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Abstract

Out-of-distribution (OOD) detection in mul-
timodal contexts is essential for identifying
deviations in different modalities, particularly
for interactive dialogue systems in real-life
interactions, where the systems are usually
infeasible to deploy large language models
(LLMs) to generate responses due to data pri-
vacy and ethical issues. This paper aims to
improve label detection that involves multi-
round long dialogues by efficiently detecting
OOD dialogues and images. We introduce
a novel scoring framework named Dialogue
Image Aligning and Enhancing Framework
(DIAEF) that integrates the visual language
models with the novel proposed scores that de-
tect OOD in two key scenarios (1) mismatches
between the dialogue and image input pair and
(2) input pairs with previously unseen labels.
Our experimental results, derived from var-
ious benchmarks, demonstrate that integrat-
ing image and multi-round dialogue OOD de-
tection is more effective with previously un-
seen labels than using either modality inde-
pendently. In the presence of mismatched
pairs, our proposed score effectively identifies
these mismatches and demonstrates strong ro-
bustness in long dialogues, with user case as
evidence to demonstrate the effectiveness of
proposed function for applications. This ap-
proach enhances domain-aware, adaptive con-
versational agents and establishes baselines for
future studies.1

1 Introduction

In the multimodal learning contexts, Out-Of-
Distribution (OOD) detection involves identify-
ing whether some unknown inputs from different
modalities (e.g., text and images) deviate signifi-
cantly from the patterns in the seen data. Specifi-
cally, an OOD instance under the multimodal set-

*Equal contribution.
1Code can be found in https://github.com/

wfyitf/multimodal_ood.

ting is defined as one that does not conform to a
certain distribution of interest, either by deviating
in one modality or by showing the discrepancy
across different modalities (Arora et al., 2021;
Chen et al., 2021; Feng et al., 2022; Hsu et al.,
2020; Han et al., 2025). This is crucial in dialogue-
image systems where the combination of text and
visual elements is expected to adhere to certain se-
mantic and contextual norms when identifying the
In-Distribution (ID) pairs where they come from
some known distribution.

In multimodal dialogue systems, managing out-
of-distribution (OOD) queries/images is critical
for user experience, as response quality relies on
accurate multimodal understanding. However, de-
ploying Large Language Models (LLMs) is often
infeasible due to privacy concerns and latency is-
sues. Detecting OOD queries—those deviating
from expected patterns—is essential for reliability,
especially in noisy, real-world interactions (Gao
et al., 2024a,b). As shown in Figure 1, we eval-
uate dialogue-image pairs for OOD detection us-
ing the in-distribution (ID) label ‘cat’, focusing on
two scenarios: 1) mismatched dialogue-image la-
bels, and 2) labels unseen in training data.

To effectively detect OOD samples in such a
novel multi-modalities multi-round long dialogue
scenario, we introduce Dialogue Image Aligning
and Enhancing Framework (DIAEF), a frame-
work that incorporates a novel OOD score for tak-
ing the first attempt on dialogue-image OOD de-
tection for long dialogue systems. We propose
a new score design across these two modalities,
enabling more targeted controls for misalignment
detection and performance enhancement. This
framework improves anomaly detection and re-
sponse strategies in long multimodal interactive
dialogues, advancing multimodal conversations
and setting benchmarks for adaptive dialogue sys-
tems. We validate its effectiveness using a dataset
of 120K dialogues, including multi-round QA and
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Figure 1: Motivating examples for ID, mismatched
OOD and label OOD pair where the ID label is ‘cat’
and OOD label is ‘sport’.

open-domain interactions (Seo et al., 2017; Lee
et al., 2021). Experiments demonstrate the scor-
ing framework’s efficacy, establishing benchmarks
and enabling future research.Furthermore, we in-
tegrate the crucial aspect of OOD detection, em-
phasizing its significance for enhancing the robust-
ness and applicability of multimodal dialogue sys-
tems (Dai et al., 2023; Dosyn et al., 2022; Wu
et al., 2024). To summarize, our contributions
are listed as follows:

• We take the first attempt for OOD detec-
tion with the dialogues and propose a novel
framework that enhances the OOD detection
in cross-modal contexts, particularly focus-
ing on scenarios where dialogue-image pairs
either do not match with the semantics or
even match, but their semantic labels are out-
side the known set, which matters in long-
dialogue context for users.

• Our framework incorporates a novel scor-
ing method by combining both dialogues
and images to enhance the OOD detection
while recognizing the mismatch pairs with
the dialogue-image similarity for multi-label
complex long dialogue.

• We demonstrate the practical application of
our methods with the real-world multi-round
long dialogue dataset, showcasing improve-
ments in user experience and system reliabil-
ity upon response. Further, our work estab-
lishes foundational benchmarks and method-

ologies that can serve as baseline standards
for future research in the field of cross-modal
detection on interactive dialogue systems.

2 Related Work

OOD Detection in Dialogue Systems. Dialogue
systems, crucial for virtual assistants, customer
service, and education, have evolved from rule-
based to deep learning models, setting new bench-
marks (Feng et al., 2022; Kottur et al., 2019;
Seo et al., 2017; Yu et al., 2019; Gao and Wang,
2024; Zheng et al., 2020; Lang et al., 2023; Deka
et al., 2023; Mei et al., 2024; Arora et al., 2021;
Yuan et al., 2024; Hendrycks et al., 2020; Yang
et al., 2022; Ye et al., 2023). However, challenges
in context understanding and ambiguous queries
persist, especially in real-life scenarios. Out-of-
distribution (OOD) detection ensures robustness
by identifying anomalous inputs, preventing in-
correct responses and maintaining user trust (Niu
and Zhang, 2021; Chen et al., 2022). Techniques
like softmax thresholding (Liu et al., 2023; Dhuli-
awala et al., 2023), auxiliary models (Wang et al.,
2024; Zheng et al., 2024; Ramé et al., 2023), gen-
erative models (Cai and Li, 2023; Ktena et al.,
2024; Graham et al., 2023), and self-supervised
learning (Azizi et al., 2023; Wallin et al., 2024;
Liu et al., 2021) address OOD detection, advanc-
ing trustworthy dialogue systems for user interac-
tion(Salvador et al., 2017; Feng et al., 2022).
Dialogue-based Multimodality OOD Detection.
Detecting domain alignment between dialogue
and image information is a key challenge in
OOD detection, complicated by multi-turn di-
alogue complexity and inter-turn dependencies
(Fort et al., 2021; Basart et al., 2022). Previ-
ous work improved OOD detection using pseudo-
OOD samples and unlabeled data (Marciniak,
2020; Zheng et al., 2020), though integration with
LLMs is hindered by privacy concerns (Ogrezeanu
et al., 2022). Recent approaches employ the in-
formation bottleneck principle to filter irrelevant
information in multi-turn contexts (Lang et al.,
2023; Gao et al., 2025). Despite progress, OOD
detection in multimodal long dialogues remains
under explored in both research and commercial
markets of user dialogues, underscoring the need
for enhanced multimodal conversational systems.
Multi-label OOD Detection. While numer-
ous studies have improved approaches for multi-
class OOD detection tasks, investigating multi-
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label OOD detection tasks has been notably lim-
ited. A recent advancement is the introduction
of Spectral Normalized Joint Energy (SNoJoE)
(Mei et al., 2024), a method that consolidates
label-specific information across multiple labels
using an energy-based function. Later on, the
sparse label co-occurrence scoring (SLCS) lever-
ages these properties by filtering low-confidence
logits to enhance label sparsity and weighting
preserved logits by label co-occurrence informa-
tion (Wang et al., 2022). Considering the vision-
language information as input in models like CLIP
(Radford et al., 2021), traditional vision-language
prompt learning methods face limitations due to
ID-irrelevant information in text embeddings. To
address this, the Local regularized Context Opti-
mization (LoCoOp) approach enhances OOD de-
tection by leveraging CLIP’s local features in one-
shot settings (Miyai et al., 2024). However, pre-
vious approaches majorly implied the limitation
only in computer vision tasks without focus on di-
alogue or Natural Language Processing tasks(Wei
et al., 2015; Zhang and Taneva-Popova, 2023;
Wang et al., 2021, 2022).

3 Problem Formulation

To formally define the cross-modal OOD prob-
lem, we focus on the detection with dialogue
and image pairs within a multi-class classifica-
tion framework. Specifically, we have a batch
of N pairs of images and dialogues, along with
their labels, denoted by {(in, tn) ,yn}Nn=1 where
in ∈ I and tn ∈ T denote the input image and
dialogues and I and T are the image and dia-
logue spaces, respectively. Here, the instance pair
may be associated with multiple labels yn with
yn = {yn,1, yn,2, · · · , yn,K} ∈ [0, 1]K where
yn,k = 1 if the dialogue-image pair is associated
with k-th label and K denotes the total number of
in-domain categories. Our proposed score func-
tion enhances the ability to distinguish between
ID and OOD data cross-joint detection for image
and dialogue, making it applicable in multimodal-
ity scenarios. Based on this setup, the goal of the
OOD detection is to define a decision function G:

G(i, t,y) =

{
0 if (i, t,y) ∼ Dout,

1 if (i, t,y) ∼ Din.
(1)

Remark 1 Different from unimodal OOD detec-
tion (Lee et al., 2018; Basart et al., 2022;
Hendrycks and Gimpel, 2016; Du et al., 2022; Wu

et al., 2023), in the cross-modal detection scenar-
ios, we need to additionally consider whether the
image and dialogue come from the same distribu-
tion, i.e., whether the image and dialogue are se-
mantically matched in the interaction context. In
particular, we will consider several scenarios for
detecting OOD samples: 1) the image and dia-
logue do not match (e.g., in terms of content or de-
scription), and 2) the in-domain sample does not
contain any out-of-domain labels, meaning previ-
ously unseen labels appear, or 3) both cases occur
simultaneously.

To determine G in practice, we may need to
consider the relationship between dialogue and
images additionally. To this end, let M : I ∪T →
Rd be a vision-language model that could encode
the image in with the image embedding xi,n ∈ Rd,
and the dialogues with the text embedding xt,n ∈
Rd in the same latent space as in the image. To
classify the relevance of an image to a dialogue
according to the label yn, we first use a scoring
function s : Rd × Rd → R, which evaluates the
similarity or relevance between the image and text
embeddings from M . We then further compare
these two embeddings with the label yn with the
dialogue score function sT : Rd×[0, 1]K → R and
image score function sI : Rd × [0, 1]K → R. For
simplicity, we use sI (or sT ) interchangeably with
sI(x,y) throughout the paper. Finally, we could
conduct a fusion on the three scores g(s, sT , sI)
for some fusion function g and check if the nu-
meric value exceeds λ to determine whether it
is in-domain or out-of-domain. Given the above
definition, given a dialogue-image data pair (i, t),
we will examine whether it is ID or OOD per
dialogue-image pair in the given label set Y with
the following criterion.

Definition 1 (Cross-Modal OOD Detection)
We use the following detection criterion for
out-of-domain samples for some fusion function g
and some threshold λ:
In-domain: given both embeddings xi from the
images and xt from the dialogue, and a certain
label y. We say the image is in-domain with the
dialogue if g(s(xi, xt), st(xt,y), si(xi,y)) ≥ λ.
Out-of-domain: given both embeddings xi from
the images and xt from the dialogue, we say
the image is out-of-domain with the dialogue if
g(s(xi, xt), st(xt,y), si(xi,y)) < λ.
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4 DIAEF Framework

To intuitively demonstrate our framework, we
draw the overall workflow in Figure 2. The work-
flow consists of three parts: in the first stage,
we will employ a vision language model, such as
CLIP (Radford et al., 2021) and BLIP (Li et al.,
2022), to derive meaningful descriptors or feature
embeddings from images and dialogues, respec-
tively. Note that the model we used here would
map the image and dialogue into the same la-
tent space so that the similarity between the two
can be easily calculated. These processes yield
embeddings xI for images and xT for dialogues.
Then, utilizing these embeddings, we apply a scor-
ing function s(xI , xT ) to assess the relevance be-
tween an image and a dialogue. The outcome
of this function helps us determine whether the
dialogue-image pair falls within the categories, in-
dicating a high relevance in semantics, or the out-
of-distribution categories with mismatches, sug-
gesting low or no relevance.

In addition to this score, we will further train
two label extractors to compare the whole pair
with the label set to determine if the pair is in-
distribution or out-of-distribution using sI(xI ,y)
that evaluates the similarity between the image and
the label and sT (xT ,y) that evaluates the sim-
ilarity between the text and the label. We will
use conventional methods to combine these two
scores and determine whether the pair is ID or
OOD based on the threshold λ.

This paper aims to enhance the detection of
OOD samples by combining dialogues and images
and identifying the misalignments between them.
To this end, we naturally propose the DIAEF score
function in general:

g(xT , xI ,y; s, sT , sI)

= s(xT , xI)
γ(αsI(xI ,y) + (1− α)sT (xT ,y)),

where the first part s(xT , xI)γ , which we call the
alignment term, controls the similarity between
the image and the dialogue. If the image and dia-
logue are highly similar, this term will be large and
vice versa. This allows us to identify the misalign-
ment between images and dialogues in a long dia-
logue system. The second part (αsI +(1−α)sT ),
namely the enhancing term, enhances the detec-
tion of OOD samples by linearly combining the
dialogue and image scores, where the weighting
hyperparameter α controls the relative importance
of the image: if α is selected to be large, we rely

more on images for OOD detection; conversely for
a small α, we rely more on the dialogue. The pur-
pose of using a multiplicative combination of the
alignment and enhancing terms is: (1) identifying
mismatched OOD pairs where either the image or
dialogue might have high relevance to the label,
making the enhancing term potentially large (de-
pending on sI or sT ). To identify these pairs as
OOD samples, we naturally multiply the enhanc-
ing term by s(xT , xI); (2) identifying matched
pairs with OOD labels where s(xT , xI) may be
large, but the enhancement term is likely to be
small since the image and dialogue have low rel-
evance to the label. To show this mathematically,
we give a theoretical justification for the proposed
score in Appendix B.

The choice of the functions s(xI , xT ) depends
on the selection of the trained visual language
model. For example, in CLIP, contrastive loss is
used to measure the similarity between images and
text (dialogue) based on cosine similarity (Rad-
ford et al., 2021). Similarly, BLIP employs image-
text matching loss and leverages cosine similar-
ity to align the representations of images and text
(Li et al., 2022). With those two models, se-
lecting cosine similarity as an appropriate score
for s(xI , xT ) is natural. Regarding sI and sT ,
which measure the scores between embeddings
and labels, various potential choices and aggre-
gation methods are available. For example, one
direct way is to use the probability of the model
output Py(x) as the score for the category y with
the input x, and we could further aggregate the
probability over all categories using sum or max
methods to derive our final DIEAF score. More
complicated scores would involve some probabil-
ity transformation, such as the logits fy(x) used
in (Hendrycks et al., 2019) or the normalized ver-
sion called MSP as used in (Hendrycks and Gim-
pel, 2016). Some other effective scores would in-
volve the pre-trained models, such as the ODIN
method proposed in (Liang et al., 2017) modifies
the input by adding a gradient-based perturbation,
or the method proposed in (Lee et al., 2018) com-
putes the Mahalanobis distance between the em-
beddings from the pre-trained model and the class
conditional distributions in the feature space. Ta-
ble 1 shows the list of possible scores that could fit
in our framework.
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Figure 2: The workflow for three motivating examples for cross-modal OOD detection, including ID pair, mis-
matched OOD pair, and label OOD pair. The workflow consists of three main parts: the dialogue and image will
be firstly processed and passed into a visual language model to get the image and dialogue embeddings; then two
label extractors will be trained on both the image and dialogue embeddings for predictions and score calculations;
finally the score function s, sT and sI are aggregated to determine the threshold λ at recall rate of 95%. FPR95%
is reported to demonstrate that combining images and dialogue outperforms using images or dialogue alone.

5 Experiments

5.1 Experimental Setup

Table 1: OOD Scores for sI /sT .

Method Score
Probability Py(x)

MSP (Hendrycks and Gimpel, 2016) maxy∈Y
fy(x)∑
y fy(x)

Logits (Hendrycks et al., 2019) fy(x)

Energy (Wang et al., 2021) log(1 + efy(x))
ODIN (Liang et al., 2017) fy(x + ϵ∆)/T

Mahalanobis (Lee et al., 2018) (x − µy)
TΣ−1

y (x − µy)

Datasets. In this section, we utilize the Visdial
dataset (Das et al., 2017) and Real MMD dataset
(Lee et al., 2021) for OOD detection in long di-
alogue systems. The Visdial dataset comprises
over 120K images sourced from the COCO im-
age dataset (Lin et al., 2014), coupled with col-
lected multi-round dialogues in a one-to-one map-
ping format between modalities. We constructed
a testing multi-round question-answering dataset
with full semantic context to evaluate our OOD
detection methods, including all dialogue-image
pairs and an additional 10K mismatched pairs.
Each entry in this dataset contains an image, a
full conversation, and a set of labels with 80 spe-
cific categories. The dataset is further organized
into 12 higher-level supercategories: animal, per-
son, kitchen, food, sports, electronic, accessory,
furniture, indoor, appliance, vehicle, and outdoor.
Another related datasets, called the Real MMD

dataset, contains images sourced from COCO (Lin
et al., 2014) and texts from different sources such
as DailyDialog (Li et al., 2017) and Persona-Chat
(Miller et al., 2017), meaning they may not be per-
fectly matched but instead have a certain degree of
similarity. The dataset statistics are presented in
Table 4a and Table 4b in Appendix A.
OOD Label Selection. In our study, we propose
a label selection score function for selecting OOD
labels that effectively combines semantic distance
(Huang et al., 2008; Kadhim et al., 2014; Li and
Han, 2013; Rahutomo et al., 2012; Lahitani et al.,
2016) and ontological hierarchy via the WordNet
path calculation (Aminu et al., 2021; Dosyn et al.,
2022; Fellbaum, 2010; Marciniak, 2020; Martin,
1995). The score function integrates multiple cri-
teria to enhance the robustness and accuracy of
OOD detection. Semantic distance is quantified
using cosine similarity between vector represen-
tations of candidate labels and the remaining la-
bels in the label set. We compute the maximum
cosine similarity to any ID label for each candi-
date OOD label and select those with values be-
low a predefined threshold, ensuring semantic dis-
tinctiveness. Additionally, we leverage ontologi-
cal hierarchies, such as WordNet, to measure the
path length between candidate labels and ID la-
bels. Candidates with a minimum path length ex-
ceeding a specified threshold are selected, ensur-
ing they are not closely related in the hierarchy.
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This dual-criteria approach ensures that selected
OOD labels are both semantically distant and on-
tologically distinct from ID labels, enhancing the
efficacy of the OOD detection system. By inte-
grating these methods, our score function effec-
tively mimics real scenarios where the OOD labels
generally differ from the ID labels2. Therefore, we
define the selection score as:

S(c) =w1

∑

y∈Y\c
(1− SCOS(M(c),M(y)))

+ w2

∑

y∈Y\c
(1− SPATH(c, y)), (2)

where Scos(a,b) = a·b
∥a∥∥b∥ and SPATH(y1, y2) =

1
1+ℓd(y1,y2)

. Here, M(c) and M(y) are the vec-
tor representations of the candidate OOD labels c
and the ID label y with the encoder M , respec-
tively, w1 and w2 are the weights assigned to each
criterion, and Y represents the total valid label set.
The term Scos measures the semantic distance, and
SPATH(y1, y2) measures the ontological distance
between labels with the path distance ℓd(y1, y2)
between the words y1 and y2 in the WordNet. We
conduct the score selection on the Visdial dataset
with w1 = w2 = 0.5, and the top five scores with
the most distinguished labels are shown in Table 2.
To ensure that the selected OOD labels are both se-
mantically distant and ontologically distinct from
ID labels, we select candidates c where the score
S(c) is the highest.
Experiment Details. Based on Table 2, we se-
lect the label ‘animal’ as the OOD label to show
the framework’s effectiveness. We will have 95K
ID pairs and 37K OOD pairs for QA dataset and
12.7K ID pairs and 12.2K OOD pairs for the
Real MMD dataset. We will use the 8:2 train-
test split, yielding 77K/54K and 10.2K/14.7K

2For tuning label selections, we list the table below using
the cosine similarity (Descending order): [sports, outdoor,
animal, fashion, electronics, person, bedroom, vehicle, ap-
pliance, kitchen, food, furniture]. With wordnet only: [per-
son, animal, vehicle, furniture, appliance, kitchen, food, bed-
room, fashion, electricity, outdoor, sports]. Using only cosine
similarity, labels skewed towards broad, abstract categories
like "sports" and "outdoor", reflecting a focus on general se-
mantic similarities (complex context where more background
information is needed). Comparably, using only WordNet
similarity emphasized specific, taxonomically grounded cat-
egories like "person" and "animal", highlighting hierarchical
relationships (suitable when labels are short descriptors).

Adaptive weighting or context-specific tuning could be
explored for future refinements where weights are dynam-
ically adjusted regarding dataset characteristics or task re-
quirements.

Table 2: Top 5 Labels

Label S(c)

Animal 5.12
Person 5.01
Sports 4.89
Vehicle 4.80
Outdoor 4.79

train/test pairs, respectively. For encoders for im-
ages and dialogues, we use CLIP ViT-B/32 (Rad-
ford et al., 2021) and BLIP-2 (Li et al., 2023), and
we trained the label extractors with the ID train-
ing sample with a 5-layer fully connected network.
More details are given in Appendix A. We use sum
and max aggregation methods: the sum combines
scores across all classes, reflecting the cumula-
tive effect, while the max selects the highest score,
highlighting the strongest match. These methods
comprehensively assess each scoring function’s
performance and robustness.
Adopted OOD Scores. We evaluated the frame-
work using general OOD scores, including Prob-
ability (Prob), Maximum Softmax Probability
(MSP) (Hendrycks and Gimpel, 2016), Logits
(Hendrycks et al., 2019), Joint Energy (Wang
et al., 2021), ODIN (Liang et al., 2017), and Ma-
halanobis distance (Lee et al., 2018), leveraging
diverse model outputs and embeddings. Addi-
tionally, we compared two baselines with DIEAF
scores: one using image-only scores sI(xI ,y) and
the other using dialogue-only scores sT (xT ,y).
All methods were assessed using FPR95, AUROC,
and AUPR metrics, as detailed in Section 4.
Evaluation. We include the following metrics
in our evaluation: FPR95, AUROC and AUPR.
FPR95 measures the rate at which false positives
occur when the true positive rate is fixed at 95%.
This metric indicates how often the model in-
correctly classifies a negative instance as positive
when it correctly identifies 95% of all positive in-
stances; a lower FPR95 value signifies a better per-
formance. AUROC evaluates the overall ability
of a model to discriminate between positive and
negative classes across all possible classification
thresholds. It involves plotting the ROC curve
with the true positive rate against the false posi-
tive rate at various thresholds. A higher AUROC
value denotes a better-performing model. AUPR,
similar to AUROC, focuses on the precision-recall
curve, which plots precision against recall. This
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Table 3: The comparison of OOD detection performance with QA dataset under CLIP extraction and different
scores. Bold numbers are superior results for each DIAEF score and aggregation method. Metrics reported in %
include FPR95 (↓ indicates the lower the better), AUROC, and AUPR (↑ indicates the higher the better).

FPR95↓ / AUROC↑ / AUPR↑
OOD Scores Aggregation

Baseline w/ OOD Scores DIAEF
Image Dialogue w/ OOD Scores

MSP Max 84.4/ 64.8/ 49.0 76.9/ 66.5/ 48.8 73.4/ 73.2/ 53.5

Prob
Max 60.0 / 75.6 / 57.9 67.9 / 73.5 / 56.1 55.3 / 78.8 / 57.9
Sum 70.7 / 68.3 / 49.0 91.9 / 62.3 / 45.7 72.8 / 73.6 / 56.6

Logits
Max 60.0 / 75.6 / 57.9 67.9 / 73.5 / 56.1 57.2 / 82.6 / 72.7
Sum 91.2 / 59.2 / 43.6 98.6 / 44.1 / 36.0 97.2 / 49.9 / 37.4

ODIN
Max 59.1 / 75.4 / 57.6 72.1 / 73.2 / 55.5 59.6 / 78.9 / 58.8
Sum 71.2 / 68.0 / 48.8 91.9 / 61.6 / 45.2 73.0 / 73.2 / 56.0

Mahalanobis
Max 49.2 / 81.3 / 62.9 66.0 / 75.8 / 56.8 49.7 / 83.2 / 67.1
Sum 88.5 / 75.5 / 57.5 78.6 / 68.6 / 50.0 75.0 / 76.2 / 60.2

JointEnergy
Max 60.0 / 75.6 / 57.9 67.9 / 73.5 / 56.1 57.6 / 82.5 / 72.6
Sum 58.3 / 75.8 / 58.0 67.0 / 74.1 / 57.1 55.9 / 82.3 / 72.2

Average
Max 62.1 / 74.7 / 57.2 69.8 / 72.7 / 54.9 58.8 / 79.9 / 63.8
Sum 76.0 / 69.4 / 51.4 85.6 / 62.1 / 46.8 74.8 / 71.0 / 56.5

metric is particularly useful in class imbalance
scenarios.

5.2 Main Results

Using the given experimental settings, we eval-
uate DIAEF scores on the QA dataset and Real
MMD datasets, with results in Table 3 and Ap-
pendix D. Our framework generally outperforms
image- or dialogue-only approaches across most
metrics. Joint energy and Mahalanobis scores
with max or sum aggregation perform consistently
well, while naive probability and ODIN scores are
also competitive. Max aggregation is often more
effective, likely due to the multi-label nature of
the OOD task. Dialogue-based performance lags
behind images due to noise (e.g., stopwords), but
combining both modalities significantly improves
OOD detection, especially with mismatched pairs
were introduced. Notably, even though the dia-
logue alone may not perform well, combining it
with images could significantly enhance the OOD
detection. In addition, we also conducted a user
survey to evaluate the user experience of our pro-
posed system, as outlined in Appendix C.

5.3 Analysis of Experimental Results

To gain deeper insights into the proposed frame-
work, we conduct several ablation studies to ex-
amine the impact of mismatched pairs, the effec-
tiveness of s(xI , xT ), and the choices of α and γ.

Effect of Mismatched Pairs. To investigate the
effect of the mismatched pairs, we conduct the
experiments with the same setting by excluding
the mismatched pair in the testing set and report
the results in Table 8 in Appendix D. Here, we
only report FPR95 for simplicity and also com-
pare the results by setting γ = 0 without intro-
ducing the dialogue-image similarity. From the
table, it can be observed that when there are no
mismatched pairs, setting γ to 1 can actually harm
our results to some extent. This is because, for
OOD pairs without mismatched pairs, their sim-
ilarity score s(xI , xT ) can still be high. In such
cases, multiplying by the similarity can adversely
affect OOD results. Setting γ to 0 in these situa-
tions improves FPR95 results for most cases, indi-
cating that simply combining image and dialogue
modalities, even without mismatched pairs, per-
forms better than the unimodality. Additionally,
comparing Table 3 and 8, we see that introduc-
ing mismatched pairs generally leads to worse per-
formance than having no mismatched pairs. This
demonstrates that mismatched pairs indeed pose a
challenge for OOD detection. To achieve better
results, we will further study the impact of γ and
α to optimize OOD detection performance.

Effect of VLM models. We further tested the per-
formance of the DIAEF score function with the
BLIP model (Li et al., 2022) under the same set-
ting as CLIP (also see details in Appendix A), and
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Figure 3: Effect of γ with α = 0.5

0.00 0.25 0.50 0.75 1.00

α

0.5

0.6

0.7

0.8

F
P

R
95

Prob

Energy

Logits

MSP

ODIN

Mahalanobis

(a) Max Aggregation

0.00 0.25 0.50 0.75 1.00

α

0.6

0.7

0.8

0.9

1.0

F
P

R
95

Prob

Energy

Logits

ODIN

Mahalanobis

(b) Sum Aggregation

Figure 4: Effect of α with γ = 1
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Figure 5: An illustration of the effectiveness of s(xI , xT )

we report the results in Table 6. Even with BLIP,
the pattern is still maintained as the proposed score
achieves better performance compared to the sin-
gle modality, and the framework handles mis-
matched and previously unseen OOD scenarios.
Effect of s(xI , xT ). We draw Figure 5 for im-
age scores indicate that consists of three sub-
plots showing the change of score distribution
with s(xI , xT ) introduced. Here Figures 5a
and 5c present the distribution of sI(xT , x) and
sI(xT , x)s(xI , XT ) for both ID and OOD data
with FPR95 highlighted, respectively. Figure 5b
displays the joint distribution of P (s, sI) for both
ID and OOD data, with the x-axis representing
the similarity score s(xI , xT ) and the y-axis rep-
resenting the image score sI(xI ,y), with density
indicated by colour intensity and marginal distri-
butions shown as histograms. The figures show
that without multiplying by s(xI , xT ), the distri-
butions of ID and OOD are not well-separated,
and the FPR95 is around 0.58. However, after
applying the similarity score, the distributions of
ID and OOD become more apart, and the FPR95
decreases to approximately 0.54. This occurs be-
cause, when examining the joint distribution, we
find that for the ID data, most similarity values
are around 0.25. In contrast, there are two peaks
for the OOD data: one around 0.25 (for matched
pairs) and another around 0.15 (for mismatched
pairs). This indicates that if we multiply by this
similarity, the mismatched OOD pairs would have

lower scores, making distinguishing between ID
and OOD easier.
Effect of γ. Intuitively, when γ is smaller, simi-
lar and dissimilar dialogue-image pairs will have
approximately the same alignment score. Con-
versely, when γ is larger, the score differences be-
tween similar and dissimilar pairs become more
pronounced, emphasizing the role of dialogue-
image similarity in OOD detection. Therefore, we
selected several values of γ ranging from 0 (i.e.,
not using dialogue-image similarity) to 3 and plot-
ted the curves under different score aggregation
methods. Figure 3 shows that the optimal value
of γ varies significantly depending on the choice
of score and aggregation method. For instance,
with max aggregation, most methods show a trend
where the FPR95 initially decreases with increas-
ing γ and then rises again, with the optimal value
around 1. However, the Energy and Logits meth-
ods show a trend of decreasing FPR95 as γ in-
creases, indicating these methods are more sensi-
tive to misalignment. On the other hand, for the
sum aggregation method, changing the γ value has
a limited effect on OOD detection. This could be
because the sum method combines too much re-
dundant label information, and the enhancement
term plays a major role. If the enhancement term is
not particularly effective, the impact of misalign-
ment is minimal.
Effect of α. When α is small, we place more em-
phasis on the image score along with the align-

1855



ment term for OOD detection; conversely, when
α is large, we emphasize more on the dialogue
score. We plotted the results for different score
aggregations in Figure 4. From the max aggre-
gation results, we observe that using only the im-
age or dialogue scores is not the most effective ap-
proach. Instead, combining both and selecting a
value around 0.5 yields the best results, demon-
strating the effectiveness of our framework. In the
sum aggregation plot, we see that for most meth-
ods (except for Mahalanobis), the performance in
terms of FPR95 improves as α increases. This in-
dicates that images do not significantly contribute
to recognition for the sum aggregation compared
to dialogue.

6 Conclusions

This paper introduces a cross-modal OOD score
framework, DIAEF, designed to expand OOD de-
tection in cross-modal long conversations by in-
tegrating images and texts where LLMs are lim-
ited due to ethical issues and safety concerns in
interactive multi-modal dialogue systems. DIAEF
combines alignment scores between dialogue-
image pairs with an enhancing term that leverages
both the image and dialogue. Experimental re-
sults demonstrate DIAEF’s superiority over base-
line methods with general metrics such as FPR95
and show the framework’s effectiveness, and pro-
vide a low-computational cost approach for future.

Limitations

However, there are some spaces for future work.
First, the performance has proven the effectiveness
of our framework, but further improvements could
be achieved by applying some transformations or
smoothing techniques to make the distributions of
ID and OOD more distinct. Second, this frame-
work is applicable to more online tests, such as
testing the response label detection performance
in real-time online user queries.
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A Experiment Details

The dataset stats are summarized as follows:

Table 4: Statistics of Visdial QA and Real MMD datasets

Stats Matched Mismatched ID OOD
# Pair 122K 10K 95K 37K

# Train 77K 0 77K 0
# Test 45K 10K 18K 37K

# Turn per dialog 10
# Categories 80

# Supercategories 12
(a) Statistics of Visdial QA dataset

Stats Matched Mismatched ID OOD
# Pair 17K 8K 12.7K 12.2K

# Train 10.2K 0 10.2K 0
# Test 14.7K 8K 2.5K 12.2K

# Turn per dialog 5 ∼ 15
# Categories 80

# Supercategories 12
(b) Statistics of Real MMD dataset

We also give detailed experimental settings in the following table.

Table 5: Experimental Details

Parameters Configurations
γ 1
α 0.5
Hyperparameter default values γ = 1 and α = 0.5
Image Encoder CLIP Vi-T B/32 or BLIP ITM Base
Dialogue Encoder CLIP Vi-T B/32 or BLIP ITM Base
s(xI , xT ) Cosine Similarity
Label Extractor 5-Layer DNN with size [512/256, 256, 128,

64, 11]
Activation Function Relu & Sigmoid
Batch Size 32
Learning Rate 0.001
Optimizer Adam
GPU single NVIDIA RTX 2080 Super GPU
ID label person, kitchen, food, sports, electronic, ac-

cessory, furniture, indoor, appliance, vehicle,
outdoor

OOD label animal
η in ODIN 0.001
T in ODIN 1
CLIP Embeddings s(xI , xT )
BLIP Embeddings s(xI , xT )

B Theoretical Justification

Assumption 1 We denote ID distribution as P (xI , xT , y) and OOD distribution as P̃ (xI , xT , y) where
P̃ may differ from P in terms of the following assumptions.

• Case 1: The image and text match, but labels are out of the set, namely:

EP (xI ,xT ) [log s(xI , xT )] = EP̃ (xI ,xT ) [log s(xI , xT )] ,
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For every pair xI , xT and any α,

EP (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))]

> EP̃ (y|xI)
[log(αsI(xI , y) + (1− α)sT (xT , y))] ,

which means that the ID pairs xI and xT should have stronger expressity about the ID label y than
OOD pairs.

• Case 2: The image and text do not match, which we assume:

EP (xI ,xT ) [log s(xI , xT )] > EP̃ (xI ,xT ) [log s(xI , xT )] ,

which means the ID pairs should have higher similarity than OOD pairs in this case. For every pair
xI , xT and any α,

EP (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))]

= EP̃ (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))] ,

which means that some ID pairs xI and xT may have the same expressity about the label y compared
with the OOD pairs.

• Case 3: The image or text does not match with the labels, which we assume:

EP (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))]

> EP̃ (y|xI ,xT ) [log(αsI(xI , y) + (1− α)sT (xT , y))] .

Theorem 1 With Assumption 1, we can show that the proposed DIEAF score satisfies the following:

EP̃ (xI ,xT ,y)[log g(xI , xT , y)] < EP (xI ,xT ,y)[log g(xI , xT , y)].

Proof 1 It is easy to write that:

E[log g(xI , xT , y)] = γExI ,xT [log s(xI , xT )] + ExI ,xTEy|xI ,xT
[log([αsI(xI , y) + (1− α)sT (xT , y)])].

The proof simply follows the assumptions we made for each case. Note that this score only works for
positive scores, but sometimes, we may encounter negative scores, and the log may be ill-posed. As a
surrogate score function, we eliminate the log and maintain g(xI , xT , y) for the same intuition as the
above theorem.

C OOD Feedback Survey

Introduction

Thank you for participating in this study for the data collection. This survey explores participants’
experiences in multi-modality multi-turn conversation experience. It aims to gather insights into com-
munication quality, interactivity, and the effectiveness of the proposed score function in doing the out-
of-distribution detection. Your feedback will help evaluate the impact of the proposed score function on
multi-modality dialogue systems. If you have any questions, please contact the main researchers for this
study: rena.gao@unimelb.edu.au; wfyitf@gamil.com.

Personal Information

• First name:

• Email address:
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Effectiveness
Do you find the response outcome to be more effective?

□ Yes

□ No

How do you feel about viewing the query results?

Question Block 2
Please indicate how you feel about using this dialogue system in finding information:

□ 5: Very satisfied compared with previous round of the answer

□ 4: More satisfied compared with previous round of the answer

□ 3: Comparable to previous round of the answer

□ 2: Not so much difference compared with previous round of the answer

□ 1: Worse than previous round of the answer

Accuracy of information received:

□ Very accurate

□ Somewhat accurate

□ Not very accurate, but can still deliver some information

□ Only minimal chance to deliver accurate information

□ Hard to receive accurate information

Question Block 3
How would you rate each of the following types for attending the second language discussion ses-
sions?

Very agree Somewhat agree Neither agree nor difficult Somewhat difficult Very difficult
I found this dialogue system helpful in finding
information
I prefer to use this system compared with
Google or general searching tools
The information in the answer tends to be ac-
curate and precise

Question Block 4
Would you love to use this kind of conversation dialogue system again (not for research purpose)?

Very agree Somewhat agree Neither agree nor difficult Somewhat difficult Very difficult
I found I have better willingness to use this dialogue system

Yes, if Yes, why?

No, if No, why?

1862



Statistics of the Survey
The survey results, illustrated in the following bar charts, demonstrate the effectiveness of the proposed
framework in improving the multi-modality dialogue OOD detection. The first chart reveals that around
80% of respondents found the system’s responses effective, with above 70% reporting high satisfaction
(≈ 40% “Very satisfied,” ≈ 30% “More satisfied”), and 80% rating the information as highly accurate (≈
45% “Very accurate,” ≈ 30% “Somewhat accurate”). The second chart further shows user confidence,
with 80% of respondents expressing a strong willingness to reuse the system (≈ 50% “Very agree,” ≈
30% “Somewhat agree”).
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D Additional Results for OOD Detecion under different situations

Table 6: The comparison of OOD detection performance under BLIP extraction and different scores.

FPR95↓ / AUROC↑ / AUPR↑
OOD Scores Aggregation

Baseline
DIAEF (γ = 1)

Image Dialogue

MSP Max 85.8/58.7/37.4 83.5/64.8/39.8 75.9/75.1/52.7

Prob
Max 64.3/71.2/45.1 80.5/67.1/42.2 67.0/78.7/56.5
Sum 78.8/64.4/39.3 96.8/55.9/35.9 74.2/72.7/51.2

Logits
Max 64.3/71.2/45.1 80.5/67.1/42.2 62.9/80.9/63.8
Sum 95.8/52.9/33.8 98.1/41.9/29.3 99.1/40.1/26.5

ODIN
Max 63.9/71.1/44.9 81.4/67.2/42.1 67.7/79.3/57.7
Sum 79.1/64.2/39.2 97.0/56.1/36.0 74.5/72.5/50.9

Mahalanobis
Max 46.9/77.7/50.6 81.0/66.9/40.5 52.6/87.7/75.4
Sum 79.7/71.5/46.2 92.5/59.0/35.9 67.6/78.7/61.0

JointEnergy
Max 64.3/71.2/45.1 80.5/67.1/42.2 62.8/81.0/63.8
Sum 63.0/71.8/45.8 80.4/67.3/43.2 61.7/80.7/64.5

Average
Max 64.9/70.2/44.7 81.2/66.7/41.5 64.8/80.5/61.2
Sum 79.3/65.0/40.9 93.0/56.0/36.1 75.4/68.9/50.8
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Table 7: The comparison of OOD detection performance with Real MMD dataset under CLIP extraction and
different scores.

FPR95↓ / AUROC↑ / AUPR↑
OOD Scores Aggregation

Baseline w/ OOD Scores DIAEF
Image Dialogue w/ OOD Scores

MSP Max 91.1/56.2/19.4 94.5/52.5/18.9 85.8/69.2/32.9

Prob
Max 79.2/64.1/22.9 93.4/53.7/19.3 75.8/74.0/36.0
Sum 90.6/58.2/21.1 94.4/51.9/18.7 83.0/69.7/33.1

Logits
Max 79.2/64.1/22.9 93.4/53.7/19.3 84.8/70.9/34.1
Sum 94.5/49.0/17.8 97.3/47.6/17.2 98.8/38.6/14.3

ODIN
Max 79.6/64.3/23.4 94.0/53.4/19.3 75.3/74.4/36.9
Sum 91.1/57.1/20.8 94.9/51.3/18.5 82.2/69.2/32.0

Mahalanobis
Max 54.9/69.9/26.1 93.5/51.2/17.6 63.5/76.8/36.2
Sum 93.3/66.0/25.2 94.2/49.1/16.9 86.6/73.3/36.5

JointEnergy
Max 79.2/64.1/22.9 93.4/53.7/19.3 83.5/71.6/34.3
Sum 79.5/64.9/24.4 93.6/54.2/19.5 80.5/72.8/37.4

Average
Max 77.2/63.8/22.9 93.7/53.0/19.0 78.1/72.8/35.1
Sum 89.8/59.0/21.9 94.9/50.8/18.2 86.2/64.7/30.7

Table 8: The comparison of FPR95 performance (the lower the better) in % with DIEAF framework under different
scores without any mismatched pairs. Bold numbers are superior results for each DIAEF score and aggregation
method.

OOD Scores Aggregation
Baseline

DIAEF (γ = 0) DIAEF (γ = 1)
Image Dialogue

MSP Max 81.2 71.4 69.4 81.4

Prob
Max 49.7 59.9 46.6 64.4
Sum 63.6 91.2 72.7 77.1

Logits
Max 49.7 59.9 45.7 47.6
Sum 90.1 99.7 98.1 96.2

ODIN
Max 48.5 65.4 48.5 69.2
Sum 64.2 91.2 72.4 79.3

Mahalanobis
Max 35.5 57.5 34.3 37.8
Sum 86.4 73.7 68.1 65.0

JointEnergy
Max 49.7 59.9 46.7 48.7
Sum 47.4 58.6 45.7 47.6

Average
Max 52.4 62.3 48.5 58.1
Sum 70.3 82.9 71.4 73.0
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