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Abstract
Grammar serves as a cornerstone in program-
ming languages and software engineering, pro-
viding frameworks to define the syntactic space
and program structure. Existing research
demonstrates the effectiveness of grammar-
based code representations in small-scale mod-
els, showing their ability to reduce syntax er-
rors and enhance performance. However, as
language models scale to the billion level or be-
yond, syntax-level errors become rare, making
it unclear whether grammar information still
provides performance benefits. To explore this,
we develop a series of billion-scale Grammar-
Coder models, incorporating grammar rules in
the code generation process. Experiments on
HumanEval (+) and MBPP (+) demonstrate
a notable improvement in code generation ac-
curacy. Further analysis shows that grammar-
based representations enhance LLMs’ ability
to discern subtle code differences, reducing
semantic errors caused by minor variations.
These findings suggest that grammar-based
code representations remain valuable even in
billion-scale models, not only by maintaining
syntax correctness but also by improving se-
mantic differentiation.

1 Introduction

Context-free grammars are the fundamental way
to specify the syntactic space of a programming
language, and with the grammar specified, a pro-
gram can be parsed into a syntax tree, revealing its
structure (Aho et al., 1986). Building on this foun-
dation, leveraging grammatical knowledge (e.g.,
grammar rules) to pre-train large language mod-
els (LLMs) has emerged as a promising strategy for
code-related tasks, such as code generation (Zhu
et al., 2024; Sun et al., 2020; Guo et al., 2020).

Existing research has explored grammar-based
code representation (Jiang et al., 2021; Guo et al.,
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2022; Wang et al., 2021a; Zhu et al., 2024; Sun
et al., 2020; Xiong and Wang, 2022; Rabinovich
et al., 2017), where each grammar rule serves as
an identity token, and a sequence of grammar rules
and terminal tokens represents the program. Fig-
ure 1 illustrates a program that determines whether
the sum of two integers is odd (top left), along
with its corresponding abstract syntax tree (AST)
representation (right) and grammar-based represen-
tation (bottom left). The grammar-based represen-
tation is derived by performing a preorder traversal
on the AST. Each grammar rule is extracted inde-
pendently (e.g., ‘module → function_definition’),
while terminals are tokenized using a standard tok-
enizer (e.g., ‘get’). Grammar-based representation
has been shown to be effective in preventing syntax
errors in encoder-decoder architecture (Zhu et al.,
2024). Moreover, it facilitates program analysis
and enables the pruning of incorrect branches (e.g.,
filtering out type-error programs (Xiong and Wang,
2022; Zhu et al., 2023)) during code generation,
thereby enhancing accuracy. Due to these bene-
fits, many code generation models adopt grammar-
based representation (Sun et al., 2019; Zhu et al.,
2024).

However, as language models scale to the billion-
parameter level and beyond, extensive pre-training
on large code datasets enables them to implic-
itly learn syntax rules, making syntax errors in-
creasingly rare (OpenAI, 2024; Yang et al., 2024;
Team, 2024; DeepSeek-AI et al., 2024). For ex-
ample, even 1B scale models, such as DeepSeek-
Coder (Guo et al., 2024) and Qwen2.5 (Team,
2024), achieve high accuracy in code generation,
consistently producing syntactically valid code.
This phenomenon suggests that large models are
able to understand the structure of the program
and raises a critical question: Is grammar-based
code representation still beneficial for billion-scale
LLMs?

To answer this question, we conduct an ex-
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Figure 1: An example of a grammar representation. The top-left part presents a programming problem along with
its corresponding Python solution. The right part illustrates the abstract syntax tree (AST) representation of the
Python code. The bottom-left section presents the grammar-based representation.

periment comparing grammar-based representa-
tion and token-based representation approaches
on 1.3B, 1.5B, and 7B parameter models, respec-
tively. The results demonstrate that grammar-
based models (i.e., GrammarCoder-1.3B-Base,
GrammarCoder-1.5B-Base, GrammarCoder-7B-
Base) significantly outperform token-based mod-
els, even though token-based models rarely make
syntax errors. For example, on the MBPP
dataset (Austin et al., 2021), GrammarCoder-1.3B-
Base achieves an almost seven percentage point
improvement in Pass@1 compared to DeepSeek-
Coder-1.3B-Base trained on the same data. This
suggests that grammar rules enhance code genera-
tion beyond syntax correction, even in billion-scale
models.

The result leads to a second question: Why do
grammar-based models improve performance if
token-based models already produce syntactically
correct code?

To investigate this question, we examine the dif-
ferences between grammar-based and token-based
code representations. Our analysis reveals that mi-
nor token-level modifications can lead to substan-
tial semantic shifts, rendering correct programs
incorrect. In contrast, while these subtle variations
may appear insignificant at the token level, they of-
ten map to clear structural differences in grammar-
based representations, enabling the model to dis-
tinguish more effectively between correct and in-
correct code. Experimental results further confirm
a correlation between higher performance and the

ability of grammar-based code representation to
amplify representational differences for semantic
shifts, indicating that grammar-based representa-
tion helps mitigate such semantic issues.

Our main contributions are as follows:

• We are the first to conduct an experiment on
grammar-based code representation in billion-
scale LLMs, finding that it remains effective
compared to token-based approaches.

• We are the first to explain the effectiveness
of grammar-based representation beyond syn-
tax correctness and validate our hypothesis
through empirical experiments, demonstrating
its role in enhancing code semantic differenti-
ation.

• We release a series of code LLMs trained with
grammar rules, providing a valuable resource
for further research (GrammarCode, 2025).

2 GrammarCoder

2.1 Model Overview
We propose GrammarCoder, a grammar-
based model built on a decoder-only architec-
ture (Vaswani et al., 2017; Radford et al., 2018),
which excels in auto-regressive tasks like code
generation, completion, and translation (OpenAI,
2024; Guo et al., 2024; Team, 2024; Hui et al.,
2024; DeepSeek-AI et al., 2024). To enhance its
ability to code generation, we apply continued
pre-training and instruction tuning on existing code
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model weights (i.e., DeepSeek-Coder-1.3B-Base,
Qwen2.5-1.5B-Base, and Qwen2.5-7B-Base),
expanding its knowledge base. A.1 provides the
configuration of the base model we used. In this
section, we first introduce our grammar-based code
representation. Then, we describe our training
strategy and corpus.

2.2 Grammar-Based Code Representation
The main idea of grammar-based code represen-
tation is to guide the model in generating gram-
mar rules rather than merely producing a sequence
of normal tokens. Traditional code LLMs primar-
ily rely on token-level composition to construct
complete code text. In contrast, grammar-based
models first generate a complete AST by compos-
ing grammar rules and then reconstruct executable
code from it, thereby enhancing the model’s under-
standing of code structure and logic. Specifically,
normal tokens are obtained using the byte pair en-
coding (BPE) algorithm, which learns tokenized
representations from text corpora, forming a vo-
cabulary Vnormal = {t1, t2, . . . , tm}. This follows
the standard approach used in natural language
model training. To integrate grammar information
in code representation, we introduce grammar rule
sequences, which represent the step-by-step deriva-
tion process of an AST. We define a grammar rule
vocabulary Vrule = {r1, r2, . . . , rk}, where each
rule encodes a structural transformation in code
generation. Unlike token-based representations,
grammar rule sequences explicitly capture logical
dependencies and hierarchical structures, providing
a more structured view of code. By integrating
normal tokens Vnormal with grammar rules Vrule, the
model can leverage syntactic rules to strengthen
its understanding of code structure. For example,
in the bottom-right section of Figure 1, the solid-
boxed elements represent grammar rules that guide
the construction of the AST (e.g., ‘parameters →
identifier’), ensuring that the generated structure ad-
heres to syntax constraints. Meanwhile, the dashed-
boxed elements denote normal tokens (e.g., ‘get’
and ‘a’), which fill in leaf nodes such as variable
names and string literals. These tokens can be
directly reused from existing BPE tokenization,
preserving syntactic correctness while maintaining
flexibility in code generation.

GrammarCoder assigns a unique ID to each
normal token and grammar rule, storing them in
one vocabulary. For example, in the first 10 to-
kens of Figure 1, IDs 2, 3, 4, 8, and 10 represent

grammar rules, while IDs 1, 5, 6, 7, and 9 cor-
respond to normal tokens. Given a base model
vocabulary of size m and k grammar rules, the
extended vocabulary of GrammarCoder, denoted
as Vgrammar, has a total size of m + k. With this
grammar-augmented vocabulary, raw code text is
converted into a grammar-based representation, en-
abling the model to learn beyond token-level gen-
eration through syntax-aware parsing. Unlike tra-
ditional models that rely solely on normal tokens,
imposing weak constraints, GrammarCoder incor-
porates grammar rules, aligning serialized code
directly with the preorder traversal of its AST.

2.3 Training Strategy
We train the grammar-based code representation us-
ing a next-token prediction strategy, a fundamental
approach for auto-regressive language models. The
core idea is to predict the most probable next to-
ken given a prefix sequence, continuing the process
until the full content is generated. In the training
process, we treat the grammar-based representation
of each code file as the training sample, using the
sequence encoded by Vgrammar. The model learns
to predict the next most probable token (whether
a normal token or a grammar rule) based on the
tokens generated so far. Formal descriptions in A.2.

This training strategy enables the model to dy-
namically incorporate grammar rules during code
generation, allowing the final output adhere to syn-
tax constraints and AST structures.

2.4 Training Corpus
We organize our training corpus in two stages: con-
tinued pre-training and instruction tuning. Python
is selected as the primary programming language
for data collection due to its rich syntax and
widespread use in diverse programming paradigms.
This makes it an ideal candidate for evaluating the
effectiveness of grammar-based representations.

For continued pre-training, we sample 10B to-
kens of Python code from TheStackV2 (Lozhkov
et al., 2024) dataset as the primary training
data. Additionally, inspired by previous stud-
ies (Huang et al., 2024), we sample 0.5B tokens
of self-contained code textbooks from open-source
datasets (Huang et al., 2024; Nakamura et al., 2025)
to enhance the model’s adaptability to real-world in-
teractive scenarios, bridging the gap between stan-
dard pre-training and practical applications.

For instruction tuning, we leverage publicly
available instruction datasets (Huang et al., 2024;
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Model HumanEval(+) MBPP(+)

Original

DeepSeek-Coder-1.3B-Base 34.8 (28.7) 56.7 (47.9)
Qwen2.5-1.5B-Base 37.2 (32.9) 60.2 (49.6)
Qwen2.5-7B-Base 57.9 (50.6) 74.9 (62.9)

Normal Token-Based CPT

DeepSeek-Coder-1.3B-Base (CPT) 43.9 (39.6) 61.4 (51.3)
Qwen2.5-1.5B-Base (CPT) 50.6 (42.7) 60.3 (51.1)
Qwen2.5-7B-Base (CPT) 68.9 (65.2) 81.5 (69.8)

Grammar-Based CPT

GrammarCoder-1.3B-Base 63.4 (57.3) 68.3 (56.9)
GrammarCoder-1.5B-Base 65.9 (57.3) 64.8 (55.3)
GrammarCoder-7B-Base 76.8 (71.3) 85.2 (71.7)

Table 1: Comparison of code generation performance
between token-based and grammar-based models. The
CPT refers to continued pre-training.

Nakamura et al., 2025) and employ the data synthe-
sis (Wei et al., 2024a,b) approach to collect a total
of 6B tokens of instruction data. This ensures the
model is better aligned with instruction-following
tasks, improving its ability to handle real-world
programming scenarios. A.3 provides detailed in-
formation about the training datasets.

3 Experiments

To evaluate the performance of grammar-based
code representations, we develop two sets of mod-
els, one with grammar-based code representation
and one with token-based code representation.
These models are built through continued pre-
training from open-source code models, DeepSeek-
Coder-1.3B-Base, Qwen2.5-1.5B, and Qwen2.5-
7B, on high-quality code data. We begin by evalu-
ating these models on code generation tasks, which
are among the most widely recognized and com-
monly used benchmarks for assessing code-related
capabilities (i.e., Experiment I in 3.1).

To further explore the differences between
grammar-based and token-based representations,
we analyze the reasons contributing to the perfor-
mance gains of grammar-based representation (i.e.,
Experiment II in 3.2).

3.1 Experiment I: Performance on Code
Generation

Evaluation Benchmarks. We use Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), the most widely used datasets for
code generation tasks, as evaluation benchmarks.
HumanEval contains 164 tasks, while MBPP
includes 378 testing tasks, both equipped with
built-in test cases for evaluation. EvalPlus (Liu

et al., 2023) extends these datasets by introducing
stricter test cases to improve assessment robustness.
We conduct evaluations using both the original
benchmark test cases and their EvalPlus-enhanced
versions, denoted by a “+” suffix.

Baselines. To evaluate the effectiveness of
grammar-based code representation,we select rep-
resentative and competitive baseline models for
comparison, including DeepSeek-Coder-1.3B (Guo
et al., 2024), Qwen2.5-1.5B, and Qwen2.5-
7B (Team, 2024). DeepSeek-Coder-1.3B, trained
on high-quality large-scale code datasets, serves as
a strong representative of the code model. Mean-
while, Qwen2.5-1.5B-Base and Qwen2.5-7B-Base,
despite being a general-purpose model, demon-
strate competitive performance on code-related
tasks, making them a valuable point of compar-
ison.

Metrics. We adopt Pass@1 as the evaluation met-
ric. Specifically, for each problem, the model gener-
ates a single code sample, which is deemed correct
if it passes all predefined unit tests. The Pass@1
score is calculated as:

Pass@1 =
Number of problems solved correctly

Total number of problems

Implementation Details. GrammarCoder mod-
els are trained with 8 NVIDIA H800 GPUs. Dur-
ing the continued pre-training phase, we adopt
a two-stage learning rate strategy, following ap-
proaches from OpenCoder (Huang et al., 2024) and
MiniCPM (Hu et al., 2024). Initially, we use a
higher learning rate of 3e-4 to accelerate conver-
gence to a reasonable parameter range. The learn-
ing rate is reduced to 5e-5 in the annealing stage
for further performance optimization. During the
instruction tuning phase, we set the learning rate
to 5e-5 and trained on an instruction dataset to im-
prove generalization in instruction understanding
and code tasks. Throughout the training process,
we apply 100 warm-up steps and use a cosine learn-
ing rate scheduler to ensure smooth learning rate
adjustments, maintaining training stability and effi-
ciency. Additionally, during both token-based and
grammar-based continued pre-training, we utilize
the same settings to ensure a fair comparison. 2.4
and A.3 provide the detailed information of training
dataset.

Results. Table 1 presents our main experimen-
tal results, showing that the GrammarCoder-Base
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Model HumanEval HumanEval+ MBPP MBPP+

Base Models

DeepSeek-Coder-1.3B-Base (Guo et al., 2024) 34.8 28.7 56.7 47.9
Qwen2.5-1.5B-Base (Team, 2024) 37.2 32.9 60.2 49.6
OpenCoder-1.5B-Base (Huang et al., 2024) 54.3 49.4 70.6 58.7
Yi-Coder-1.5B (AI et al., 2025) 41.5 32.9 27.0 22.2
CodeGemma-2B-Base (Team et al., 2024) 26.8 20.7 55.6 46.6
StarCoder2-3B (Lozhkov et al., 2024) 31.7 27.4 60.2 49.1
CodeGemma-7B-Base (Team et al., 2024) 44.5 41.5 65.1 52.4
StarCoder2-7B (Lozhkov et al., 2024) 35.4 29.9 54.4 45.6
Qwen2.5-7B-Base (Team, 2024) 57.9 50.6 74.9 62.9
OpenCoder-8B (Huang et al., 2024) 66.5 63.4 79.9 70.4

GrammarCoder-1.3B-Base 63.4 57.3 68.3 56.9
GrammarCoder-1.5B-Base 63.4 59.1 64.8 55.3
GrammarCoder-7B-Base 76.8 71.3 85.2 71.7

Instruct Models

DeepSeek-Coder-1.3B-Instruct (Guo et al., 2024) 65.9 60.4 64.3 54.8
Qwen2.5-1.5B-Instruct (Team, 2024) 61.6 49.4 63.2 55.6
OpenCoder-1.5B-Instruct (Huang et al., 2024) 72.5 67.7 72.7 61.9
Yi-Coder-1.5B-Chat (AI et al., 2025) 67.7 63.4 68.0 59.0
Phi-3-Mini-4K-3.8B-Instruct (Abdin et al., 2024) 64.6 59.1 65.9 54.2
CodeGemma-7B-Instruct (Team et al., 2024) 60.4 51.8 70.4 56.9

GrammarCoder-1.3B-Instruct 70.7 64.0 71.2 58.7
GrammarCoder-1.5B-Instruct 73.2 68.3 73.3 61.1

Table 2: Performance of various base models and instruct models on HumanEval and MBPP.

model significantly outperforms both the orig-
inal model and the token-based model trained
on the same datasets. For example, on the
HumanEval dataset, GrammarCoder-1.3B-Base
achieves 82% and 44% improvements over
DeepSeek-Coder-1.3B-Base and DeepSeek-Coder-
1.3B-Base (CPT), respectively. Similarly, on the
MBPP dataset, GrammarCoder-7B-Base outper-
forms DeepSeek-Coder-7B-Base and DeepSeek-
Coder-7B-Base (CPT) by 10.3 and 3.7 percentage
points, respectively. Notably, after performing
continued pre-training on the training dataset, both
the token-based and grammar-based models ex-
hibit performance gains. Moreover, even without
grammar-based representation, neither the original
token-based model nor the continued pre-trained
model produces syntax errors, with syntax cor-
rectness nearly reaching 100%. Occasional syn-
tax errors (fewer than three) only occur due to
random variations on the HumanEval and MBPP
datasets. Despite this near-perfect syntax correct-
ness, the grammar-based model still demonstrates
superior performance, indicating that incorporating
grammar rules provides additional benefits beyond
merely preventing syntax errors.

Building on the base model, we further com-
pare our approach with the best-performing mod-
els to date and perform instruction tuning to en-
hance its ability to follow instructions. Table 2

compares the performance of GrammarCoder with
current state-of-the-art code models of similar or
larger scales. Due to limited computational re-
sources, we perform instruction tuning only on the
smaller variants (i.e., GrammarCoder-1.3B-Base
and GrammarCoder-1.5B-Base). Experimental re-
sults show that grammar-based code representa-
tion achieves performance comparable to the best
token-based models. For example, on the Hu-
manEval (+) dataset, both the base and instruct
versions of GrammarCoder-1.5B outperform other
models (e.g., CodeGemma-7B and Yi-Coder-1.5B),
while the instruct version achieves performance on
par with OpenCoder-1.5B-Instruct. Similarly, on
the MBPP (+) dataset, GrammarCoder-7B-Base
outperforms the OpenCoder-8B-Base model, fur-
ther demonstrating the effectiveness of grammar-
based representations at larger model scales. How-
ever, on the MBPP+ dataset, GrammarCoder-
Base-1.5B does not surpass OpenCoder-Base-1.5B,
which may be attributed to differences in training
data volume and quality during the base model pre-
training stage. OpenCoder benefits from training
on over 900B tokens of high-quality data, whereas
GrammarCoder is pre-trained on only around 10B
tokens in grammar-based representation. This
suggests that while grammar-based representation
proves to be effective, the scale and quality of train-
ing data also play a crucial role in achieving state-
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of-the-art performance. Future work can explore
expanding the amount of high-quality code data
processed into grammar-based representations to
further enhance model performance.

3.2 Experiment II: Understanding the
Performance Difference

Experiment Design. While our experimental re-
sults demonstrate that grammar-based representa-
tion enhances code generation, it remains crucial
to understand what drives this improvement, espe-
cially given that syntax errors are already rare in
billion-scale LLMs. To explore the reason behind
these results, we focus on why grammar-based rep-
resentations help mitigate semantic errors beyond
preventing syntactic errors, aiming to uncover their
role in reducing overall mistakes. Analyzing the
different representation results, we observe that
grammar-based representation may amplify differ-
ences between correct and incorrect programs that
appear minimal at the token level. This height-
ened sensitivity to fine-grained variations may help
prevent LLMs from behaving like “careless pro-
grammers”, who often make mistakes by overlook-
ing subtle details. By capturing these distinctions
more effectively, grammar-based models could re-
duce such semantic errors, leading to higher perfor-
mance in code generation tasks.

To validate this hypothesis, we design a new
set of experiments focusing on subtle semantic
changes that are likely to be overlooked by both
humans and token-based models. Specifically, we
investigate (1) whether grammar-based represen-
tation amplifies these differences, and (2) whether
grammar-based models can better capture these
changes. These experiments aim to provide deeper
insight into how grammar-based representation im-
proves the model’s ability to distinguish between
correct and error code, making it more effective
in avoiding semantic errors and improving perfor-
mance. As we previously observed similar perfor-
mance trends across different scales of the base
models (i.e., results in Table 1), we conduct experi-
ments only at the 1.3B and 1.5B scales in this study
to conserve computational resources.

First, we conduct a quantitative analysis to ex-
plore the potential differences between grammar-
based and token-based representations. Specifi-
cally, we encode code snippets that are similar at
the token level but semantically different using both
representation strategies and compare their edit dis-
tance when transforming one code into another.

Precision Recall F1-Score

DeepSeek-Coder-1.3B-Base 71.99 62.77 67.06
DeepSeek-Coder-1.3B-Instruct 74.20 65.59 69.63
Qwen2.5-1.5B-Base (Team, 2024) 72.16 64.97 68.38
Qwen2.5-1.5B-Instruct 71.42 67.32 69.31
Condor-1.3B (Liang et al., 2024) 74.39 72.40 73.38

GrammarCoder-1.3B-Base 77.39 81.30 79.30
GrammarCoder-1.5B-Base 72.34 76.50 74.36

Table 3: The performance of semantic classification
tasks.

Next, we train separate grammar-based and
token-based code semantic classifiers to evaluate
the impact of grammar-based representations on
semantic classification. By training classification
models on differently represented code datasets,
we examine the extent to which each representa-
tion affects the model’s ability to capture semantic
differences.

Finally, we assess whether the differences intro-
duced by grammar rules contribute to performance
improvements, confirming their effectiveness in
enhancing LLMs.

Result 1: Grammar-Based Representation Am-
plifies Subtle Token-Level Differences. We an-
alyze whether grammar-based representation am-
plifies subtle differences by comparing the edit dis-
tances between semantically different code snip-
pets under grammar-based and token-based rep-
resentations. CodeNanoFix (Liang et al., 2024)
dataset is used to measure the edit distance, pro-
viding a quantitative assessment of how grammar-
based and token-based approaches represent code.
This dataset consists of 1,000+ programming prob-
lems and nearly 100,000 code sample pairs with
minimal token differences but significant semantic
variations. A subset of 120 programming prob-
lems and 3,583 sample pairs serve as the test set.
Each sample in the dataset consists of error code
submitted by human programmers while solving a
problem, along with its corrected version modified
by the programmer, both exhibiting minimal token-
level differences. Since the differences between er-
ror and corrected code typically involve subtle yet
crucial semantic changes, such as control flow mod-
ifications, variable scope adjustments, and operator
usage corrections, this dataset is well-suited for an-
alyzing the differences between token-based and
grammar-based representations. To mitigate the
impact of outliers, we focus on code pairs with min-
imal token-level differences (edit distance less than
50, covering 91.18% of the CodeNanoFix’s test
set). Additionally, we use GrammarCoder-1.3B’s

15645



parenthesized_expression

left right

binary_operator

+

left right%

identifier

a

identifier

b

identifier

2

name parameters body

identifier

get

_sum

_parity

identifier

a b

return_statement

binary_operator

left

right

binary_operator

%

right+

identifier

a

identifier

2

left

identifier

b

# Checks the parity of 
# two integers' sum
def  get_sum_parity (a, b):
       return (a + b) % 2

# Checks the parity of 
# two integers' sum
def  get_sum_parity (a, b):
       return a + b % 2

Error Correct

module

function_definition

identifier

get

_sum

_parity a b binary_operator

end

name parameters body

identifier identifier return_statement

module

function_definition

identifier end

Figure 2: An example showing the differences of code representations between error and correct code.

vocabulary to produce grammar-based representa-
tions and DeepSeek-Coder-1.3B’s vocabulary to
produce token-based representations, ensuring a
fair comparison is made with the maximum over-
lap of shared tokens.

The results show that grammar-based represen-
tation typically produces larger edit distances com-
pared to token-based representation. Specifically,
the average edit distance from error to correct code
at the token level is 14.33, while for grammar-based
representations, it increases to 27.43, a 91.18% in-
crease. B.1 shows the edit distance distribution for
error-correct code pairs. Figure 2 presents a con-
crete example, where the left side shows an error
code snippet caused by neglecting operator prece-
dence, while the right side displays the correct ver-
sion. At the token level, the difference between the
two codes consists of only two characters (i.e., ‘(’
and ‘)’), resulting in an edit distance of 2. However,
at the grammar representation level, the change
in operator precedence leads to significant differ-
ences in the AST structure and the grammar rules
applied, increasing the edit distance to 6. B.2 also
presents the further analysis results of the LLM’s
generated outputs on CodeNanoFix, which reveal
similar conclusions. These results indicate that the
introduction of grammar rules amplifies represen-
tation differences that may be overlooked at the
token level. Consequently, the grammar-based rep-
resentation provides a more distinct encoding of
correct and incorrect code, allowing the model to
better capture semantic variations.

Result 2: Grammar-Based Representation
Strengthens Semantic Distinction. We evaluate
whether grammar-based models more effectively
capture these changes by training classifiers using
different code representation approaches. Specifi-
cally, we use CodeNanoFix as a dataset for a seman-

tic classification task, evaluating the model’s ability
to distinguish between semantically correct and in-
correct code. By training classifiers to identify code
correctness, we examine whether grammar-based
representations improve the model’s understanding
of code semantics. To ensure a fair comparison, we
select baselines that align with GrammarCoder’s
architecture. Specifically, we use its corresponding
base models, DeepSeek-Coder-1.3B and Qwen2.5-
1.5B, along with Condor-1.3B (Liang et al., 2024),
a model specifically designed for the CodeNanoFix
classification task. Precision, Recall, and F1 score
are utilized as key metrics for classification perfor-
mance. Precision evaluates the accuracy of correct
code predictions, Recall measures the model’s abil-
ity to identify the actual correct code, and F1 score
provides a balanced assessment of overall classifi-
cation performance. Similar to Condor, Grammar-
Coder is fine-tuned on the CodeNanoFix dataset to
enhance its understanding of code semantics and
alignment with problem descriptions. In the im-
plementation, a classification layer is added to the
original model to output probability scores, with
0.5 sets as the classification threshold. Code snip-
pets with scores above 0.5 are considered correct,
while those below are classified as errors. During
fine-tuning, the learning rate is set to 5e-5 to ensure
stable optimization for the code classification task.

Table 3 illustrates the impact of different code
representation approaches on the model’s ability
to determine code semantic correctness. The re-
sults indicate that incorporating grammar rules sig-
nificantly enhances the model’s ability to distin-
guish correct from incorrect code. For example,
GrammarCoder-1.3B-Base and GrammarCoder-
1.5B-Base improve F1 scores by 18.25% and
8.75%, respectively, compared to their base models
DeepSeek-Coder-1.3B-Base and Qwen-1.5B-Base.
These results demonstrate that the incorporation
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of grammar rules enables the model to more pre-
cisely differentiate token-level similar but seman-
tically distinct code snippets, improving its ability
to recognize subtle semantic differences. Further-
more, even compared to Condor, the current best-
performing model on the CodeNanoFix dataset,
GrammarCoder-1.3B-Base achieves nearly nine
percentage points higher Recall and improves the
F1 score by almost six percentage points. Notably,
both Condor and GrammarCoder-1.3B-Base are
trained from the same baseline model, DeepSeek-
Coder-1.3B-Base. This further highlights the ef-
fectiveness of grammar-based representation in dis-
tinguishing semantic differences caused by subtle
token-level changes in code.

Result 3: Correlation Between Representation
and Performance. We conduct a correlation
analysis to examine whether the increase in edit
distance is related to GrammarCoder’s ability to
distinguish between semantically correct and incor-
rect code. A chi-square test confirms a statistically
significant correlation, with GrammarCoder-1.3B-
Base and GrammarCoder-1.5B-Base achieving p-
values of 0.0051 and 0.0006, respectively. As a p-
value below 0.05 indicates statistical significance,
the results suggest that grammar-based represen-
tation contributes to performance improvements
by amplifying structural differences in code. B.3
also presents case studies where the token-based
model’s generated outputs can be corrected with
minor modifications at the token level. This abil-
ity brought by grammar-based representation helps
prevent the model from exhibiting oversight-prone
tendencies akin to a “careless programmer,” where
minor but critical details are ignored, potentially
leading to semantic errors. As a result, grammar-
based representation not only improves the model’s
understanding of code semantics but also enhances
overall performance in code generation.

4 Related Work

4.1 Large Language Models for Code
Since the release of ChatGPT-3.5 (cha, 2022)
sparked a new wave of interest in LLMs, increas-
ing focus has been on training and utilizing LLMs
for code-related tasks (Chen et al., 2025; Wang
et al., 2024). These models can be broadly cat-
egorized into two types. The first category con-
sists of general-purpose models, which perform
well in various natural language tasks, while also
showing strong capabilities in code-related tasks.

Examples of models in this category include Chat-
GPT (OpenAI, 2024), Gemini (Reid et al., 2024),
Claude (Anthropic, 2025), Qwen (Team, 2024),
and DeepSeek (Bi et al., 2024). The second cate-
gory comprises models specifically trained on code
data, including models such as CodeLlama (Roz-
ière et al., 2024), OpenCoder (Huang et al., 2024),
and DeepSeek-Coder (Guo et al., 2024). Com-
pared to general-purpose models, these special-
ized models can achieve comparable or superior
performance on code-related tasks with fewer pa-
rameters and offer broader support for less com-
mon programming languages. However, regard-
less of whether they have been specifically trained
for code-related tasks, these models represent pro-
gramming languages in the same way as natural
language—using token sequences. This hinders the
model’s ability to recognize the inherent structural
information of programming languages. Therefore,
we leverage the grammar-based code representa-
tion to train GrammarCoder, which enhances the
model’s ability to capture structural information
inherent in programming languages.

4.2 Grammar-Based Code Representation

Many models attempt to incorporate grammar-
based information into code representations (Sun
et al., 2019; Liang et al.; Guo et al., 2022; Zhu
et al., 2024; Sun et al., 2020; Xiong and Wang,
2022; Rabinovich et al., 2017). These models
have been validated on relatively small-scale mod-
els (fewer than 220M parameters), demonstrating
that grammar-based representation helps prevent
syntax errors and enhances code generation per-
formance. For example, GrammarT5 (Zhu et al.,
2024) is a pre-trained model based on grammatical
rules. It is trained based on CodeT5 (220M) (Wang
et al., 2021b) with an encoder-decoder architec-
ture using the same training data, demonstrat-
ing that grammar-based representations can en-
hance model performance. However, with the
emergence of LLMs, models’ size has expanded
rapidly, and decoder-only architectures have grad-
ually become mainstream. It’s unclear whether
grammar-based representations remain effective
in larger-scale (e.g., billion-size) decoder-only
models. Moreover, beyond preventing grammat-
ical errors, it remains unclear whether grammar-
based representations provide any additional ben-
efits. Therefore, we bridge these gaps by train-
ing and evaluating grammar-based representations
in billion-scale decoder-only models. Addition-
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ally, we explore why grammar-based representa-
tion remains effective when syntax errors are rare
in LLMs, providing insights into its broader impact
on model performance.

5 Conclusion

In this paper, we introduce GrammarCoder, a se-
ries of models trained using grammar-based code
representations. To evaluate whether this approach
remains effective even when billion-scale models
basically no longer make syntax errors, we assess
GrammarCoder on widely used code generation
benchmarks, HumanEval(+) and MBPP(+). Ex-
perimental results show that after continued pre-
training on the same datasets, GrammarCoder sig-
nificantly outperforms models trained with normal
token-based representations. To further investigate
why grammar-based code representations are ef-
fective, we first quantify the differences between
grammar-based and token-based approaches in rep-
resenting code. Additionally, we train a classi-
fication model to assess their ability to capture
subtle code variations. Our findings reveal that
while modern LLMs rarely make syntax errors,
grammar-based representations still enhance their
ability to distinguish fine-grained token-level dif-
ferences. This reduces semantic errors caused by
minor variations and ultimately improves model
performance in code-related tasks.
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7 Limitations

While grammar-based representations excel in code
understanding and generation, they might face the
following limitations. First, they may struggle
with non-standard or incomplete code. Real-world
datasets often contain code mixed with natural
language or truncated snippets, which may fail
AST parsing, reducing data utilization. Second,
grammar-based models may struggle with incom-
plete syntax. When dealing with incomplete vari-
able names or missing key symbols (e.g., brackets,
commas), grammar-based approaches may face
higher parsing or pre-processing costs. In these

cases, token-based approaches offer greater flexi-
bility.

Generally, grammar-based representation re-
mains effective in billion-scale LLMs, enhanc-
ing the model’s ability to capture subtle semantic
changes. This leads to improvements in code gen-
eration and semantic classification accuracy. How-
ever, its reliance on AST parsing introduces chal-
lenges in processing incomplete or syntactically
incorrect code, limiting its flexibility.
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A Approach Details

A.1 Mode Configuration

Config DeepSeek-Coder Qwen2.5 Qwen2.5

# parameters 1.3 B 1.5 B 7 B
# hidden_layer 24 28 28
# hidden_size 2,048 1,537 3,584
# intermediate_size 5,504 8,960 18,944
# attention_head 16 12 28
# vocabulary 32,256 151,936 152,064

Table 4: The main configuration of base models.

Table 4 presents the key configurations of the
base models used in our study: DeepSeek-Coder,
Qwen2.5-1.5B, and Qwen2.5-7B. While these mod-
els are billion-scale in terms of parameter count,
they exhibit differences in architectural details, par-
ticularly in vocabulary size. DeepSeek-Coder uses
a vocabulary of 32,256 tokens, whereas Qwen2.5
adopts a significantly larger vocabulary of over
150,000 tokens. Since grammar-based represen-
tations restructure code at a syntactic level rather
than relying solely on the token level, their effec-
tiveness is not dependent on the original vocabulary.
Therefore, this difference in vocabulary size can
underscore the robustness of our grammar-based
code representation. After incorporating grammar
rules, our vocabulary sizes expand to 33,465 for
DeepSeek-Coder, 153,108 for Qwen2.5-1.5B, and
154680 for Qwen2.5-7B. If GrammarCoder demon-
strates improved performance across both base
models, it would further indicate that grammar-
based approaches are adaptable to different model
architectures and tokenization strategies.

A.2 Training Objective

The training objective of GrammarCoder is to max-
imize the conditional probability of the next token
given the preceding sequence. The loss function of
training objective can be formalized as:
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Figure 3: Edit distance distribution across different code
representation approaches.

L = −
N∑

t=1

logP (xt|x1, x2, . . . , xt−1; θ)

, where xt represents the token (either a normal
token or a grammar rule from Vgrammar) at step t,
x1, x2, ..., xt−1 denotes the previously generated
sequence, θ represents the model parameters, and
the objective is to maximize the conditional proba-
bility of the correct token given the current context
P (xt | x1, x2, ..., xt−1).

This ensures that the final output adheres to syn-
tax constraints while effectively capturing correct
program logic, aligning with the preorder traversal
of the complete AST.

A.3 Training Datasets and Filter

Name # Samples
code_contests_instruct 4.4 M
Opencoder-sft-stage1 4.2 M
Opencoder-sft-stage2 375K
Code-290k-ShareGPT-Vicuna-Clean 285K
CodeFeedback-Filtered-Instruction 156K
code_instructions_122k_alpaca_style 121K

Table 5: Open-source instruction datasets.

For training the base models, we primarily use
high-quality Python code, aligning with our fo-
cus on grammar-based code representation. Our
dataset is composed of two key sources. First, we
sample 10B tokens from TheStackV2 (Lozhkov
et al., 2024), a large-scale code corpus that pro-
vides diverse and high-quality programming sam-
ples across various domains, ensuring a strong
foundation in general coding patterns and struc-
tures. Second, inspired by previous studies (Huang
et al., 2024; Yang et al., 2024), we incorporate
0.5B tokens of self-contained code textbooks from

open-source repositories (Huang et al., 2024). Un-
like context-dependent snippets, these samples con-
sist of independent tasks and corresponding code
snippets, helping the model learn to generate inde-
pendent and coherent programs, bridging the gap
between standard pre-training and real-world inter-
active programming scenarios.

For training the instruct models, we use instruc-
tion data consisting of two main sources: pub-
licly available instruction datasets and syntheti-
cally generated instruction data. Table 5 lists the
open-source instruct datasets used in our train-
ing (Hu et al., 2024; Huang et al., 2024; Compu-
tations, 2024; Zheng et al., 2024; TokenBender,
2024), each contributing to the diversity and qual-
ity of instruction tuning. All of the datasets have a
permissive license for the training LLM. For syn-
thetic instruct data, we use LLaMA3.1-70B as the
base model to generate high-quality data, lever-
aging OSS-Instruct (Wei et al., 2024b) and Self-
CodeAlign (Wei et al., 2024a) as synthesis meth-
ods. This approach enables us to create a large-
scale instruct dataset totaling 5B tokens, further
enhancing the model’s ability to follow instructions
effectively.

To ensure data quality, we apply data filtering for
both base models and instruct models, primarily
focusing on deduplication and syntax validation.
Deduplication is performed through string-based
text matching to eliminate redundant samples. For
syntax validation, we use Tree-sitter (TreeSitter,
2024) to check whether the code can be parsed
into a valid syntax tree; if parsing fails, the sample
is removed. These filtering steps help maintain a
high-quality dataset for training.

B Experimental Details

B.1 Distribution of Edit Distance

Figure 3 shows the edit distance distribution
for error-correct code pairs with small edit dis-
tances (less than 50, accounting for 91.18% of the
test set) under different representation approaches.

B.2 Analysis of Model Outputs

While we have examined the differences between
representations on existing datasets, it is also cru-
cial to analyze whether grammar-based represen-
tation amplifies token-level subtle differences in
the model’s generated outputs. Therefore, we fur-
ther analyzed the inference results of Meta-Llama-
3.1-70B (Dubey et al., 2024) on the CodeNanoFix
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def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)

def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
return "".join(groups)
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Figure 4: DeepSeek-Coder-1.3B-Base (CPT)’s generated output for Task 38 in the HumanEval dataset (left) and the
required AST modifications to correct the code (right).

def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, 
and a[i] + a[j] + a[k] is a multiple of 3.

Example :
Input: n = 5
Output: 1
Explanation: 
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
"""
count = 0
for i in range(1, n):

for j in range(i+1, n):
for k in range(j+1, n+1):

if (i*i - i + 1) + (j*j - j + 1) + (k*k - k + 1) % 3 == 0:
if ((i*i - i + 1) + (j*j - j + 1) + (k*k - k + 1)) % 3 == 0:

count += 1
return count
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Figure 5: DeepSeek-Coder-1.3B-Base (CPT)’s generated output for Task 147 in the HumanEval dataset (left) and
the required AST modifications to correct the code (right). For clarity, we represent identical computational units
before and after modification using A, B, and C, respectively.

dataset, focusing on the edit distance between cor-
rect and incorrect code samples for the same data
samples. The results show that in 25.56% of the
samples, the token-level edit distance between in-
correct and correct code is relatively small (less
than 50). Among these samples, the average edit
distance for token-based representations is 28.04,
whereas for grammar-based representations, it in-
creases to 44.56. These findings suggest that even
for a 70B-scale model, generating the correct code
remains challenging when token-level differences
are minimal. Relying solely on token-level infor-
mation may not be sufficient to distinguish critical
semantic differences in code. In contrast, grammar-
based representations provide additional structural
information, helping the model better differenti-
ate between similar yet semantically distinct code
snippets.

B.3 Errors caused by subtle differences.

Figures 4 and 5 illustrate errors made by the token-
based LLM (DeepSeek-Coder-1.3B-Base (CPT))

on the HumanEval dataset, highlighting how these
mistakes can be corrected with minimal token-level
modifications. For example, in Figure 4, fixing the
error requires only adjusting the range of operations
within the ‘group’ list, while in Figure 5, the bug
can be fixed by adding a single pair of parentheses
to enforce the correct order of operations.

However, since these examples require only
minor token-level modifications, they may be
overlooked by token-based LLMs. In contrast,
grammar-based representations introduce larger
structural changes in the corresponding AST, mak-
ing the model more sensitive to differences be-
tween correct and incorrect code. These examples
demonstrate that grammar-based models, by explic-
itly organizing code through grammar rules, can
better capture subtle code variations. As a result,
grammar-based models are more effective in recog-
nizing and generating correct code, even in cases
where small token-level changes drastically alter
program behavior.
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