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Abstract

The success of building textless speech-to-
speech translation (S2ST) models has attracted
much attention. However, S2ST still faces two
main challenges: 1) extracting linguistic fea-
tures for various speech signals, called cross-
modal (CM), and 2) learning alignment of dif-
ference languages in long sequences, called
cross-lingual (CL). We propose the unit lan-
guage to overcome the two modeling chal-
lenges. The unit language can be considered
a text-like representation format, constructed
using n-gram language modeling. We imple-
ment multi-task learning to utilize the unit lan-
guage in guiding the speech modeling process.
Our initial results reveal a conflict when apply-
ing source and target unit languages simulta-
neously. We propose task prompt modeling to
mitigate this conflict. We conduct experiments
on four languages of the Voxpupil dataset. Our
method demonstrates significant improvements
over a strong baseline and achieves perfor-
mance comparable to models trained with text.

1 Introduction

The Speech-to-Speech Translation (S2ST) task
aims to generate target speech according to the
source speech, which can significantly improve
communication efficiency between speakers of dif-
ferent languages. Conventional methods apply the
cascade method that uses automatic speech recog-
nition (ASR), machine translation (MT), and text-
to-speech (TTS) models (Vidal, 1997; Casacuberta
et al., 2004; Aguero et al., 2006). This strategy
always suffers from error propagation and high la-
tency, thus researchers turn to investigate direct
S2ST (Jia et al., 2019; Lee et al., 2022a; Inaguma
et al., 2023). The direct S2ST models the source
speech and generates the unit or spectrum of the
target speech within one model. Inspired by the
direct S2ST paradigm, Lee et al. (2022b) proposed
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Sepctrum

Pronunciation
Text We are per sis tent

/wi:/ /a:r/ /p@r/ /sIs/ /t@nt/

Unit 334 226 666 277 746 991 162 535 271 930
327 905 104 108 778 759 547 241 798 432 ...

Unit
language

334_226_666_277_746
991_162_535_271_930_327_905
...

<Noise>
We

...

Figure 1: The proposed unit language and three other
text types represent the transcription. The unit language
is created using unsupervised language modeling.

textless S2ST, namely achieving speech-to-speech
transformation with the constraint of unit or VQ-
VAE token. This method eliminates the need for
any labeled text and is very valuable for languages
without text-writing systems.

However, there are still two challenging prob-
lems for textless S2ST (Lee et al., 2022a; Jia et al.,
2021): 1) how to learn the acoustic and linguis-
tic features from the varying and continuous audio
signal without transcription (calling it cross-modal
modeling, CM), and 2) how to achieve alignment
between languages along the long sequence with-
out translated text pairs (calling it cross-lingual
modeling, CL). For the former problem, previous
works propose the quantization method to improve
the discrete unit or token, aiming to be more suit-
able for cross-modal and cross-lingual modeling
(Zhang et al., 2020; Lee et al., 2022a; Li et al.,
2023). In the latter case, some masked language
models or denoising auto-encoder methods were
used to improve cross-lingual modeling (Popuri
et al., 2022; Chen et al., 2023). Though these meth-
ods show improvement in textless S2ST, the CL
and CM challenges have not been adequately ad-
dressed due to the lack of guidance from text.

We design a format called the unit language,
serving as a transcription of speech to enhance CM
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and CL modeling. The unit language consists of
unit words which are merged from several con-
tiguous speech units. Each unit word is generated
based on n-gram language modeling. This strat-
egy searches for the maximum probability of unit
words for every unit sequence and does not rely
on any labeled data. This novel representation can
serve as an alternative to text during the model-
ing process, addressing the challenges posed by
textless training. As shown in Figure 1, the unit
language is implicitly aligned with the real text.
We further implement multi-task learning based on
the source and target unit language to guide CM
and CL modeling respectively.

We conducted experiments on the Voxpupil
dataset (Wang et al., 2021). Our method achieved
an average improvement of 1.2 BLEU over the
strong baseline. Furthermore, it demonstrates per-
formance comparable to the S2ST model trained
with text. This shows that the unit language can
serve as an effective alternative to text in the speech
modeling process. Our further analysis reveals that
CM and CL processing based on unit language have
distinct impacts, but both are essential for S2ST.
CM processing filters noise in speech, while CL
processing helps capture semantic information for
translation. However, the negative impact of CL
on the effectiveness of CM prevents the simulta-
neous application of both methods from achieving
consistent improvements. To address this issue,
we proposed task prompt modeling to mitigate the
conflict. Final results demonstrate that our model
achieves new state-of-the-art performance on the
textless S2ST task using the Voxpupil dataset1.

2 Method

The philosophy of this paper is to utilize a text-
like format, namely the unit language, to enhance
speech modeling. To use the unit language, we in-
troduce two additional decoders and employ multi-
task learning to guide the modeling process. We
propose task prompt modeling as a mitigation strat-
egy to address task conflicts in multi-task learning.

2.1 Unit Language Construction

We propose a method to construct the unit lan-
guage based on language modeling processing.
Formally, given a unit sequence {u1, u2, ..., un},
our goal is to convert it into a word sequence
{w1, w2, ..., wm}, where each w consists of at most

1Code: https://github.com/xiaozhang521/Unit_Language
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Figure 2: Architecture of textless S2ST. The dashed line
part will be removed during inference. The filterbank
features serves as the only input to the network. Blue
modules are used to guide the modeling process.

K continuous units and K is a hyper-parameter.
Considering an arbitrary sub-sequence u[1:i] =
{u1, u2, ..., ui}, we can generate a corresponding
sequence w[1:j] = {w1, w2, ..., wj}. Considering
the original unit can be various, we apply the norm
unit (Lee et al., 2022b), which is produced by a
model trained with data from a specific speaker.
The norm unit is less noisy and easier to learn. Ac-
cording to the process of language modeling, the
probability of w[1:j] can be calculated by:

P (w[1:j]) = P (w1)P (w2|w1)...P (wj |w1...wj−1).
(1)

When the P (w[1:j]) reaches its maximum, which
is the maximum likelihood, we can consider w[1:j]

as the optimal unit language sequence to represent
u[1:i]. We use π(u[1:i]) to denote the optimal con-
version path as follows:

π(u[1:i]) = w∗
[1:j] = argmax

w[1:j]

(P (w[1:j])). (2)

1-gram Our final goal is to find π for any unit
sequence. To make the deduction process clear,
we first consider the circumstance of conditional
independence, namely 1-gram. Then we can get:

P (w[1:j]) ≈ P (w1)P (w2)...P (wj)

= exp(

j∑

t

logP (wt)).
(3)

Considering that wj consists of a maximum of K
continuous units, we can derive the following re-
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cursion formula for wj and w[1:j−1]:

max(

j∑

t

logP (wt)) =

max





logP (π(u[1:i−1])) + logP (ui),

logP (π(u[1:i−2])) + logP (u[i−1,i]),

...

logP (π(u[1:i−K])) + logP (u[i−K+1,i])





.

(4)
For any k ≤ K, we can use the frequency from the
unit corpus to estimate P (u[i−k+1:i]). Then, we get
k∗i as the maximum element:

k∗
i = argmax

k
(logP (π(u[1:i−k])︸ ︷︷ ︸

w∗
[1:j−1]

) + logP (u[i−k+1,i]︸ ︷︷ ︸
wj

)).

(5)

For position i, we can determine wj using k∗i units,
namely wj = u[i−k∗i +1,i]. Then wj−1 can be deter-
mined by k∗i−k∗i

. After applying dynamic program-
ming, the entire sequence w∗

[1:m] can be obtained
for any unit sequence u[1:n], and we consider the
generated sequence w∗

[1:m] as the unit language.

2-gram For most languages, considering in-
context information is necessary, and we can easily
adapt our method to n-gram modeling. Consider-
ing the computational cost (refer to Appendix), we
primarily use 2-gram modeling in this paper. Thus,
equation (2) can be updated as follows:

π(u[1:i]) = argmax
w[1:j]

(P (w[1:j]))

= argmax
w[1:j]

(

j∑

t>1

logP (wt|wt−1) + logP (w1))

(6)
Similarly, we can update the formula (4) as follows:

max(

j∑

t>1

logP (wt|wt−1)) =

max





logP (π(u[1:i−1]))

+ logP (ui|u[i−k∗i−1:i−1]),

logP (π(u[1:i−2]))

+ logP (u[i−1:i]|u[i−k∗i−2−1:i−2]),

...

logP (π(u[1:i−K]))

+ logP (u[i−K+1:i]|u[i−k∗i−K−K+1:i−K])





(7)

Loss Output Training modules

LSU Source unit {A-Enc, SU-Dec}
LTU Target unit {A-Enc, T-Enc, TU-Dec}
LCM Source unit language {A-Enc, T-Enc∗, S-Dec}
LCL Target unit language {A-Enc, T-Enc, T-Dec}
LCM

′ Source text {A-Enc, T-Enc∗, S-Dec}
LCL

′ Target text {A-Enc, T-Enc, T-Dec}

Table 1: Overview of all the tasks and modules. The
input is filterbank for all the tasks. * denotes that the
loss updates parts of parameters in the module.

For any k ≤ K and l = k∗i−k − k, we still use the
frequency to estimate the conditional probability
as follows:

P (u[i−k+1:i]|u[i−l+1:i−k]) =
P (u[i−l+1:i])

P (u[i−l+1:i−k])
.

(8)

2.2 Architecture

We improve the architecture of advanced textless
S2ST model (Lee et al., 2022b) as shown in Figure
2. It converts source audio as and target audio at to
discrete units us and ut, respectively. The source
units us and target units ut are produced by the
pre-trained multilingual Hubert model (Hsu et al.,
2021), and us and ut serve as pseudo source and tar-
get text. We apply the norm unit (Lee et al., 2022b)
as the training target to achieve strong baselines.

To clarify the architecture, we define the baseline
as consisting of four parts: acoustic encoder (A-
Enc), textual encoder (T-Enc), source unit decoder
(SU-Dec), and target unit decoder (TU-Dec). We
add two additional decoders to process source and
target unit languages. Since both decoders generate
the text-like unit language, we call them the source
text decoder (S-Dec) and target text decoder (T-
Dec), respectively. Previous analysis shows that
the representation is converted from speech to text
in the textual encoder (Zhang et al., 2023). We
choose the intermediate state of T-Enc as the input
for S-Dec and T-Dec.

At the inference stage, the audio features are
fed into the A-Enc. After processing by A-Enc
and T-Enc, the TU-Dec directly generates target
units, which are subsequently passed to a vocoder
to synthesize the target speech.

2.3 Multi-task Learning

Training the textless S2ST model is challenging,
and mainstream methods rely on multi-task learn-
ing. Specifically, the input is the filterbank feature
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Models Es-En Fr-En En-Es En-Fr Avg.

Seamless (Barrault et al., 2023) 34.7 35.9 29.2 25.0 31.2
Textless S2UT (Lee et al., 2022b) 18.9 19.9 22.7 18.7 20.1
S2UT∗ (Lee et al., 2022b) 19.4 19.7 21.8 18.9 20.0

w/ Recognized text

Baseline (+ LTU&LSU) 19.1 20.3 23.0 18.8 20.3
+ LCM

′ 19.7 (+0.6) 21.0 (+0.7) 23.9 (+0.9) 20.8 (+2.0) 21.4 (+1.1)
+ LCL

′ 20.3 (+1.2) 21.2 (+0.9) 23.9 (+0.9) 20.6 (+1.8) 21.5 (+1.2)
+ LCM

′ &LCL
′ 19.8 (+0.7) 20.8 (+0.5) 24.0 (+1.0) 20.8 (+2.0) 21.4 (+1.1)

w/ Unit language

Baseline (+ LTU&LSU) 19.1 20.3 23.0 18.8 20.3
+ LCM 19.2 (+0.1) 20.7 (+0.4) 23.5 (+0.5) 19.5 (+0.7) 20.7 (+0.4)
+ LCL 19.4 (+0.3) 21.0 (+0.7) 23.9 (+0.9) 19.9 (+1.1) 21.1 (+0.8)
+ LCM&LCL 19.7 (+0.6) 21.0 (+0.7) 23.8 (+0.8) 20.4 (+1.6) 21.2 (+0.9)

+Task prompt 19.9 (+0.8) 21.1 (+0.8) 24.4 (+1.4) 20.6 (+1.8) 21.5 (+1.2)

Table 2: Performance on different datasets. Our baseline is a reproduction (Lee et al., 2022b). * denotes that the
model does not use the norm unit.

of as, and the output of the acoustic encoder is used
to predict the source unit us as the training loss:

LSU = −logP (us|as, θA-Enc, θSU-Dec). (9)

The output of the whole encoder (A-Enc and T-
Enc) is used to predict the target unit by TU-Dec.
The cross-lingual loss is denoted as:

LTU = −logP (ut|as, θA-Enc, θT-Enc, θTU-Dec).
(10)

To improve the effect of CM, we use the unit
language as the transcription of each source audio,
denoted ũs. The S-Dec processes the output of the
r-th layer in T-Enc, where r is a hyperparameter.
The auxiliary CM loss can be denoted as follows.

LCM = −logP (ũs|as, θA-Enc, θ
r
T-Enc, θS-Dec)

(11)
where θrT-Enc indicates that the parameters before
the r-th layer in T-Enc are used. Similarly, the
target unit language ũt can be generated according
to ut. We view ũt as translation text and implement
the T-Dec to compute the auxiliary CL loss:

LCL = −logP (ũt|as, θA-Enc, θT-Enc, θT-Dec).
(12)

We combine all the training losses to form the final
training objective:

L = LTU + αLSU + βLCM + γLCL (13)

where α is fixed at 8. β and γ are set to 8 if the
corresponding task is activated. We also test the
multi-task learning approach by applying text as

Textual
encoder

︸︷︷︸

︸︷︷︸

Layers

Target unit decoder

︸︷︷︸

Layers

···

FeaturesbCM

···

bCL

Replace
at rth
layer

···
Drop

Source text
decoder

LCM

Target text
decoder

LCL

LMSE

Figure 3: The guiding process of the task prompt.

the auxiliary data. The losses L
CM

′ and L
CL

′ rep-
resent the scenarios where we replace the unit lan-
guage with the source and target text, respectively.
Table 1 provides brief information about terms of
multi-task learning.

2.4 Task Prompt Modeling

In our subsequent analysis, we observe a con-
flict between LCM and LCL. To address this is-
sue, we introduce task prompts to improve multi-
task learning when applying the two tasks simul-
taneously. Specifically, we employ two learnable
weights as task prompts, namely bCM ∈ R1×h and
bCL ∈ R1×h, where h is the hidden size.

We use bCM and bCL as inductive biases for the
CM and CL tasks respectively. The overall process-
ing is shown in Figure 3. Before the features are
fed into the T-Enc, the prompt bCM is concatenated
with the features at the first position. The interme-
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we are human beings.

704_334 365_548_985 99_991 535_271_930 (we) 327_905_579 (are) 933_901
427_258_436 139_340_748 872_336_877 (human) 488_620_915
143_290_978 485_113 (be) 398_212_455 545_711_510 (ings) 337_243 59

we are relatives.

681_63 991_162 535_271_930 (we) 327_905_579 (are) 969_156_824
384_879 259_317_453 275_830_471 737_53_885 545_85_510 (relatives) 297_206_265

Table 3: Comparison between unit language and text. The gray unit language denotes the noise token.

diate features of the r-th layer are used to compute
LCM. Then the task prompt LCM is replaced by
bCL after the r-th layer to adapt the CL modeling.
Furthermore, we add an extra loss, calculated by
the mean square error between bCM and bCL with a
negative weight of -3.0. This enhances the diversity
of the prompts and leads to improved performance.

3 Experiments

3.1 Data and Model Settings
We conducted experiments on the VoxPopuli
speech-to-speech dataset (Wang et al., 2021). The
source and target units are converted by mHubert
(Lee et al., 2022b) with 1000 units. The input
speech features are 80-dimensional filter banks.
The normalized unit is generated by the speaker
normalizer (Lee et al., 2022b). We set K to 3
to search for the unit language for all translation
pairs. We use SentencePiece (Kudo and Richard-
son, 2018) to control the vocabulary size to 10k.
For S2ST training with text, we utilize pre-trained
ASR models2 and split the words to the character
level as the training target.

We use the Transformer (Vaswani et al., 2017)
as the backbone network with a 12-layer encoder
and a 6-layer decoder. The hidden size is 512. The
unit representation is the output of the 6th layer.
The source and target text decoders are set to 2
layers. The parameter r is set to 2, meaning the
source decoders use the output of the 2nd T-Enc
layer. The target decoders are implemented after
the T-Enc, which is the 12th layer of the whole
encoder. The vocoder we used is the unit-based
HiFi-GAN (Kong et al., 2020; Polyak et al., 2021).

During the training stage, we adopt a different
strategy, utilizing a larger learning rate (0.001) and
a bigger batch size (40,000 tokens). This approach
enables our models to converge faster and achieve

2En: https://huggingface.co/facebook/wav2vec2-large-
960h-lv60-self, Es: https://huggingface.co/jonatasgrosman/wa
v2vec2-large-xlsr-53-spanish, Fr: https://huggingface.co/jona
tasgrosman/wav2vec2-large-fr-voxpopuli-french
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Figure 4: Average lengths of different types of tokens
on En-Es and En-Fr training datasets. “Unit_l” denotes
the unit language. Note that the units used here have
had continuous repetitions removed.

better performance. All experiments are conducted
on 8 RTX 3090 GPUs. We use the best checkpoint
for evaluation. Pre-trained ASR models1 are used
to recognize speech generated by the S2ST model.
To normalize references, we remove punctuation,
convert numbers to spoken forms, and lowercase
text, following the work of Lee et al. (2022b). We
report ASR SacreBLEU (Post, 2018). More train-
ing and data details can be found in the Appendix.

3.2 Results

We compare the advanced textless S2ST with the
text-based model (Barrault et al., 2023) in Table 2.
This comparison shows that the textless model has
significant improvement potential. After applying
unit language as the auxiliary training data, results
in Table 2 show that both LCL and LCM improve
the performance of the textless model. The two
losses achieve average improvements of 0.4 to 0.8
BLEU based on strong baselines. All the transla-
tion pairs show consistent improvement. We find
that the improvement gained from CL training is
greater than that from CM training, which indicates
that the textless S2ST requires crucial enhancement
in cross-lingual learning.

We further compare our method with a text-
based method. The results also prove that both
source and target texts have much potential to im-
prove the S2UT. We find that our method shows al-
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Figure 5: The influences of CM and CL on Fr-En (left) and En-Fr (right) tasks.
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most comparable performance with the text-based
method in cross-lingual learning. This demon-
strates that our unit language, mined through lan-
guage modeling, can effectively function like text.

When we apply the L
CL

′ and L
CM

′ methods
simultaneously, the performance does not further
increase compared with either method alone, and
even degradation occurs. The Fr-En and En-Es
pairs trained with the unit language confirm this
phenomenon. This indicates that the effects of the
two methods may not be the same and that con-
flicts have occurred during the modeling process.
We aim to isolate the effects of LCL and LCM by
adding task prompts method. Results in Table 2
demonstrate that this approach harmonizes CM
and CL methods, achieving much advanced perfor-
mance in all textless S2ST directions. Furthermore,
our unit language can help the model achieve per-
formance comparable to true text, which could sig-
nificantly aid languages without sufficient labeled
text for modeling speech.

4 Analysis

4.1 Comparison of Unit Language and Text

Since the unit sequence is rather long, we choose
some short speech samples for a case study to com-
pare with text. As shown in Table 3, the unit lan-
guage is basically merged according to pronuncia-
tion. Thus, the size of the unit language represent-
ing a word depends on the syllables of the word.
Furthermore, even across different sentences, the
unit language can successfully represent the same
word. Concise sequences benefit the extraction
of important information (Chan et al., 2015), thus

the unit language could address the CL and CM
modeling challenges in textless S2ST.

We present the average length of different types
of training data in Figure 4. It is very difficult to
learn cross-lingual alignment based on thousands
of various frames if there is no intermediate guid-
ance. Units could help with modeling speech and
they are several times shorter than frames (Lee
et al., 2022b). But units still have an obvious incon-
sistency in length compared with characters or text
as shown in Figure 4. Previous work suggests that
length reduction benefits cross-lingual modeling in
speech translation (Zhang et al., 2023). After apply-
ing language modeling, we find that the length of
the unit language is between that of characters and
text, making it suitable for learning cross-lingual
alignment. Furthermore, we found that unit lan-
guage is stable across different languages and con-
sistently shows significant compression of speech
sequences. This demonstrates that unit language
has great potential for speech-related tasks, which
could boost CM and CL learning.

4.2 How CM and CL Work?

We have observed that both LCM and LCL con-
tribute to textless S2ST, then we reveal how these
two losses affect the model. We sample 200 audios
from the training dataset to compute the Sparse-
ness metric and analyze the effect on S2ST models.
Sparseness is calculated by determining the propor-
tion of values with absolute values less than 1e-3
in the representations. The representations are ex-
tracted from the normalized output of each encoder
layer. This metric mainly measures the number
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Figure 7: Localness of attention weight on different tasks.
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Figure 8: Localness of attention weight with/without task prompt on different language tasks.

of non-activated nodes in the representation, with
higher sparseness indicating more unnecessary in-
formation. To simplify the expression, we use CM
and CL to denote LCM and LCL separately in the
later analysis section. Similarly, CM

′
and CL

′
de-

note models trained based on the recognized text.
Figure 5 illustrates the Sparseness of different

layers resulting from different methods. We ob-
serve distinct trends for CL and CM. Compared
with middle layers, Baseline and CM exhibit higher
Sparseness in earlier and top layers. This shows
more nodes are not needed for the bottom encoder
and target decoder, suggesting its effectiveness in
noise filtering but limited cross-lingual understand-
ing. The difference is the slight fluctuation in the
7-th layer for CM. After applying CL, the represen-
tation learned other information which differs from
the source unit. Conversely, CL does not show an
increase in Sparseness in top layers, indicating its
better cross-lingual capability.

We test the model Sparseness after applying the
text and show results in Figure 6. Both tendencies
of unit language and text are consistent, suggesting
the unit language could play the role of text. This
also confirms the effect of CL and CM is distinct
and explain why both the two tasks work well.

4.3 Why CM and CL “Conflict”?

Previous work identified a gap between CM and
CL in speech-to-text translation (Xu et al., 2021).
We examine if this issue also causes inconsistency
here with the localness metric. The metric sums

self-attention weights within a window, and lower
localness indicates global attention focus. We ran-
domly sample 200 audio recordings from the train-
ing dataset and extract attention weights with a
window size of 10 in each layer.

Figure 7 shows the results of different models.
The localness of the baseline increases initially and
reaches its peak at layers 4 to 6 before decreasing.
This indicates that S2ST requires cross-modal pro-
cessing first, followed by cross-lingual processing.
CM works in the middle layer and shows higher
localness. CL in the upper layers shows higher
locality, which is affected by cross-lingual learning.
Considering the conflict of using the two together,
our conjecture is that the guidance of CM in the
middle layer affects the learning of CL at the top
level, resulting in the two tasks being unable to help
each other. Therefore, we designed task prompts
to alleviate the learning conflict.

4.4 How to Make CM and CL Harmonious?

We show the change in localness after applying the
task prompt in Figure 8. Although the overall ten-
dency of the two methods are completely different,
it can be observed that the consistent changes come
from higher layers. When not using task prompt,
there will be a significant concussion on the around
8th layer, which we think is the disturbance caused
by CM to CL. After applying prompt modeling,
CL is easier to learn the semantic information, thus
localness is lower at the top level and more inclined
to learn global information. Thus designing a strat-

1454



Models En-Es En-Fr

r=0 r=2 r=4 r=0 r=2 r=4

Baseline 23.0 23.0 23.0 18.8 18.8 18.8
+ CM 21.7 23.5 22.3 17.9 19.5 19.0
+ CM&CL 23.1 23.8 23.8 19.6 20.4 19.8

Table 4: The performance of different T-Enc layers in
applying the CL training.

egy to avoid the conflict is necessary.

4.5 Effect of Hyper Parameters

There are two hyperparameters here, r and K. We
first test adding the LCM at three different layers,
and the results are shown in Table 4. If the CM
training is applied in the same layer as source unit
training, the two tasks conflict and hurt the perfor-
mance significantly. This proves the effect of unit
language differs greatly from that of the unit. Addi-
tionally, if the CM training is applied near the CL
training, the performance degrades. This also con-
firms the previous conclusion that there is a conflict
between CL and CM training.

Table 5 shows the results for different values
of K. K represents the maximum size used to
build the unit language. We find that K is highly
related to the language pairs, as each language has
its unique pronunciation units. Furthermore, there
is a threshold for each language pair, meaning that
increasing the size of K beyond this threshold does
not improve performance. This confirms that unit
language is highly related to the language features.

4.6 Comparison with BPE Method

Previous work (Shen et al., 2024) used the BPE
method to generate a pseudo language. We re-
produced this method based on our multi-task
training and normalized units to compared with
the proposed unit langauge. We found that the
unit language significantly outperforms the BPE
method, as shown in Table 6. This is because the
BPE method does not consider phrase information,
while our method applies n-gram modeling, which
makes the unit language more accurate.

5 Related Work

Jia et al. (2019) successfully built S2ST with aux-
iliary text tasks. Another approach to construct-
ing direct S2ST is by combining advanced end-
to-end speech translation methods with unit-based
text-to-speech methods (Inaguma et al., 2023; Bar-
rault et al., 2023). Due to the scarcity of train-

Models En-Es En-Fr

K=2 K=3 K=4 K=2 K=3 K=4

Baseline 23.0 23.0 23.0 18.8 18.8 18.8
+ CM 23.3 23.5 23.7 19.5 19.5 19.5
+ CL 23.1 23.9 24.0 19.9 19.9 19.8

Table 5: The performance of different values of K in
generating the unit language.

Models Es-En Fr-En En-Es En-Fr Avg.

Baseline 19.1 20.3 23.0 18.8 20.3
+ BPE 19.6 20.3 23.0 19.8 20.7 (+0.4)
+ Unit language 19.7 21.0 23.8 20.4 21.2 (+0.9)

Table 6: Comparison of BPE method (Shen et al., 2024)
and unit language.

ing data, some studies utilize unsupervised meth-
ods or data augmentation to enhance performance
(Jia et al., 2022; Dong et al., 2022; Popuri et al.,
2022). A challenge in textless S2ST is extracting
acoustic and semantic features from noisy speech
sequences, leading many studies to employ the
VQ-VAE method to aid alignment learning be-
tween different language speeches (Tjandra et al.,
2019; Zhang et al., 2020). Conversely, Lee et al.
(2022a,b); Chen et al. (2023) regard unit tokens as
language text. Our analysis aims to further explore
the next steps in unit-based S2ST. Some studies
focus on the voice, style, and speed of speech syn-
thesis (Jia et al., 2021; Song et al., 2023; Huang
et al., 2022; Fang et al., 2023), while our goal is
to enhance the modeling ability of S2ST. Related
works generate pseudo language based on the byte-
pair encoding method (Wu et al., 2023; Shen et al.,
2024). Their work focuses on speech-to-text or
text-to-speech tasks, while our work aims to im-
prove the more complex textless speech-to-speech
task. Furthermore, their method does not consider
in-context information when building the language.

6 Conclusion

Textless S2ST has attracted significant attention
from researchers, yet it encounters cross-modal
and cross-lingual challenges that impede perfor-
mance improvement. We introduce unit language
to boost either cross-modal or cross-lingual mod-
eling of S2ST. Our analyses demonstrate that CM
enhances speech modeling, while CL enhances se-
mantic understanding. We further propose task
prompt learning to mitigate conflicts between CM
and CL training. Our method achieves comparable
performance of textless S2ST to text-based models.
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Limitations

Our work discusses the modeling challenge we
are facing in textless speech-to-speech translation
and indicates the conflict between CM and CL.
However, the investigation of the proper method
to solve the conflict is limited. We introduce the
task prompt that could mitigate this conflict with
source and target text, but the conflict is not com-
pletely cleared. Additionally, while we focus on
the translation performance, our work lacks human
evaluation which could test the tone and fluency.
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Appendix

A Data Details

We have carried out experiments on four languages
of Voxpupil, and the specific data of each language
is shown in the Table 7.

Language Hours(h) Sentence(k)

Es-En 530 158
Fr-En 521 155
En-Es 413 125
En-Fr 444 135

Table 7: Training data size of the VoxPopuli 4 lan-
guages.

B Hyper Parameters of Language
Modeling

We primarily apply a 2-gram model here though
our method can easily be extended to higher n-gram
models. This is because that the computation pro-
cess becomes very complex and time-consuming
with higher n-grams. Table 8 shows the time con-
sumption with the increase of K for one language.
Higher values of K require significantly longer
computation times to estimate the probabilities ac-
curately. We found that K = 3 is sufficient for
most languages according to the previous analysis.
In summary, the current selection of n-gram and K
to merge units is based on a balance of efficiency
and empirical study.

K Time

2 ∼2 hours
3 ∼12 hours
4 (with pruning strategy) ∼2 days

Table 8: Time consuming of producing the unit lan-
guage. The size of one corpus is about 160 million
units.

C Necessity of Additional Decoders

Another alternative way to use the unit language is
with CTC (Graves et al., 2006) to predict the ob-
jective, which can avoid the need for additional de-
coders. We compare the two methods, namely CTC
and cross-entropy (CE) based on additional de-
coders, in Table 9. We found that the additional de-
coders stabilize the whole modeling process, while
CTC fails to take advantage of the unit language.

CTC loss
Decoder
w/ CE loss

Baseline 23.0 23.0
+Src unit langauge 22.8(-0.2) 23.9(+0.9)
+Tgt unit langauge 17.3(-5.7) 23.9(+0.9)

Table 9: Using CTC loss or CE loss to leverage the unit
language on En-Es task.

D Task Prompt Based on CM′ and CL′

We test the task prompt training based on L
CM

′ and
L
CL

′ . Results shown in Table 10 show that the task
prompt still works well and the conflict between
CL and CM is not caused by the unit language.

E Sparseness Results on Spanish

Due to the page limit, we show the effect of the
model in Spanish after using CL and CM respec-
tively in the Figure 9. It can be seen that the con-
clusion is consistent with the French phenomenon
described in the main content. We also exhibit
Sparseness results with text in Figure 10. The phe-
nomena are the same as those in the previous ex-
periments.

F Localness Results Based on CM′ and
CL′

The localness results of models which apply the
CM

′
and CL

′
are shown in Figure 11. The trend

shown in the figure is consistent with the use of CL
and CM methods described in the text, demonstrat-
ing that both methods achieve the goals of cross-
lingual learning and cross-modal learning.

G Effect of Norm Unit

The units used in this work have been normalized
Lee et al. (2022b) to reduce noise and other unim-
portant information. This baseline method in our
work achieves about a 3 BLEU improvement, high-
lighting the importance of unit normalization. If
the units are not normalized, unit language does
not perform well as shown in Table 11.

1458



1 2 3 4 5 6 7 8 9 10 11 12

2.50

3.00

3.50

4.00

4.50

5.00

·10−3

Sp
ar

se
ne

ss

Baseline CM CL CM&CL

(a) Es-En

1 2 3 4 5 6 7 8 9 10 11 12

2.50

3.00

3.50

4.00

4.50

5.00

·10−3

Sp
ar

se
ne

ss

Baseline CM CL CM&CL

(b) En-Es

Figure 9: The influence of CM and CL on Es-En (left) and En-Es (right) tasks.
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Figure 10: The influence of CM
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and CL
′

on Es-En (left) and En-Es (right) tasks.
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Figure 11: Localness of attention weight on different tasks.
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Models Es-En Fr-En En-Es En-Fr Avg.

Baseline 19.1 20.3 23.0 18.8 20.3
+ L

CM
′ &L

CL
′ 19.8 (+0.7) 20.8 (+0.5) 24.0 (+1.0) 20.8 (+2.0) 21.4 (+1.1)

+Task prompt 20.3 (+1.2) 21.4 (+1.1) 24.6 (+1.6) 20.9 (+2.1) 21.8 (+1.5)

Table 10: Performance on different datasets.

Models Es-En Fr-En En-Es En-Fr Avg.

Baseline 19.1 20.3 23.0 18.8 20.3
+ LCM&LCL w/o norm unit 19.3 20.3 22.9 19.3 20.5 (+0.2)
+ LCM&LCL 19.7 21.0 23.8 20.4 21.2 (+0.9)

Table 11: Comparison of unit language based on norm and un-norm unit.

1460


