for roughly 30K steps.

B Dataset Details

B.1 Train Sets

• mC4: The primary pretraining corpus in our
experiments is multilingual Colossal Clean
Crawled Corpus (mC4), a curated text dataset
comprising over 6.3T tokens. This corpus is de-
rived from CommonCrawl and used for pretrain-
ing numerous language models (Brown et al.,
2020; Raffel et al., 2020; Touvron et al., 2023).
The dataset is chosen as all languages have simi-
lar data extraction pipelines including line length
filter, cld3 language detection, and deduplica-
tion (Xue, 2020). The English portion con-
tains 2.7T tokens, German contains 350B tokens,

5https://github.com/NVIDIA/Megatron-LM

French contains 320B tokens, Spanish contains
430B tokens, Portuguese contains 146B tokens,
Italian contains 160B tokens, Korean contains
26B tokens, Japanese contains 160B tokens, and
Chinese contains 40B tokens. For both Chinese
and Korean monolingual models: Target (L), we
repeat data up to 100K steps of training (roughly
2-3 repetitions).

• RedPajamav2: A pretraining corpus with light
filtering (primarily only deduplication) compris-
ing 30T tokens and 20T tokens of English text.
We focus on the English portion of the dataset
only and train using a random shuffled subset of
both the head and middle portions (Computer,
2023).

• RefinedWeb: The dataset is also derived from
the CommonCrawl, however has a more strin-
gent filtering process including trafilatura
text extraction, document and line level rules,
and fuzzy duplication over the original C4 pro-
cessing (Penedo et al., 2023).

• FineWeb: This dataset is derived from the Com-
monCrawl with the aim of replicating Refined-
Web at larger scales. The dataset has some ad-
ditional filtering including Gopher filtering (Rae
et al., 2021), additional C4 filters, and custom
filters for text quality (Penedo et al., 2024).

• FineWebEDU: A subset of the FineWeb dataset
which is filtered according to a classifier trained
on annotations for educational quality from
Llama-3 70B model (Penedo et al., 2024).

• ChineseFineWeb-EDU6: An educational corpus
in Chinese consisting of roughly 400B tokens
of data. Although it shares a similar name, the
ChineseFineWeb-EDU does not share data from
FineWebEDU and is collected from different
sources. Models trained on this data are trained
with only 1 repetition.

Note that while the original datasets aim to be en-
tirely monolingual, we do observe incidental data
in other languages. While we expect the amount
of incidental data to be small, it is difficult to quan-
tify and demonstrate its effect directly. We note
that prior work by Blevins and Zettlemoyer (2022)
shows that around 0.05% of the T5 dataset contains
non-English data, amounting to millions of tokens

6https://huggingface.co/datasets/opencsg/
chinese-fineweb-edu-v2
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in other languages. This is due to errors in LangID
methods, which are shown to not be robust to scale
of web text data (Caswell et al., 2020). In mC4,
the LangID filtering that is used in many state of
the art filtering techniques, and although we can-
not be fully certain, it seems likely to assume that
each setting that we compare is somewhat equally
affected by incidental target data.

B.2 Zero Shot Evaluations
• SciQ: A dataset of science exam questions,

specifically designed to evaluate the ability of
NLP models in understanding and reasoning
within the scientific domain (Welbl et al., 2017).

• ARC Challenge (ARC-C): This dataset is part
of the AI2 Reasoning Challenge (ARC) (Clark
et al., 2018), containing science exam questions
from grades 3 to 9. The ARC Challenge set
includes more difficult questions that necessitate
higher-order reasoning.

• ARC Easy (ARC-E): The Easy set of the AI2
Reasoning Challenge (Clark et al., 2018) features
questions from the same source as ARC-C but are
considered less challenging and do not require as
advanced reasoning skills.

• Winogrande (Wino.): This dataset challenges
models on common sense reasoning in a lan-
guage context, focusing on pronoun disambigua-
tion tasks (Sakaguchi et al., 2021).

• PIQA: Physical Interaction Question Answer-
ing tests the understanding of everyday physi-
cal processes, an aspect of practical common
sense (Bisk et al., 2020).

• HellaSwag: This dataset evaluates a model’s
ability to complete scenarios in a contextually
and logically coherent manner, requiring both
language understanding and common sense rea-
soning (Zellers et al., 2019).

For each of the eval datasets, we include the
number of samples for each translated evaluation
in Table 1. For our evaluations, we use the lm-eval-
harness repository7 for zero-shot accuracy on QA
tasks.

We translate primarily using our own systems to
(i) ensure that translation artifacts will be consistent
across evaluation tasks, (ii) have translations for all

7https://github.com/EleutherAI/
lm-evaluation-harness

languages we evaluate. We note further that eval-
uation frameworks such as Okapi (Dac Lai et al.,
2023) do not release evaluation for all languages we
study, and only support HellaSwag as they do not
translate the full ARC evaluation set. We did not
evaluate on other multilingual evaluation tasks such
as MT and MGSM as these are not traditionally
knowledge tasks that require information sharing
between the two languages.

B.3 Number of Data Files for Filtering
Experiments

The mC4 English portion of the dataset is split into
roughly 11,264 files totaling 2.7T tokens of data
(Xue, 2020). For each of our experiments, data
is filtered differently, and as such varying num-
bers of files are needed for training. At a baseline,
we consider the first 1500 files totaling roughly
350B tokens of data. This number was selected to
match the total amount of German data which is
recorded as 347B tokens using the mT5 tokenizer
(Xue, 2020). For the OH classifier, we use the first
10,000 files and filter down to 10% of the dataset.
For German, Japanese, Spanish, Portuguese, Ital-
ian, and French models, we use the first two files
of data totaling roughly 250-300M tokens of data.
For Chinese and Korean models, we use the first 7
files totaling roughly 250M tokens.

B.4 License and Attribution
All datasets used in this paper are supported by pub-
lic licenses including ODC and Apache. The pre-
trained models including Mistral and OH FastText
classifiers are also supported by public licenses
including Apache and MIT licenses. We use the
Megatron codebase under the Nvidia license for
pre-training and the lm-eval-harness (MIT) for eval-
uations. All models and datasets are collected from
Huggingface via the datasets library where possi-
ble. We use a proprietary translation system for fast
translation at scale and are thus unable to provide
details of the license at this time.

C Evaluation Metrics

The metric utilized for evaluation is the macro to-
ken level perplexity. Given a batch of encoded texts,
the perplexity at the token level was computed as
follows:

Given the accumulated loss over the entire
dataset, denoted as L, and the total number of
tokens, represented by T , the macro token-level
perplexity, denoted as P , is calculated as:
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Dataset EN DE FR ZH JA PT ES IT KO

ARC-C 1,172 1,137 1,147 1,146 1,147 1,117 1,117 1,117 1,147
ARC-E 2,376 2,260 2,271 2,271 2,271 2,271 2,271 2,271 2,271
HS 10,042 9,368 9,338 9,266 10,033 9,229 9,374 9,193 10,025
PIQA 1,838 1,838 1,838 1,838 1,838 1,838 1,838 1,838 1,838
SCIQ 1,000 950 953 1,000 926 953 951 952 945
WG 1,267 1,184 1,215 1,059 1,096 1,232 1,239 1,233 1,177

Table 1: Evaluation set sizes for each language.

P = exp

(
min

(
20,

L

T

))
(1)

Where:
• exp is the exponential function.
• L is the cumulative loss over all shifted logits

and labels in the dataset.
• T is the total number of tokens in the dataset.
The value of 20 acts as an upper limit to stabilize

the metric in cases of high loss values.
For zero-shot MCQ accuracy evaluations, we

compute the perplexity of each sentence comple-
tion, and choose the lowest perplexity choice. We
use the lm-evaluation-harness and where possible
evaluate with the length-normalized accuracy. Un-
less otherwise stated, all evaluations are zero-shot.

D Synthetic Prompts and Examples

For building the synthetic corpus used in our
data selection experiments, we consider three
prompts for generating science questions (simi-
lar to many downstream tasks), fact-based QA
data, and instruction-based writing (such as emails,
books, lists, etc.). For generating science questions,
we generate both the question and answer. For the
fact and instruction data, we first generate the ques-
tions using the prompt, and subsequently generate
the answer without any additional prompting.
Science Question Prompt

Give me a set of ten question and
answer pairs on topics relating to
Physics, Chemistry and Biology that
a high school student would be able
to answer. The response should be
in the form Question: <question>
\n Answer: <answer> \n \n with an
answer that is less than ten words.
The response should not contain any
other details or explanations about
the question or answer.

Facts Question Prompt

People from different social
and educational backgrounds,
beliefs, ethnicity and gender
are asking an AI assistant for
information. They are looking
for detailed explanations about
encyclopedic facts on Wikipedia
and in textbooks, about philosophy,
nature, science, entertainment,
literature, geography, sociology,
law, history, etc. Write an
interesting and difficult question
that would be sent to the AI
assistant:
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Instruction Writing Prompt

People from different social and
educational backgrounds, beliefs,
ethnicity and gender are asking an
AI assistant to help them write a
piece of text that they need for
their work or their personal life.
They can ask the AI Assistant to
write a document (email, letter,
official document...). Each request
comes with a long, precise and
detailed description of what needs
to be in the text, and why they
need this document. The request
may also include information about
the writing style, the tone, the
target audience or the layout of
the text. The description of the
task is formal, detailed and clear.
Each request is composed of a few
paragraphs written in English, and
starts with the tag <request>. Here
is some of the most interesting and
original requests sent to the AI
assistant:

E Data Distributions

We present results comparing the data distributions
for each dataset within the mC4 English clusters.
The purpose of these plots is to illustrate that the
data from other languages follows a similar distri-
bution to that of mC4 English. Figure 13 shows
the distribution for French and German languages,
Spanish and Portuguese in Figure 14, Italian and
Korean in Figure 15, and for Japanese and Chinese
languages in Figure 16.

F Model Size Data Scaling

In this section, we include additional findings ac-
companying the results presented in §5.2. Figure 17
show performance of 1.3B and 2.7B models at dif-
ferent ratios of data for the target language.

G Results for 300M Models

We present results comparing approaches for 300M
parameter models with English as the auxiliary
language and German as the target language.

Figure 18a shows performance with different
datasets, Figure 18b shows performance with the

DCLM filter, Figure 18c shows performance with
upsampling real data, Figure 18d shows perfor-
mance upsampling synthetic data, and Figure 18e
shows performance with translation. All results
show similar trends as in Section 3-4, but the per-
formance improvements are smaller.

H Results for Smaller Target Language
Data Size

We conduct an experiment at higher number of rep-
etitions (34) with only 125M tokens in German,
and using English as the auxiliary language. 125M
tokens corresponds to around one file of mC4 Ger-
man data, and is similar to the lowest data sizes
in mC4; there are only six out of 107 languages
that have fewer than 100M tokens. The results are
shown in Table 2. We refer to the 125M German
corpus as DE (XS) and to the 250M German tokens
as DE (S). Results for DE(XS) + EN(L) are 5.5%
higher than 125M tokens of German data only (DE
XS), which is similar to the increase of DE (S) +
EN (L) over 250M tokens of German data (DE (S))
(which is 7%). This is a first indication that our
method also works for settings with fewer tokens
available in the target language.

I Results for Multiple Languages

I.1 Perplexity Evaluations for Translated
Training Data

In §3.3 we found that performance trends were not
the same across languages. In particular, French,
German, Portuguese, and Spanish (belonging to
the same language family) have similar patterns,
but Chinese, Japanese, and Korean exhibit differ-
ent patterns. To further test whether the models
retain knowledge from one language in another, we
translate a small portion of the training set from
FineWebEDU and mC4 English, totaling 10,000
documents. We then translate the data using the v3
translation system from §4.4. We measure both the
macro perplexity of all documents as well as the
fraction of times where the translated and original
data from FineWebEDU (training set) have lower
loss than the average loss of documents from mC4
English (not part of the training set but from a sim-
ilar distribution). We refer to this quantity as trans-
lated and original exceedance. Having lower loss
means the data is more familiar to the model, and
having an equal exceedance across the original and
translated data means the model can reason equally
in either language. Our results are summarized
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(a) German (b) French

Figure 13: Data distribution within mC4 English clusters for German and French mC4 data.

(a) Spanish (b) Portuguese

Figure 14: Data distribution within mC4 English clusters for Spanish and Portuguese mC4 data.

in Table 3. We find that perplexity is nearly iden-
tical for original data, but much higher for trans-
lated data in all languages. For exceedance, in
English, we see that the scores are all around 80%.
However, we see that for Japanese and Chinese
these values are much lower, indicating that seeing
the data in English for these languages does not
lower the perplexity in the target language and that
the model is not making use of information in the
other language. For Chinese evaluations, we note
that the perplexity is much higher than for other
languages, indicating that the translation system
potentially causes higher perplexity and lower ex-
ceedance. However, we still note that for Japanese
the exceedance is lower, and we expect that with
better translation quality, the Chinese evaluations
will be similar to Japanese.

I.2 Other Auxiliary Languages
In this section we give additional details for our
experiments with other auxiliary languages than
English, as presented in §3.3.

Methodology. We conduct experiments compar-
ing using English and Chinese as an auxiliary
language with Japanese as the target language.
For these experiments, we train a 1.3B model

with the auxiliary dataset being either mC4 in
English or Chinese, and English or Chinese ver-
sions of FineWebEDU8. Our evaluations are on the
Japanese translations.

Findings. We summarize the results in Figure 19.
Our findings indicate that using FineWebEDU, a
high quality Chinese dataset, as auxiliary data im-
proves Japanese performance over mC4 in Chinese,
and the performance increases over using English
either from mC4 or FineWebEDU. Note that the
performance increases are consistent with improve-
ments better English data for Indo-European lan-
gauges as seen in Figure 3.

I.3 Multilingual Experiments

Motivation. Our main findings investigate how
auxiliary data benefits evaluations in a target lan-
guage. However, many models trained on other
languages (beyond English) are trained with many
languages simultaneously. We investigate whether
better auxiliary language datasets also improve mul-
tilingual model training.

8https://huggingface.co/datasets/opencsg/
chinese-fineweb-edu-v2
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(a) Italian (b) Korean

Figure 15: Data distribution within mC4 English clusters for Italian and Korean mC4 data.

(a) Japanese (b) Chinese

Figure 16: Data distribution within mC4 English clusters for Japanese and Chinese mC4 data.

(a) 1.3B Model (b) 2.7B Model

Figure 17: Zero-shot QA performance for 1B and 3B models at varying data ratios during training. For all models
the total amount of available data in the target language is 250M tokens.

Methodology. We conduct experiments combin-
ing the German, French, Chinese, and Japanese
language data towards multilingual training. For
these experiments, we train a 1.3B model with the
auxiliary dataset being FineWebEDU and a mix
of data from the four languages, totaling 5% or
20% of the training. We use this subset of four
languages, as we keep the data ratios the same per
language, and did not want to increase the amount
of data in target languages beyond the typical mul-
tilingual ratios in large open-source models (Xu
et al., 2024).

Findings. We summarize the results in Table 4.
Our findings indicate that training with 20% of the

data being a combination of target languages yields
similar performance to training with 5%, resulting
in a 1% reduction in performance on average when
training with 20% multilingual data. When com-
pared with training a bilingual model, we observe
performance decreases for German and French, and
increases for Chinese and Japanese.

I.4 Average Zero Shot Accuracy Plots

We present experimental results comparing the best
performing approaches for French and German lan-
guages in Figure 20, Spanish and Portuguese in
Figure 21, Italian and Korean in Figure 22, and for
Japanese and Chinese languages in Figure 23. For
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(a) Higher quality English auxiliary data. (b) Model based filtering of English auxiliary data.

(c) Upsampling of English auxiliary data. (d) Synthetic data upsampling of English auxiliary data.

(e) Translations of English auxiliary data.

Figure 18: Zero-shot accuracy of 300M models trained with different types of English auxiliary data. Results are
averaged over six evaluation datasets. For each setting evaluation is done in English (pink, left bars) and German
(blue, right bars).
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Model Name ARC-C-DE ARC-E-DE HS-DE PIQA-DE SCIQ-DE WGrande-DE AVG-DE
DE (XS) 23.66 ± 1.26 30.13 ± 0.97 27.19 ± 0.46 54.13 ± 1.16 37.68 ± 1.57 49.92 ± 1.45 37.12
DE(XS) + EN(L) 24.27 ± 1.27 33.63 ± 0.99 32.96 ± 0.49 56.80 ± 1.16 55.05 ± 1.61 53.21 ± 1.45 42.65
DE (S) 22.69 ± 1.24 30.31 ± 0.97 28.99 ± 0.47 54.84 ± 1.16 40.00 ± 1.59 50.42 ± 1.45 37.88
DE (S) + EN (L) 25.07 ± 1.29 37.70 ± 1.02 36.18 ± 0.50 59.36 ± 1.15 63.05 ± 1.57 50.51 ± 1.45 45.31

Table 2: Performance comparison for 125M tokens of target data vs. 250M tokens of target data.

Language mC4-Train mc4-Val mC4-EN mC4-EN Translated FWE FWE Translated Original EX Translated EX
German 8.41 16.41 14.25 25.58 10.61 21.31 78.70 75.00
French 6.24 12.75 14.37 20.31 10.66 14.37 79.24 88.64

Japanese 6.52 11.21 14.56 25.56 10.64 23.89 80.41 56.97
Chinese 4.35 21.38 15.37 165.90 10.69 210.43 84.07 27.71

Table 3: Perplexity evaluations for mC4 English and FineWeb-EDU comparing original data and translated versions
for 1B models trained with 250M tokens from the target language and FineWeb-EDU as the auxiliary dataset.

Figure 19: Average accuracy over zero-shot benchmark
tasks in translated Japanese comparing Chinese and
English auxiliary data. Models are 1.3B size and trained
for 100B tokens.

EN DE FR JA ZH

5% 61.07 46.02 46.64 44.00 45.92
20% 59.25 46.44 46.61 43.23 44.36
Bi 47.16 47.52 42.73 44.38

Table 4: Evaluation of XL models in multilingual setting
on “General Understanding Tasks” focusing on general
reasoning, language understanding, and science knowl-
edge in translated languages. Rows are the average
accuracy for the respective language, with 5% or 20%
of the training coming from a mix of the four languages.
‘Bi’ refers to the bilingual models trained with target (S)
+ FWE EN (L).

each language, we take the best performing dataset
and model found in German from §3.2-3.3.

I.5 Individual Eval Dataset Results
Results for individual evaluation datasets are shown
for all languages in Tables 5-12.
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(a) German (b) French

Figure 20: Zero-shot accuracy of XL models trained with various English auxiliary data for German and French.
Results are averaged over six eval datasets.

(a) Spanish (b) Portuguese

Figure 21: Zero-shot accuracy of XL models trained with various English auxiliary data for Spanish and Portuguese.
Results are averaged over six eval datasets.

(a) Italian (b) Korean

Figure 22: Zero-shot accuracy of XL models trained with various English auxiliary data for Italian and Korean.
Results are averaged over six eval datasets.

(a) Japanese (b) Chinese

Figure 23: Zero-shot accuracy of XL models trained with various English auxiliary data for Japanese and Chinese.
Results are averaged over six eval datasets.
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J Results for Individual datasets for
German Target Language Models

Results for the 300M models on individual eval
datasets are also provides in Tables 13-14. Re-
sults for 1B models on English evaluation tasks
are shown in Table 15 and for translated German
benchmarks in Table 16.
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Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

DE (S) 20.73± 1.18 27.53± 0.92 25.94± 0.44 52.88± 1.16 36.80± 1.53 47.12± 1.40 35.17
DE (L) 22.78± 1.23 37.92± 1.00 33.06± 0.47 62.35± 1.13 64.70± 1.51 51.14± 1.40 45.33
DE (S) EN(L) 25.94± 1.28 48.15± 1.03 48.50± 0.50 71.55± 1.05 73.10± 1.40 52.01± 1.40 53.21
DE (S) DCLM EN (L) 31.06± 1.35 57.24± 1.02 49.26± 0.50 71.71± 1.05 78.40± 1.30 54.06± 1.40 56.96
DE (S) ARC EN (L) 31.83± 1.36 57.24± 1.02 48.80± 0.50 73.07± 1.04 77.00± 1.33 52.72± 1.40 56.78
DE (S) S+I EN(L) 29.10± 1.33 55.22± 1.02 48.34± 0.50 71.71± 1.05 78.50± 1.30 53.04± 1.40 55.98
DE (S) FWE (L) 38.14± 1.42 66.37± 0.97 54.88± 0.50 72.25± 1.04 84.60± 1.14 56.04± 1.39 62.05

DE (S) 22.69± 1.24 30.31± 0.97 28.99± 0.47 54.84± 1.16 40.00± 1.59 50.42± 1.45 37.88
DE (L) 27.44± 1.32 38.81± 1.03 39.53± 0.51 63.17± 1.13 67.68± 1.52 52.62± 1.45 48.21
DE (S) EN(L) 25.07± 1.29 37.70± 1.02 36.18± 0.50 59.36± 1.15 63.05± 1.57 50.51± 1.45 45.31
DE (S) DCLM EN (L) 26.21± 1.30 40.09± 1.03 35.86± 0.50 59.30± 1.15 64.00± 1.56 51.94± 1.45 46.23
DE (S) ARC EN (L) 26.91± 1.32 39.34± 1.03 35.77± 0.50 58.65± 1.15 67.58± 1.52 52.11± 1.45 46.73
DE (S) S+I EN(L) 25.24± 1.29 39.38± 1.03 35.34± 0.49 59.74± 1.14 64.21± 1.56 52.70± 1.45 46.10
DE (S) FWE (L) 26.91± 1.32 42.39± 1.04 37.40± 0.50 60.45± 1.14 65.37± 1.54 50.42± 1.45 47.16

Table 5: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by translated German. Results show the length
normalized accuracy for individual datasets and the average over all datasets for all datasets.

Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

FR (S) 19.88± 1.17 26.60± 0.91 26.61± 0.44 52.56± 1.17 33.70± 1.50 51.14± 1.40 35.08
FR (L) 24.66± 1.26 36.78± 0.99 32.89± 0.47 60.66± 1.14 63.90± 1.52 50.51± 1.41 44.90
FR (S) EN(L) 26.28± 1.29 49.92± 1.03 48.62± 0.50 71.98± 1.05 75.20± 1.37 53.91± 1.40 54.32
FR (S) DCLM EN (L) 30.12± 1.34 56.52± 1.02 49.22± 0.50 71.71± 1.05 80.30± 1.26 54.78± 1.40 57.11
FR (S) ARC EN (L) 29.69± 1.34 57.28± 1.02 48.96± 0.50 72.91± 1.04 78.90± 1.29 53.12± 1.40 56.81
FR (S) S+I EN(L) 28.41± 1.32 53.16± 1.02 47.44± 0.50 70.51± 1.06 78.90± 1.29 54.14± 1.40 55.43
FR (S) FWE (L) 36.69± 1.41 65.40± 0.98 54.81± 0.50 72.74± 1.04 82.50± 1.20 55.41± 1.40 61.26

FR (S) 22.06± 1.22 28.53± 0.95 29.25± 0.47 55.93± 1.16 40.29± 1.59 50.04± 1.44 37.68
FR (L) 25.98± 1.30 38.53± 1.02 41.71± 0.51 64.25± 1.12 62.12± 1.57 53.25± 1.43 47.64
FR (S) EN(L) 23.54± 1.25 37.03± 1.01 37.66± 0.50 58.98± 1.15 60.44± 1.58 49.05± 1.43 44.45
FR (S) DCLM EN (L) 24.93± 1.28 38.62± 1.02 38.49± 0.50 60.45± 1.14 64.53± 1.55 52.02± 1.43 46.51
FR (S) ARC EN (L) 25.54± 1.29 39.32± 1.03 38.17± 0.50 59.41± 1.15 64.22± 1.55 50.29± 1.44 46.16
FR (S) S+I EN(L) 25.72± 1.29 38.71± 1.02 37.61± 0.50 59.03± 1.15 63.06± 1.56 49.55± 1.43 45.61
FR (S) FWE (L) 27.38± 1.32 40.51± 1.03 40.67± 0.51 60.94± 1.14 64.85± 1.55 50.78± 1.43 47.52

Table 6: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by French. Results show the length normalized
accuracy for individual datasets and the average over all datasets for all datasets.

Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

ES (S) 21.16± 1.19 28.45± 0.93 26.33± 0.44 52.61± 1.16 38.50± 1.54 50.04± 1.41 36.18
ES (L) 23.29± 1.24 38.55± 1.00 33.86± 0.47 60.83± 1.14 67.90± 1.48 51.07± 1.40 45.92
ES (S) EN(L) 26.19± 1.28 48.95± 1.03 48.16± 0.50 71.11± 1.06 74.30± 1.38 52.01± 1.40 53.45
ES (S) DCLM EN (L) 30.46± 1.34 56.36± 1.02 49.48± 0.50 71.38± 1.05 78.40± 1.30 53.20± 1.40 56.55
ES (S) ARC EN (L) 30.89± 1.35 58.71± 1.01 49.41± 0.50 73.45± 1.03 78.50± 1.30 54.06± 1.40 57.50
ES (S) S+I EN(L) 29.44± 1.33 57.49± 1.01 48.89± 0.50 70.57± 1.06 79.70± 1.27 54.22± 1.40 56.72
ES (S) FWE (L) 36.60± 1.41 64.86± 0.98 54.95± 0.50 71.87± 1.05 81.50± 1.23 57.85± 1.39 61.27

ES (S) 21.80± 1.22 29.90± 0.96 29.84± 0.47 57.45± 1.15 41.85± 1.60 50.61± 1.42 38.57
ES (L) 27.99± 1.33 44.12± 1.04 43.64± 0.51 65.94± 1.11 69.72± 1.49 52.70± 1.42 50.69
ES (S) EN(L) 25.28± 1.28 38.71± 1.02 39.32± 0.50 60.94± 1.14 65.83± 1.54 47.13± 1.42 46.20
ES (S) DCLM EN (L) 26.94± 1.31 40.82± 1.03 40.15± 0.51 60.39± 1.14 65.83± 1.54 49.31± 1.42 47.24
ES (S) ARC EN (L) 25.89± 1.29 42.01± 1.04 39.49± 0.50 62.02± 1.13 66.25± 1.53 52.54± 1.42 48.03
ES (S) S+I EN(L) 25.89± 1.29 41.08± 1.03 39.35± 0.50 61.37± 1.14 67.93± 1.51 51.82± 1.42 47.91
ES (S) FWE (L) 27.99± 1.33 43.24± 1.04 42.05± 0.51 62.19± 1.13 70.45± 1.48 51.17± 1.42 49.51

Table 7: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by Spanish. Results show the length normalized
accuracy for individual datasets and the average over all datasets for all datasets.
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Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

PT (S) 23.38± 1.24 26.77± 0.91 26.01± 0.44 53.48± 1.16 33.50± 1.49 50.91± 1.41 35.67
PT (L) 23.98± 1.25 39.14± 1.00 33.26± 0.47 60.99± 1.14 66.30± 1.50 52.01± 1.40 45.95
PT (S) EN(L) 25.34± 1.27 48.02± 1.03 47.19± 0.50 71.60± 1.05 74.00± 1.39 50.04± 1.41 52.70
PT (S) DCLM EN (L) 28.92± 1.33 57.70± 1.01 48.78± 0.50 71.87± 1.05 80.50± 1.25 54.14± 1.40 56.99
PT (S) ARC EN (L) 30.72± 1.35 57.83± 1.01 48.79± 0.50 73.01± 1.04 78.30± 1.30 52.64± 1.40 56.88
PT (S) S+I EN(L) 29.35± 1.33 57.45± 1.01 48.26± 0.50 71.55± 1.05 78.80± 1.29 53.99± 1.40 56.56
PT (S) FWE (L) 35.07± 1.39 64.39± 0.98 54.81± 0.50 72.69± 1.04 82.10± 1.21 57.62± 1.39 61.11

PT (S) 25.37± 1.29 30.74± 0.97 29.18± 0.47 55.39± 1.16 41.97± 1.60 50.00± 1.43 38.77
PT (L) 30.25± 1.36 43.55± 1.04 42.36± 0.51 64.80± 1.11 69.88± 1.49 52.11± 1.42 50.49
PT (S) EN(L) 24.06± 1.26 38.04± 1.02 36.04± 0.50 59.68± 1.14 59.18± 1.59 51.06± 1.42 44.68
PT (S) DCLM EN (L) 27.29± 1.32 39.85± 1.03 37.63± 0.50 59.58± 1.14 63.27± 1.56 50.41± 1.43 46.34
PT (S) ARC EN (L) 27.90± 1.32 38.79± 1.02 36.87± 0.50 60.07± 1.14 64.32± 1.55 49.35± 1.42 46.22
PT (S) S+I EN(L) 27.03± 1.31 40.38± 1.03 37.72± 0.50 60.72± 1.14 66.00± 1.54 50.73± 1.42 47.10
PT (S) FWE (L) 28.86± 1.34 43.11± 1.04 39.81± 0.51 60.34± 1.14 66.84± 1.53 50.57± 1.42 48.25

Table 8: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by Portuguese. Results show the length
normalized accuracy for individual datasets and the average over all datasets for all datasets.

Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

IT (S) 23.46± 1.24 27.23± 0.91 26.30± 0.44 53.21± 1.16 32.40± 1.48 49.88± 1.41 35.41
IT (L) 21.59± 1.20 35.77± 0.98 32.54± 0.47 59.09± 1.15 63.70± 1.52 51.07± 1.40 43.96
IT (S) EN(L) 26.11± 1.28 48.53± 1.03 47.16± 0.50 71.71± 1.05 73.50± 1.40 53.35± 1.40 53.39
IT (S) DCLM EN (L) 29.35± 1.33 56.90± 1.02 48.99± 0.50 71.98± 1.05 79.20± 1.28 53.83± 1.40 56.71
IT (S) ARC EN (L) 30.46± 1.34 56.06± 1.02 48.78± 0.50 73.01± 1.04 75.90± 1.35 52.57± 1.40 56.13
IT (S) S+I EN(L) 30.38± 1.34 56.78± 1.02 48.49± 0.50 71.27± 1.06 80.20± 1.26 54.85± 1.40 56.99
IT (S) FWE (L) 37.03± 1.41 65.61± 0.97 54.91± 0.50 72.74± 1.04 84.20± 1.15 54.85± 1.40 61.56

IT (S) 23.63± 1.25 29.19± 0.95 28.49± 0.47 56.31± 1.16 36.76± 1.56 48.01± 1.42 37.07
IT (L) 26.33± 1.30 40.38± 1.03 39.89± 0.51 64.74± 1.11 61.76± 1.58 51.42± 1.42 47.42
IT (S) EN(L) 25.81± 1.29 36.02± 1.01 35.29± 0.50 58.65± 1.15 58.82± 1.60 52.23± 1.42 44.47
IT (S) DCLM EN (L) 25.81± 1.29 39.06± 1.02 36.65± 0.50 60.66± 1.14 62.29± 1.57 48.82± 1.42 45.55
IT (S) ARC EN (L) 25.72± 1.29 39.15± 1.02 36.18± 0.50 60.55± 1.14 63.24± 1.56 51.34± 1.42 46.03
IT (S) S+I EN(L) 26.07± 1.30 40.03± 1.03 36.67± 0.50 58.76± 1.15 62.29± 1.57 50.93± 1.42 45.79
IT (S) FWE (L) 29.90± 1.35 41.04± 1.03 38.24± 0.51 62.68± 1.13 61.03± 1.58 51.18± 1.42 47.34

Table 9: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by Italian. Results show the length normalized
accuracy for individual datasets and the average over all datasets for all datasets.

Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

KO (S) 23.04± 1.23 26.14± 0.90 25.41± 0.43 50.98± 1.17 29.50± 1.44 52.57± 1.40 34.61
KO (L) 22.10± 1.21 37.46± 0.99 28.99± 0.45 59.19± 1.15 60.70± 1.55 51.62± 1.40 43.34
KO (S) EN(L) 26.02± 1.28 47.47± 1.02 47.71± 0.50 71.11± 1.06 75.00± 1.37 52.72± 1.40 53.34
KO (S) DCLM EN (L) 29.69± 1.34 55.39± 1.02 49.53± 0.50 71.65± 1.05 75.80± 1.36 53.12± 1.40 55.86
KO (S) ARC EN (L) 30.03± 1.34 57.37± 1.01 49.41± 0.50 73.78± 1.03 78.20± 1.31 53.12± 1.40 56.98
KO (S) S+I EN(L) 30.97± 1.35 58.54± 1.01 48.16± 0.50 71.49± 1.05 80.30± 1.26 52.33± 1.40 56.97
KO (S) FWE (L) 36.01± 1.40 63.59± 0.99 54.41± 0.50 72.96± 1.04 80.10± 1.26 55.56± 1.40 60.44

KO (S) 24.41± 1.27 28.84± 0.95 27.63± 0.45 52.39± 1.17 47.41± 1.63 50.89± 1.46 38.60
KO (L) 28.07± 1.33 42.18± 1.04 35.48± 0.48 60.66± 1.14 71.64± 1.47 49.28± 1.46 47.89
KO (S) EN(L) 22.76± 1.24 33.82± 0.99 28.88± 0.45 55.22± 1.16 56.08± 1.62 51.23± 1.46 41.33
KO (S) DCLM EN (L) 24.59± 1.27 32.54± 0.98 29.69± 0.46 53.16± 1.16 63.17± 1.57 50.64± 1.46 42.30
KO (S) ARC EN (L) 25.28± 1.28 33.73± 0.99 29.33± 0.45 53.86± 1.16 64.44± 1.56 51.15± 1.46 42.97
KO (S) S+I EN(L) 23.19± 1.25 34.26± 1.00 30.01± 0.46 55.60± 1.16 64.02± 1.56 50.04± 1.46 42.86
KO (S) FWE (L) 22.93± 1.24 32.32± 0.98 29.09± 0.45 53.26± 1.16 64.76± 1.55 48.43± 1.46 41.80

Table 10: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by Korean. Results show the length normalized
accuracy for individual datasets and the average over all datasets for all datasets.
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Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

JA (S) 22.61± 1.22 28.49± 0.93 26.29± 0.44 53.21± 1.16 33.80± 1.50 51.46± 1.40 35.98
JA (L) 23.46± 1.24 37.42± 0.99 29.07± 0.45 59.14± 1.15 68.10± 1.47 50.28± 1.41 44.58
JA (S) EN(L) 26.19± 1.28 49.24± 1.03 48.69± 0.50 72.63± 1.04 74.40± 1.38 53.28± 1.40 54.07
JA (S) DCLM EN (L) 29.86± 1.34 58.29± 1.01 48.93± 0.50 72.20± 1.05 80.20± 1.26 53.67± 1.40 57.19
JA (S) ARC EN (L) 29.35± 1.33 56.94± 1.02 49.05± 0.50 73.78± 1.03 79.80± 1.27 54.22± 1.40 57.19
JA (S) S+I EN(L) 30.38± 1.34 56.14± 1.02 48.32± 0.50 72.42± 1.04 78.60± 1.30 52.64± 1.40 56.42
JA (S) FWE EN (L) 36.09± 1.40 63.93± 0.99 54.74± 0.50 73.18± 1.03 80.00± 1.27 55.80± 1.40 60.62

JA (S) 22.58± 1.24 30.07± 0.96 29.32± 0.45 53.81± 1.16 41.79± 1.62 48.81± 1.51 37.73
JA (L) 25.28± 1.28 40.69± 1.03 35.11± 0.48 58.98± 1.15 69.98± 1.51 51.19± 1.51 46.87
JA (S) EN(L) 25.28± 1.28 36.15± 1.01 31.71± 0.46 56.26± 1.16 66.41± 1.55 50.82± 1.51 44.44
JA (S) DCLM EN (L) 27.46± 1.32 37.78± 1.02 31.71± 0.46 57.07± 1.15 66.63± 1.55 49.82± 1.51 45.08
JA (S) ARC EN (L) 27.55± 1.32 37.43± 1.02 31.56± 0.46 57.29± 1.15 65.55± 1.56 48.72± 1.51 44.68
JA (S) S+I EN(L) 27.38± 1.32 36.42± 1.01 31.44± 0.46 56.58± 1.16 67.28± 1.54 50.36± 1.51 44.91
JA (S) FWE EN (L) 25.89± 1.29 35.71± 1.01 31.06± 0.46 56.20± 1.16 66.09± 1.56 49.64± 1.51 44.10

Table 11: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by translated Japanese. Results show the length
normalized accuracy for individual datasets and the average over all datasets for all datasets.

Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

ZH (S) 22.10± 1.21 26.14± 0.90 25.74± 0.44 52.50± 1.17 31.10± 1.46 50.43± 1.41 34.67
ZH (L) 21.16± 1.19 33.16± 0.97 27.63± 0.45 55.98± 1.16 56.60± 1.57 49.09± 1.41 40.61
ZH (S) EN(L) 25.85± 1.28 47.90± 1.03 48.54± 0.50 71.93± 1.05 73.90± 1.39 52.64± 1.40 53.46
ZH (S) DCLM EN (L) 29.35± 1.33 57.24± 1.02 48.28± 0.50 70.95± 1.06 77.20± 1.33 51.38± 1.40 55.73
ZH (S) ARC EN (L) 30.72± 1.35 57.49± 1.01 48.38± 0.50 73.29± 1.03 80.10± 1.26 53.75± 1.40 57.29
ZH (S) S+I EN(L) 30.38± 1.34 56.31± 1.02 47.66± 0.50 71.16± 1.06 78.10± 1.31 52.49± 1.40 56.02
ZH (S) FWE (L) 36.18± 1.40 67.13± 0.96 54.07± 0.50 73.99± 1.02 80.90± 1.24 55.96± 1.40 61.37

ZH (S) 22.77± 1.24 28.58± 0.95 28.46± 0.47 50.71± 1.17 40.80± 1.55 48.06± 1.54 36.56
ZH (L) 25.65± 1.29 38.88± 1.02 33.07± 0.49 56.37± 1.16 69.90± 1.45 49.86± 1.54 45.62
ZH (S) EN(L) 25.22± 1.28 36.77± 1.01 31.62± 0.48 56.09± 1.16 68.00± 1.48 48.35± 1.54 44.34
ZH (S) DCLM EN (L) 23.30± 1.25 36.72± 1.01 32.58± 0.49 53.92± 1.16 69.70± 1.45 50.80± 1.54 44.50
ZH (S) ARC EN (L) 23.21± 1.25 37.52± 1.02 32.06± 0.48 55.44± 1.16 70.90± 1.44 48.54± 1.54 44.61
ZH (S) S+I EN(L) 22.16± 1.23 38.00± 1.02 32.24± 0.49 54.03± 1.16 68.60± 1.47 53.07± 1.53 44.68
ZH (S) FWE (L) 25.04± 1.28 36.50± 1.01 31.89± 0.48 54.62± 1.16 66.30± 1.50 51.94± 1.54 44.38

Table 12: Evaluation of 1B parameter XL model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English followed by translated Chinese. Results show the length
normalized accuracy for individual datasets and the average over all datasets for all datasets.

Small DE 21.33± 1.20 27.90± 0.92 26.20± 0.44 51.20± 1.17 42.70± 1.56 49.72± 1.41 36.51
No ARC Large DE 21.08± 1.19 31.52± 0.95 28.09± 0.45 56.47± 1.16 54.80± 1.57 51.30± 1.40 40.54
Large DE 20.73± 1.18 33.33± 0.97 28.15± 0.45 57.40± 1.15 56.30± 1.57 50.59± 1.41 41.09
Small DE + Large EN 23.81± 1.24 41.92± 1.01 35.73± 0.48 67.03± 1.10 66.10± 1.50 50.75± 1.41 47.56

Small DE + DCLM Filter EN (L) 24.57± 1.26 45.20± 1.02 35.27± 0.48 65.94± 1.11 69.00± 1.46 52.01± 1.40 48.67

Small DE + Large HS EN 23.72± 1.24 42.42± 1.01 39.64± 0.49 70.13± 1.07 67.20± 1.49 50.43± 1.41 48.93
Small DE +Large ARC EN 26.28± 1.29 46.80± 1.02 36.44± 0.48 67.46± 1.09 70.30± 1.45 51.38± 1.40 49.78

+ Large S EN 26.62± 1.29 49.33± 1.03 31.94± 0.47 63.44± 1.12 72.40± 1.41 50.83± 1.41 49.09
Small DE + Large S+I EN 26.19± 1.28 46.93± 1.02 36.02± 0.48 66.21± 1.10 73.10± 1.40 50.67± 1.41 49.85

Small DE + Large v1 21.16± 1.19 36.83± 0.99 29.19± 0.45 60.07± 1.14 63.50± 1.52 52.33± 1.40 43.84
Small DE + Large v2 21.16± 1.19 34.89± 0.98 29.60± 0.46 57.45± 1.15 59.50± 1.55 50.36± 1.41 42.16
Small DE + Large v3 19.54± 1.16 35.02± 0.98 29.46± 0.45 59.47± 1.15 61.40± 1.54 50.51± 1.41 42.57

RPJv2 25.09± 1.27 43.27± 1.02 37.23± 0.48 65.02± 1.11 66.30± 1.50 49.80± 1.41 47.78
RefinedWeb 24.40± 1.26 43.98± 1.02 39.75± 0.49 68.66± 1.08 69.80± 1.45 52.49± 1.40 49.85
FineWeb 25.00± 1.27 44.23± 1.02 40.89± 0.49 69.53± 1.07 68.40± 1.47 51.78± 1.40 49.97
FineWebEDU 28.67± 1.32 56.06± 1.02 40.85± 0.49 66.65± 1.10 72.60± 1.41 52.09± 1.40 52.82

Table 13: Evaluation of 300M parameter medium model on “General Understanding Tasks” focusing on general
reasoning, language understanding, and science knowledge in English. Results show the length normalized accuracy
for individual datasets and the average over all datasets for all datasets.
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Model Name ARC-C-DE ARC-E-DE HS-DE PIQA-DE SCIQ-DE WGrande-DE AVG-DE

Small DE 23.83± 1.26 30.71± 0.97 28.33± 0.47 53.92± 1.16 47.58± 1.62 52.20± 1.45 39.43
No ARC Large DE 23.48± 1.26 32.30± 0.98 30.45± 0.48 56.09± 1.16 60.32± 1.59 52.11± 1.45 42.46
Large DE 24.98± 1.28 34.87± 1.00 32.28± 0.48 59.79± 1.14 61.26± 1.58 51.52± 1.45 44.12
Small DE + Large EN 23.83± 1.26 30.66± 0.97 29.69± 0.47 56.37± 1.16 60.84± 1.58 51.01± 1.45 42.07

Small DE + DCLM Filter EN (L) 24.45± 1.28 32.96± 0.99 29.46± 0.47 57.07± 1.15 60.11± 1.59 49.75± 1.45 42.30

Small DE + Large HS EN 23.75± 1.26 31.81± 0.98 30.32± 0.47 57.40± 1.15 59.68± 1.59 51.52± 1.45 42.41
Small DE +Large ARC EN 23.83± 1.26 33.05± 0.99 29.59± 0.47 56.37± 1.16 60.11± 1.59 51.60± 1.45 42.43

Small DE + Large S EN 23.66± 1.26 32.21± 0.98 28.84± 0.47 56.26± 1.16 61.58± 1.58 52.96± 1.45 42.58
Small DE + Large S+I EN 23.22± 1.25 33.67± 0.99 29.42± 0.47 55.93± 1.16 61.68± 1.58 51.27± 1.45 42.53

Small DE + Large v1 23.92± 1.27 35.27± 1.01 32.79± 0.49 59.74± 1.14 62.42± 1.57 50.68± 1.45 44.14
Small DE + Large v2 24.27± 1.27 36.19± 1.01 32.72± 0.48 59.41± 1.15 63.89± 1.56 52.53± 1.45 44.84
Small DE + Large v3 23.83± 1.26 36.19± 1.01 34.06± 0.49 61.04± 1.14 63.26± 1.56 51.77± 1.45 45.03

Small DE + Large RPJv2 24.10± 1.27 33.10± 0.99 30.06± 0.47 55.44± 1.16 59.05± 1.60 50.08± 1.45 41.97
Small DE + Large RFW 25.33± 1.29 32.12± 0.98 30.56± 0.48 57.34± 1.15 62.32± 1.57 51.77± 1.45 43.24
Small DE + Large FWE 25.59± 1.29 35.00± 1.00 31.19± 0.48 56.86± 1.16 62.32± 1.57 51.52± 1.45 43.75

Table 14: Evaluation of 300M parameter model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in translated German. Results show the length normalized accuracy
for individual datasets and the average over all datasets for all datasets.

Model Name ARC-C ARC-E HS PIQA SCIQ WGrande AVG

Small DE 20.73± 1.18 27.53± 0.92 25.94± 0.44 52.88± 1.16 36.80± 1.53 47.12± 1.40 35.17
No ARC Large DE 21.33± 1.20 35.40± 0.98 30.88± 0.46 59.14± 1.15 60.50± 1.55 50.67± 1.41 42.99
Large DE 22.78± 1.23 37.92± 1.00 33.06± 0.47 62.35± 1.13 64.70± 1.51 51.14± 1.40 45.33
Small DE + Large EN 25.94± 1.28 48.15± 1.03 48.50± 0.50 71.55± 1.05 73.10± 1.40 52.01± 1.40 53.21

Small DE + Large EN DCLM Filter 31.06± 1.35 57.24± 1.02 49.26± 0.50 71.71± 1.05 78.40± 1.30 54.06± 1.40 56.96

Small DE + Large HS EN 28.84± 1.32 49.83± 1.03 54.83± 0.50 75.14± 1.01 75.10± 1.37 54.85± 1.40 56.43
Small DE +Large ARC EN 31.83± 1.36 57.24± 1.02 48.80± 0.50 73.07± 1.04 77.00± 1.33 52.72± 1.40 56.78

Small DE + Large S EN 30.63± 1.35 57.28± 1.02 39.79± 0.49 68.28± 1.09 80.40± 1.26 53.91± 1.40 55.05
Small DE + Large S+I EN 29.10± 1.33 55.22± 1.02 48.34± 0.50 71.71± 1.05 78.50± 1.30 53.04± 1.40 55.98

Small DE + Large v1 20.73± 1.18 38.97± 1.00 36.09± 0.48 63.33± 1.12 65.40± 1.51 52.01± 1.40 46.09
Small DE + Large v2 22.70± 1.22 38.97± 1.00 36.55± 0.48 64.80± 1.11 69.30± 1.46 51.22± 1.40 47.26
Small DE + Large v3 20.65± 1.18 40.36± 1.01 36.57± 0.48 63.66± 1.12 70.50± 1.44 51.54± 1.40 47.21

Small DE + Large RPJv2 26.96± 1.30 50.42± 1.03 51.10± 0.50 70.57± 1.06 77.60± 1.32 55.64± 1.40 55.38
Small DE + Large RFW 27.90± 1.31 54.59± 1.02 54.91± 0.50 73.23± 1.03 77.60± 1.32 56.35± 1.39 57.43
Small DE + Large FWE 38.14± 1.42 66.37± 0.97 54.88± 0.50 72.25± 1.04 84.60± 1.14 56.04± 1.39 62.05

Table 15: Evaluation of 1.3B parameter model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in English. Results show the length normalized accuracy for
individual datasets and the average over all datasets for all datasets.

Model Name ARC-C-DE ARC-E-DE HS-DE PIQA-DE SCIQ-DE WGrande-DE AVG-DE

Small DE 22.69± 1.24 30.31± 0.97 28.99± 0.47 54.84± 1.16 40.00± 1.59 50.42± 1.45 37.88
No ARC Large DE 25.07± 1.29 36.95± 1.02 35.64± 0.49 59.74± 1.14 64.53± 1.55 52.62± 1.45 45.76
Large DE 27.44± 1.32 38.81± 1.03 39.53± 0.51 63.17± 1.13 67.68± 1.52 52.62± 1.45 48.21
Small DE + Large EN 25.07± 1.29 37.70± 1.02 36.18± 0.50 59.36± 1.15 63.05± 1.57 50.51± 1.45 45.31

Small DE + Large EN DCLM Filter 26.21± 1.30 40.09± 1.03 35.86± 0.50 59.30± 1.15 64.00± 1.56 51.94± 1.45 46.23

Small DE + Large HS EN 24.89± 1.28 36.90± 1.02 37.11± 0.50 60.77± 1.14 63.47± 1.56 52.87± 1.45 46.00
Small DE +Large ARC EN 26.91± 1.32 39.34± 1.03 35.77± 0.50 58.65± 1.15 67.58± 1.52 52.11± 1.45 46.73

+ Large S EN 27.35± 1.32 39.38± 1.03 33.23± 0.49 58.76± 1.15 64.21± 1.56 51.18± 1.45 45.69
Small DE + Large S+I EN 25.24± 1.29 39.38± 1.03 35.34± 0.49 59.74± 1.14 64.21± 1.56 52.70± 1.45 46.10

Small DE + Large v1 26.12± 1.30 40.93± 1.03 40.39± 0.51 61.48± 1.14 67.58± 1.52 51.94± 1.45 48.07
Small DE + Large v2 25.51± 1.29 42.30± 1.04 40.75± 0.51 62.19± 1.13 71.37± 1.47 52.45± 1.45 49.09
Small DE + Large v3 26.21± 1.30 40.84± 1.03 43.08± 0.51 64.09± 1.12 66.74± 1.53 51.52± 1.45 48.75

Small DE + Large RPJv2 24.71± 1.28 37.17± 1.02 36.53± 0.50 58.65± 1.15 65.26± 1.55 52.70± 1.45 45.84
Small DE + Large RFW 25.42± 1.29 38.81± 1.03 38.25± 0.50 58.38± 1.15 64.21± 1.56 51.01± 1.45 46.01
Small DE + Large FWE 26.91± 1.32 42.39± 1.04 37.40± 0.50 60.45± 1.14 65.37± 1.54 50.42± 1.45 47.16

Table 16: Evaluation of 1.3B parameter model on “General Understanding Tasks” focusing on general reasoning,
language understanding, and science knowledge in translated German. Results show the length normalized accuracy
for individual datasets and the average over all datasets for all datasets.
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