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Abstract
Large language models (LLMs) have revolu-
tionized various domains with their remark-
able capabilities, but their massive parame-
ter sizes pose significant challenges for fine-
tuning and inference, especially in resource-
constrained environments. Conventional com-
pression methods often result in substantial per-
formance degradation within LLMs and strug-
gle to restore model quality during fine-tuning.
To address this challenge, we present Bayesian
Knowledge Distillation (BayesKD), a novel dis-
tillation framework meticulously designed for
compact LLMs in resource-constrained fine-
tuning scenarios. Departing from conventional
LLM distillation methods that introduce time-
consuming paradigms and fail to generalize
in compressed LLM fine-tuning scenarios, our
BayesKD develops the Logits Dual-Scaling,
Knowledge Alignment Module, and Bayesian
Distillation Optimization. In particular, our
Logits Dual-Scaling strategy adaptively aligns
the strength of the teacher’s knowledge trans-
fer, while the Knowledge Alignment Module
bridges the gap between the teacher and student
models by projecting their knowledge repre-
sentations into a shared interval. Additionally,
we employ Logits-Aware Bayesian Optimiza-
tion to swiftly identify optimal settings based
on these strategies, thereby enhancing model
performance. Extensive experiments across di-
verse tasks demonstrate that BayesKD consis-
tently outperforms baseline methods on vari-
ous state-of-the-art LLMs, including LLaMA,
Qwen2, Bloom, and Vicuna. Notably, our
BayesKD achieves average accuracy gains of
2.99% and 4.05% over standard KD for the 8B
parameter LLaMA and Qwen2 model. Codes
are available in the supplementary materials.

1 Introduction

The rapid advancements in Large Language Mod-
els (LLMs) have revolutionized natural language

*Equal contribution. Correspondence to: Mark Lee and
Yike Guo.

Table 1: Hyperparameter sensitivity experiments: Per-
formance generally improves with higher scaling value
in TinyLLaMA1.1B, but tasks like BoolQ and Open-
bookQA show a decline, indicating potential hindrances
in knowledge transfer.

Scaling Values BoolQ ARC_C OPQA PIQA SST-2

8 60.08 26.56 22.55 69.81 58.55

16 56.27 26.61 22.11 70.82 75.92

20 54.31 26.54 21.95 70.95 80.56

processing (Wei et al., 2022b,a), yet the sub-
stantial size and computational demands of these
models pose significant challenges for practical
deployment (Zhang et al., 2022). To address
these challenges, various LLM compression tech-
niques (Zhang et al., 2023b), such as pruning (Sun
et al., 2024a), have emerged to develop stream-
lined LLMs, thereby boosting inference efficiency.
Nonetheless, these compressed models often expe-
rience notable performance degradation and strug-
gle to regain their original quality through addi-
tional fine-tuning (Ma et al., 2023).

Problem Statement: A promising approach to
mitigating such performance gaps is to leverage
the original dense model as a teacher for Knowl-
edge Distillation (KD). However, current LLM
distillation methods (Gu et al., 2023) encounter
two key limitations: (1) They impose substantial
computational overhead due to complex distillation
paradigms, and (2) they are primarily designed for
normal LLMs rather than compressed ones. For
example, while MiniLLM (Gu et al., 2023) im-
proves the performance of the original LLaMA 7B
by 5%, its gain diminishes to only 1% on the sparse
LLaMA 7B (Table 9). These failures are likely at-
tributable to the immense gap between compressed
LLMs and their teacher counterparts, which poses
difficulties for general distillation methods.

While recent KD approaches have explored
various angles. Teacher Assistant (TA)-based
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methods (Mirzadeh et al., 2020; Zhang et al.,
2023a) improve distillation performance by in-
serting intermediate-capacity models between the
teacher and student. However, identifying and de-
ploying a TA model with an optimal capacity ratio
(e.g., 1.5 times the student’s size) is computation-
ally prohibitive at LLM scales, where even minor
capacity adjustments lead to massive parameter
counts and increased training costs. Similarly, logit
standardization (Sun et al., 2024b), multi-level logit
distillation (Jin et al., 2023), and intermediate-layer
alignment methods (e.g., Universal-KD (Wu et al.,
2021)) have delivered modest gains in smaller or
less complex models but fail to yield substantial im-
provements for LLMs and compressed LLMs. For
instance, applying these techniques (logit standard-
ization, multi-level logit distillation, and Universal-
KD) to Tiny-LLaMA1.1B and LLaMA-13B im-
proves accuracy to only 52.33%, 51.89%, and
52.53%, respectively, across ten tasks (same tasks
with Table 4 except Wiki). Such outcomes high-
light that once models undergo compression or is
LLM, established KD methods become less robust
and struggle to restore substantial performance. An-
other issue arises from the sensitivity of KD to
hyperparameters such as scaling values or tempera-
ture factors. Although adjusting logits can enhance
certain tasks, it can also degrade others. Table 1
shows this challenge: increasing the scaling value
from 8 to 20 boosts SST-2 accuracy from 58.55% to
80.56% but degrades results on BoolQ and Open-
BookQA. These findings underscore that a one-
size-fits-all scaling strategy is inadequate, and a
more adaptive, task-aware tuning mechanism is
required.

These observations raise two critical questions:
Why do compact LLMs struggle to learn knowl-
edge from their teacher models, and can a more
specialized distillation paradigm address these is-
sues effectively for such compressed model fine-
tuning scenarios.?

Our New Observations: We identify two fac-
tors that significantly influence KD performance in
compressed LLMs: (1) Massive Logit Gap. The
distributional discrepancy in logits between sparse
and dense models is larger than that between dense
models of different sizes. This gap intensifies with
increasing model scale, contributing to the limited
efficacy of current KD methods (Table 4). (2) Hy-
perparameter Sensitivity. As shown in Table 1,
the optimal scaling value for knowledge distilla-

tion varies across different tasks. This issues sig-
nificantly affect the performance of conventional
distillation methods.

Our New Search Framework: Building upon
these observations, we propose Bayesian Knowl-
edge Distillation (BayesKD), a novel framework
designed for LLMs and their sparse models un-
der resource-constrained fine-tuning conditions.
BayesKD integrates three core components: First,
a logits dual-scaling technique dynamically ad-
justs teacher and student logits based on their
standard deviations, thereby narrowing distribu-
tional gaps and enabling more effective, task-
aware scaling. Second, a knowledge alignment
module employs min-max normalization to bet-
ter align the intermediate-layer representations of
teacher and student models, enhancing the trans-
ferability of critical features. Third, to tackle the
hyperparameter-sensitive issue. we first drew the
paradigm of Bayes search in the LLM-KD field
and propose Logits-Aware Bayesian optimization
(SABO). Our SABO first builds a search space with
Logits Dual-Scaling, Knowledge Alignment Mod-
ule as the core and different key hyper-parameters
distillation position, loss weight, temperature fac-
tor as options. To improve the search efficiency, we
employ an advanced Bayesian search with faster
convergence than random search. To optimize the
search cost, we select only 5% of the sub-dataset
for searching, which speeds up the search by 20
times compared to searching directly on the orig-
inal dataset. Finally, we deeply analyze searched
distillers and get some guidance: compressed LLM
distillation always favors deep intermediate knowl-
edge, logits dual-scaling, and smaller loss weights.

Evaluation and Results: We rigorously evaluate
BayesKD on diverse tasks, including WikiText-
2 (Merity et al., 2016), OpenBookQA (Mihaylov
et al., 2018), HellaSwag (Zellers et al., 2019) and
others, utilizing various teacher-student pairs such
as LLaMA 13B for Tiny-LLaMA1.1B, LLaMA
7B, Vicuna 7B, and Bloom 7B; LLaMA-3 70B
for LLaMA-3 8B; and Qwen-2 72B for Qwen-
2 7B. Across these scenarios, BayesKD consis-
tently outperforms baseline methods, delivering an
average improvement of 4.4% over standard KD
and a 2.6% advantage relative to vanilla LoRA
fine-tuning baseline. Notably, the improvements
are more pronounced for larger models, highlight-
ing the scalability and robustness of the proposed
framework.
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The remainder of this paper is organized as fol-
lows: Section 2 reviews related work, Section 3
explains our methodology, Section 4 discusses re-
sults, and Section 5 concludes.

2 Related Work

Knowledge distillation (KD) (Hinton et al., 2015)
methods can be broadly categorized into response-
based methods focused on model output (Turc et al.,
2020; Li et al., 2020; Jiao et al., 2020) and feature-
based methods extracting intermediate layer fea-
tures (Romero et al., 2015; Sun et al., 2019a; Tang
et al., 2019). While these traditional approaches
prove effective for BERT-scale models, they be-
come inadequate for LLMs (Gu et al., 2023), where
the vast capacity disparities present unprecedented
challenges.

The capacity gap between teacher and student
models remains a fundamental challenge, first
systematically studied through Teacher Assistant
Knowledge Distillation (TAKD) (Mirzadeh et al.,
2020). Though TAKD effectively bridges smaller
model gaps using intermediate networks, it be-
comes impractical for LLMs where the capacity
gap between teacher and assistant often exceeds
several orders of magnitude. This limitation sig-
nificantly impacts the effectiveness of knowledge
transfer in the LLM era.

Recent works have addressed these challenges
with varying success. Pro-KD (Rezagholizadeh
et al., 2022) introduces progressive distillation
along the teacher’s training trajectory but focuses
mainly on BERT-scale models, leaving larger ca-
pacity gaps unexplored. Their method also re-
quires multiple checkpoints, causing significant
storage overhead for LLMs. (Zhang et al., 2023a)
establishes a linear law for capacity gaps, but
tests only models under 3B parameters inheriting
TAKD’s limitations in LLM distillation. Newer
LLM-specific methods using reinforcement learn-
ing, which can better align the outputs of teacher
and student LLMs, continue to face efficiency chal-
lenges (Ko et al.; Zhong et al., 2024).

Existing knowledge distillation methods face
computational overhead and limited effectiveness
for compressed LLMs. Capacity gaps challenge
smaller models in replicating larger ones. Our
BayesKD method bridges the logits distribution
gap, enhancing student performance.

3 Methodology

Motivations and Overall Framework: Our
BayesKD addresses a critical challenge in KD for
LLMs and their sparse models: the pronounced
logits distribution discrepancy between sparse and
dense models. This discrepancy, which intensifies
with model scale, significantly impairs traditional
distillation methods. Our empirical analysis (Ta-
ble. 4 and varying sparsity table in Appendix) re-
veals that single-temperature approaches, effective
for dense model pairs, fail to adequately capture the
complexity of compact LLMs. To overcome these
limitations, we introduce a three-pronged approach.
First, a Logits Dual-Scaling strategy bridges the
teacher-student logits distribution gap while ad-
dressing the task-dependent scaling value sensitiv-
ity. Second, a Knowledge Alignment Module rec-
onciles intermediate layer disparities. Inspired by
prior works (Hou et al., 2020; Sun et al., 2019b), we
focus on aligning the middle and final layers, which
have been shown to capture task-specific knowl-
edge effectively. Finally, a Logits-Aware Bayesian
Distillation Optimization method ensures efficient
hyperparameter tuning. This comprehensive frame-
work specifically targets the unique challenges of
compact LLMs distillation in resource-constrained
environments.

3.1 Logits Dual-Scaling Strategy
The Logits Dual-Scaling strategy adjusts logits
separately for the teacher and student models to
address logits distribution discrepancies and task-
dependent sensitivity in distillation. Scaling values
are dynamically updated based on logits’ standard
deviations during the process, allowing optimal
knowledge transfer between models. The loss func-
tion Ld is defined as:

Ld =
1

N2

N∑

i=1

M∑

j=1

γ ·KL [Pt,i,j∥Qs,i,j ] (1)

Pt,i,j = softmax

(
Ti,j

σt,i

)
,

Qs,i,j = softmax

(
Si,j

σs,i

)
,

(2)

Where Pt,i,j and Qs,i,j are the teacher and student
logits, N and M represent batch size and token
length per sample, and γ is a scaling factor. Ti,j

and Si,j are the logits, while σt,i and σs,i are their
respective dynamic standard deviations. This dy-
namic adjustment ensures optimal knowledge trans-
fer between teacher and student models.
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Figure 1: Schematic overview of our framework, which involves Logits Dual-Scaling, Knowledge Alignment,
and Logits-Aware Bayesian optimization. Our Logits Dual-Scaling scaling and Knowledge Alignment enable
the student to learn complex relationships and key features, while Bayesian optimization efficiently searches for
observed optimal hyperparameters to maximize student performance.

Proof that Logits Dual-Scaling Bridges Teacher-
Student Gap: Let the gap between the teacher
model P and student model Q be:

G(P,Q) = DKL[P ||Q],

= Eu[logP (v|u)− logQ(v|u)], (3)

Next, let us set the standard deviations of the
teacher and student models, σt and σs as scaling
value for teacher and student, respectively, such
that:

tt = σt, (4)

ts = σs, (5)

where T and S are the logits from the teacher and
student models, and tt and ts are the corresponding
scaling value coefficients. The standard deviations
σt and σs of the teacher and student models, and
substituting into the gap formula, we get:

G (P,Q) = Eu

[(
1

σt
− 1

σs

)
T

−
(
log
∑

j

exp

(
Tj

σt

)
− log

∑

k

exp

(
Sk

σs

))]

(6)

From this expression, we can observe two key sce-
narios: Scenario 1 (σt > σs): The overall dis-
crepancy G(P,Q) increases, primarily due to the
dominance of the second term’s positive contribu-
tion. Despite this increase, the teacher model’s
smoother output distribution facilitates the trans-
fer of more complex information, enhancing the
student model’s learning process. Scenario 2

(σs > σt): The overall discrepancy G(P,Q) de-
creases, driven by the second term’s negative con-
tribution. In this case, the teacher model provides
concentrated, key decision information, while the
student model’s smoother distribution effectively
captures essential features, leading to improved
performance. Analyses: The impact of the discrep-
ancy variation on knowledge transfer depends on
the relative standard deviations of the teacher and
student models. When the teacher model’s stan-
dard deviation is greater, the second term in the
discrepancy G(P,Q) contributes more positively,
increasing the overall discrepancy. Despite this, the
smoother distribution of the teacher model provides
richer information, improving the student’s ability
to learn complex relationships. Conversely, when
the student model’s standard deviation is greater,
the negative contribution of the second term be-
comes more significant, decreasing G(P,Q). In
this case, the teacher’s output is more concen-
trated, providing key decision information, while
the student’s smoother distribution better mimics
the teacher’s. This dynamic, data-driven adjust-
ment of scaling values softens the output distribu-
tions during the learning process, further enhancing
knowledge transfer, as shown in Fig. 1.

3.2 Knowledge Alignment Strategy
During the distillation process, we align the vary-
ing intermediate distributions from the student and
teacher models to a uniform size, employing a
fixed-dimension method for consistency. The mo-
tivation behind this approach is to bridge the gap
between the teacher and student models’ distribu-
tions, preventing gradient explosion and ensuring
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Hyperparameter Values
Hard Label Weight 0.1, 1, 10, 20

Soft Label Weight 1e− 8, 1e− 7, 1e− 3, 1, 10, 20

Starting scaling value 1, 2, 3......20

Logits Normalization "none", "Max-Min", "standardize"
Hidden States Normalization "none", "Max-Min", "standardize"

Knowledge Alignment Strategy2
None,
Last_Layer,
Last_Middle Layer

KD Type KL, Logits Dual-Scaling

Table 2: Overview of hyperparameters search space.
KLD is Kullback–Leibler divergence. Knowledge
Alignment Strategy choices represent a range of lay-
ers instead of specific the last layer or the middle layer.

effective knowledge transfer. We define the loss
function Lk as follows:

Lk =
L∑

l=1

βl

N ×M

N∑

i=1

M∑

j=1

∥hs[l, i, j]− ht[l, i, j]∥22 (7)

Ltotal = Lk + Ld (8)

The total loss combines Lk and Ld as shown in
Equation 8. In Equation 7, L, βl, hs, and ht repre-
sent the selected layers, scaling factors, and hidden
states of the student and teacher models. Since their
intermediate layers often differ in distribution, we
apply min-max normalization to align these before
using Equation 7.

L′
i =

xi −min(L)

max(L)−min(L) + ϵ
(9)

xi denotes the distribution value, min(L) and
max(L) are the distribution’s minimum and maxi-
mum, and ϵ is a small constant for numerical sta-
bility. This normalization, applied to intermedi-
ate layers, narrows the distribution gap between
teacher and student models and prevents gradient
explosion.

3.3 Logits-Aware Bayesian Optimization

We utilize Bayesian optimization during the dis-
tillation phase to streamline the hyperparameter
selection process and boost the model performance
in Table. 2. The overview searching process is in
Fig. 1 Bayes Optimization part.
Search Space: The hyperparameter search space
encompasses a range of options, as summarized in
Table. 2. It includes Logits-Aware parameters such
as pruning thresholds and sparse regularization fac-
tors, alongside traditional distillation parameters
like scaling value and layer configurations.

Search Method: We employ a modified Gaussian
Process (GP) as a surrogate model, specifically tai-
lored for logits discrepancy. The GP, denoted as
f ∼ GP (µ,K), uses a mean function µ initialized
to reflect model characteristics and a covariance
function K designed to capture sparse parameter
interactions. This GP is iteratively updated based
on hyperparameter evaluations (X,Y ), refining its
understanding of the model-specific hyperparame-
ter space. To balance exploration and exploitation,
we implement an adaptive sampling strategy, ensur-
ing efficient optimization.

To guide the search for optimal hyperparameter
configurations, we introduce a Logits-Aware Ex-
pected Improvement (LAEI) acquisition function:

LAEI(x∗) =(µ(x∗)− f(x+)− ξ)Φ(Z)

+ σ(x∗)ϕ(Z) + αS(x∗)
(10)

Z =
µ(x∗)− f(x+)− ξ

σ(x)
(11)

Here, µ(x∗) and σ(x∗) represent the predicted
mean and variance, f(x+) is the best observed
value, and ξ is a small parameter for balancing
exploration and exploitation. Φ and ϕ represent
the cumulative and probability density functions of
the standard normal distribution. The novel term
S(x∗) integrates information from the Logits Dual-
Scaling strategy and Knowledge Alignment Mod-
ule, with α serving as an overall balancing factor
for sparse models:

S(x∗) = λ1D(σt, σs) + λ2A(ht, hs) (12)

where D(σt, σs) =
∣∣∣ 1
σt

− 1
σs

∣∣∣ measures logits dis-

crepancy, and A(ht, hs) =
∑L

l=1 ||ht[l]− hs[l]||22
quantifies hidden state alignment across L layers.
Coefficients λ1 and λ2 balance these terms.
Advantages: LAEI offers key advantages for
sparse models by incorporating sparsity-related
information into the hyperparameter search. It
optimizes knowledge transfer through dynamic
scaling value adjustment (D(σt, σs)) and hidden
state alignment, while balancing exploration and
exploitation. This approach enables LAEI to ef-
fectively navigate the complex landscape of com-
pact LLMs, improving distillation performance in
resource-constrained scenarios. A detailed theoret-
ical analysis is provided in Appendix.
Compact LLM distillation guidelines: We sum-
marize some deep insights based on search results
in Fig. 2: Compressed LLM distillation always fa-
vors deep intermediate knowledge, greater scaling
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Model Method OPQA
Hella-
SWAG

Wino-
grande

PIQA ARC_E BoolQ ARC_CQNLI QQP SST-2
Aver-
age

Wiki-
Text2

LLaMA3
70B

Teacher Model 48.60 84.92 81.14 84.49 85.94 85.26 64.33 52.88 65.92 79.70 73.32 2.92

Dense Model 45.00 79.11 73.24 80.74 77.86 81.16 53.16 50.49 57.31 68.23 66.63 10.18
Sparse Model (wo LoRA) 39.00 67.67 69.22 76.61 60.86 65.99 37.88 51.42 62.67 51.83 58.32 20.24
Sparse Model (w LoRA) 39.55 70.85 69.06 76.62 66.55 69.87 39.84 48.68 62.16 64.51 60.77 17.00

Stand KD 38.2 71.79 71.36 75.18 68.76 66.43 40.86 47.76 63.59 60.78 60.47 18.18
BayesKD(Random Search) 37.45 72.37 70.28 76.69 67.17 68.48 42.53 49.29 55.04 62.31 60.16 17.21

LLaMA3
8B

BayesKD (SABO) 41.80 74.32 73.24 78.29 71.13 76.24 45.56 49.86 56.37 67.78 63.46 15.77
Qwen2

72B
Teacher Model 49 85.59 79.16 83.24 80.64 89.54 60.15 73.7 73.24 93.58 76.78 6.65

Dense Model 44.40 78.77 71.9 81.18 74.58 84.89 50.00 59.40 73.28 92.43 71.08 9.32
Sparse Model (wo LoRA) 38.52 67.37 68.11 75.31 58.17 68.64 35.64 61.63 63.68 87.84 62.49 18.55
Sparse Model (w LoRA) 39.06 71.46 69.93 77.02 63.62 72.61 38.52 58.65 70.41 90.02 65.13 15.55

Stand KD 37.73 70.53 68.29 75.57 65.72 69.26 38.47 57.31 73.03 88.19 64.41 16.62
BayesKD(Random Search) 39.28 69.66 70.06 76.78 64.84 76.99 37.99 56.66 74.52 90.18 65.70 15.74

Qwen2
7B

BayesKD (SABO) 41.27 73.98 71.9 78.7 67.97 79.53 42.92 58.5 77.56 92.31 68.46 14.42

Table 3: The main results (Qwen and LLaMA3) from our multi-task testing, with the exception of Wikitext-2,
were derived from the Language Model Evaluation Harness1. For Wikitext-2, the Perplexity (PPL) metric was
employed, whereas accuracy served as the metric for all other tasks. Sparsity ratio is 25%. BayesKD (SABO)
employs Logits-Aware Bayesian Optimization for hyperparameter tuning, while BayesKD (Random Search) uses
random search.This methodological approach ensures a rigorous and comprehensive evaluation of our models’
effectiveness across a diverse array of tasks, adhering to the high standards of academic rigor and professionalism
expected at scholarly conferences.

value sparsity, and smaller loss weights. This is evi-
dent from our exploration of different "KD Layers"
options, including "Middle& Last" and "Max-Min
Normalization", which suggest leveraging inter-
mediate representations from the teacher model’s
deeper layers. Additionally, the wide range of scal-
ing values, reaching up to 16, indicates a preference
for higher scaling value sparsity. Furthermore, KD
Loss Weight with options like potentially small val-
ues implies that compressed LLM distillation may
benefit from using smaller loss weights, potentially
to avoid overriding the student model’s original
capabilities.

4 Experiments

Experimental Setup We extracted 13,000 train-
ing samples and 2,000 validation samples from the
cleaned Alpaca dataset3 for LoRA fine-tuning and
distillation. For evaluation, we selected 11 datasets
across various NLP domains to assess model per-

1https://github.com/EleutherAI/
lm-evaluation-harness

2The “Intermediate Layer Config” options allow flexible
specification or removal of layers between teacher and stu-
dent models. “Last” and “Middle” refer to regions in the
architecture, not specific layer counts.

3https://huggingface.co/datasets/yahma/
alpaca-cleaned

formance comprehensively on a zero-shot basis as
introduced in the Introduction section. We estab-
lished a comprehensive experimental setup using a
diverse range of LLMs. Our student models include
Bloom-7b1 (Workshop et al., 2022), LLaMA-7b-
hf (Touvron et al., 2023), Vicuna-7b-v1.1 (Zheng
et al., 2023), TinyLLaMA-1.1b (Zhang et al., 2024),
LLaMA-3 8B (Dubey et al., 2024), and Qwen-2
7B (Yang et al., 2024). These were paired with
appropriate teacher models: LLaMA-13b for the
first four, LLaMA-3 70B for LLaMA-3 8B, and
Qwen-2 72B for Qwen-2 7B. This setup allows for
a comprehensive evaluation across various model
architectures and sizes. All experiments were con-
ducted on 8 NVIDIA A100 GPUs with a sparsity
ratio of 25% for the student models.

4.1 Results and Analysis

In Table 4, we evaluate BayesKD on Tiny-
LLaMA1.1B, LLaMA 7B, Vicuna 7B, and Bloom
7B models. Across these configurations, BayesKD
consistently outperforms baseline methods. For
instance, with the LLaMA 7B model, BayesKD
achieves an average score of 60.08%, surpassing
Standard KD (55.68%) and Sparse Model with
LoRA (57.48%) by significant margins. Simi-
lar trends are observed for other models, with
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Model Method OPQA
Hella-
SWAG

Wino-
grande

PIQA ARC_E BoolQ ARC_CQNLI QQP SST-2
Aver-
age

Wiki-
Text2

LLaMA
13B

Teacher Model 44.80 79.07 72.77 80.09 74.71 77.98 47.61 50.74 46.37 69.04 64.32 11.58

Dense Model 36.00 59.20 59.12 73.29 55.35 57.83 30.12 48.49 54.28 69.61 54.33 16.53
Sparse Model (wo LoRA) 32.00 50.82 55.72 69.42 46.84 53.67 27.47 50.52 50.33 65.02 50.18 30.29
Sparse Model (w LoRA) 33.00 52.13 57.46 71.22 48.11 53.70 29.69 50.49 47.07 73.05 51.59 27.59

Stand KD 34.40 54.07 57.46 71.21 49.24 54.92 29.18 53.18 55.73 71.56 53.10 22.15
BayesKD(Random Search) 34.12 53.29 57.93 69.15 46.59 63.27 29.69 49.46 38.06 50.92 49.25 25.43

Tiny-
LLaMA
1.1B

BayesKD (SABO) 34.00 54.34 58.25 70.78 49.45 54.19 29.78 53.22 57.36 80.96 54.23 22.00
Dense Model 44.40 76.21 69.85 79.16 72.81 75.11 44.71 51.16 48.00 76.38 63.78 12.62

Sparse Model (wo LoRA) 36.20 62.45 59.43 73.18 51.14 58.69 32.17 53.18 46.14 74.54 54.71 22.54
Sparse Model (w LoRA) 39.40 67.18 62.12 74.65 59.34 57.37 36.86 51.53 48.95 77.40 57.48 19.58

Stand KD 38.60 67.34 62.67 73.88 59.81 62.35 37.97 51.60 46.50 56.08 55.68 20.56
BayesKD(Random Search) 39.20 64.17 63.47 73.23 52.50 67.74 33.45 51.39 57.40 49.29 55.18 27.29

LLaMA
7b

BayesKD (SABO) 44.60 72.01 65.36 78.10 65.81 67.80 39.59 52.08 55.36 60.09 60.08 19.05
Dense Model 43.40 74.64 70.09 78.56 72.01 78.32 43.77 50.60 60.70 54.24 62.63 16.10

Sparse Model (wo LoRA) 34.20 60.18 59.04 72.04 54.46 49.82 33.02 51.38 58.85 72.02 54.50 28.83
Sparse Model (w LoRA) 39.00 65.72 63.77 73.40 59.98 53.00 36.26 50.54 56.44 76.95 57.51 20.95

Stand KD 33.20 54.66 58.64 71.05 49.83 59.41 30.29 58.28 55.11 59.40 52.99 22.73
BayesKD(Random Search) 40.20 68.33 65.51 75.30 61.75 62.22 36.44 54.70 56.57 70.30 59.13 23.35

Vincuna
7b

BayesKD (SABO) 41.20 69.59 65.98 76.39 61.79 56.15 37.96 56.40 60.22 77.18 60.29 20.93
Dense Model 35.80 62.26 64.40 73.56 57.28 62.91 33.45 51.18 41.87 49.08 53.18 26.58

Sparse Model (wo LoRA) 31.60 38.13 56.35 67.79 46.84 61.99 26.71 49.33 38.13 61.01 47.79 190.57
Sparse Model (w LoRA) 31.20 33.95 57.22 65.78 44.49 46.30 25.85 46.29 49.78 51.95 45.28 152.67

Stand KD 29.00 35.01 55.95 65.28 45.41 60.86 25.51 49.50 36.80 50.80 45.41 149.58
BayesKD(Random Search) 31.60 38.12 56.35 67.79 46.84 61.96 26.71 49.33 38.13 61.01 47.99 135.66

Bloom
7b

BayesKD (SABO) 32.20 39.36 55.09 68.55 46.89 61.98 27.65 50.25 39.39 61.35 48.25 124.49

Table 4: The main results (LLaMA1, TinyLLaMA, Vicuna) from our multi-task testing derived from the Language
Model Evaluation Harness. Sparsity ratio is 25%. BayesKD (SABO) employs Logits-Aware Bayesian Optimization
for hyperparameter tuning, while BayesKD (Random Search) uses random sampling.

Type Model Base Pa-
rameters
(B)

Pruned
Parame-
ters (B)

Final
Pruned
Ratio

Teacher LLaMA13B13B - -

Student

Tiny-
LLaMA1.1B

1.1B 0.961B 0.8735

Bloom7b 7.069B 6.282B 0.8887
Vicuna7b 6.738B 5.423B 0.8048
LLaMA7b 6.738B 5.423B 0.8048

Table 5: Overview of model parameter adjustments. All
parameter values are expressed in billions (B).

BayesKD showing particular strength in challeng-
ing tasks such as ARC-challenge and HellaSwag.
Table 3 extends our analysis to the latest models,
LLaMA-3 and Qwen-2. For the LLaMA-3 8B
model, BayesKD achieves an average accuracy of
63.46% across tasks, outperforming Standard KD
(60.47%) and Sparse Model with LoRA (60.77%).
Notably, on complex reasoning tasks like ARC-
Challenge and HellaSwag, BayesKD shows sub-
stantial improvements of 4.7% and 2.53% respec-

tively over Standard KD. The Qwen-2 7B results
further corroborate BayesKD’s effectiveness. Our
method achieves an average accuracy of 68.48%,
significantly surpassing Standard KD (64.41%)
and Sparse Model with LoRA (65.13%). Partic-
ularly impressive are the improvements in tasks
like BoolQ and QQP, where BayesKD outperforms
Standard KD by 10.27% and 4.53% respectively.

Across all model sizes and architectures, we ob-
serve that the performance gap between BayesKD
and baseline methods widens as model size in-
creases in both general NLU benchmarks and
instruct-follow benchmarks 8. The consistent per-
formance improvements validate the generalizabil-
ity and robustness of BayesKD.

4.2 Ablation Study

We conducted an ablation study to evaluate the in-
dividual contributions of Logits Dual-Scaling (DS),
the Knowledge Alignment Strategy (KAS), and
Kullback–Leibler (KL) divergence to the distilla-
tion performance of the TinyLLaMA1.1B model.
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Method OPQA Hella-
SWAG

Wino-
grande

PIQA ARC_E BoolQ ARC_C QNLI QQP SST-2 Average Wiki-
text2

Baseline 32.00 50.82 55.72 69.42 46.84 53.67 27.47 50.52 50.33 65.02 50.18 30.29
+KL 33.20 53.52 58.09 69.53 46.55 54.92 29.03 49.28 45.07 69.27 51.59 25.85

+ KL + KAS 34.40 54.07 57.46 71.22 49.24 53.88 29.18 53.18 55.73 71.56 53.10 22.15
+ KL + DS 33.00 54.11 57.3 70.89 50.00 56.97 30.2 54.55 55.96 74.2 53.72 23.93

+ KL + KAS +
DS

34.00 54.34 58.25 70.78 49.45 54.19 29.78 53.21 57.36 80.96 54.23 22.00

Table 6: Ablation study results in 0.25 sparsity ratio in TinyLLaMA1.1b on various NLP tasks. KL is KL divergence,
KAS is Knowledge Alignment Strategy and DS is Logits Dual-Scaling. All parameters are the same and searched
from Logits-Aware Bayesian Opitmization
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Figure 2: Visualization of search results during Bayesian distillation optimization in LLaMA13B-TinyLLaMA1.1B.
The yellow line illustrates the Logits Dual-Scaling Strategy approach combined with max-min normalization
(Knowledge Alignment Strategy), leading to lower perplexity on WikiText-2 and higher accuracy across tasks.

Method Average Wiki-text2
Naïve Bayesian Search 53.37 24.25

SABO 54.23 22.00

Table 7: Comparison of performance between SABO
and Naïve Bayesian Search in 0.25 sparsity ratio in
TinyLLaMA1.1b on Wiki-text2.

Starting from the full configuration, each strategy
was removed in turn. As shown in Table 6, exclud-
ing DS reduced average accuracy by 1.13% across
10 tasks and increased perplexity on WikiText-2
by 2.29 points. Removing KAS produced simi-
lar effects, with a 1.13% drop in accuracy and a
2.85-point perplexity increase. Eliminating KL
divergence resulted in a 1.41% accuracy decrease
and a 4.44-point perplexity increase, demonstrating
the effectiveness of incorporating KD regulariza-
tion beyond the baseline sparse model. Further-
more, the main results in Table 4 already demon-
strate the superiority of Bayesian search over ran-
dom search, making a separate ablation study for
Bayesian search unnecessary.

These findings confirm the contributions of Log-
its Dual-Scaling, Knowledge Alignment Strategy,
and Bayesian optimization to the model’s overall
performance, revealing their relative importance

Table 8: Instruction-following datasets in sparse model.
GPT-3 Translation Tasks are constructed using datasets
such as WMT14 (French-English), WMT16 (Romanian-
English, German-English), and IWSLT2017 (English-
Arabic). Each task is augmented with instruction
prompts to adapt the dataset for instruction-following
evaluation.

Model Method gpt3_translation_tasks
LLaMA3 70B Teacher Model 54.31

LLaMA3 8B

Dense Model 31.94
Sparse Model (wo LoRA) 19.26
Sparse Model (w LoRA) 22.14

Stand KD 21.88
BayesKD (SABO) 24.59

Qwen2 72B Teacher Model 31.76

Qwen2 7B

Dense Model 12.62
Sparse Model (wo LoRA) 7.62
Sparse Model (w LoRA) 8.75

Stand KD 8.65
BayesKD (SABO) 9.72

during the model training process.

5 Conclusion

In this paper, we propose BayesKD, a novel frame-
work for distilling LLMs onto compact student
models. Our approach introduces three key strate-
gies: 1) a logits dual-scaling mechanism to bridge
the logit distribution gap between teacher and stu-
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dent models across tasks, 2) a knowledge alignment
module using min-max normalization to align in-
termediate layer distributions, and 3) a logit-aware
Bayesian optimization search to efficiently iden-
tify optimal hyperparameters tailored for compact
model distillation.
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7 Limitations

While this work enhances the generalized capa-
bilities of pruned models, it does not specifically
improve capabilities in categories such as inference
and logical analysis, language generation, natural
language understanding, knowledge retrieval, and
integration. These areas present opportunities for
detailed exploration in future research.
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A Detailed Proof of Double Scaling
Values Coefficients

The discrepancy between the teacher model P and
the student model Q is defined as:

G(P,Q) = DKL[P ||Q]

= Eu[logP (v|u)− logQ(v|u)] (13)

In this context, DKL denotes the Kullback-
Leibler divergence, which measures how one proba-
bility distribution diverges from a second, expected
probability distribution. Here, u represents the in-
put data, while v denotes the corresponding output.

Given that T and S represent the logits of the
teacher and student models, respectively, and tt
and ts are the corresponding scaling value coeffi-
cients, we can express the softmax functions for the
teacher and student models. The softmax function
is defined as:
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softmax(zi) =
exp(zi)∑
j exp(zj)

By substituting the logits and scaling value co-
efficients into the definition of the discrepancy, we
have:

G(P,Q) = Eu

[
log softmax

(
T

tt

)
− log softmax

(
S

ts

)]

= Eu

[
T

tt
− log

∑

j

exp

(
Tj

tt

)

−
(

S

ts
− log

∑

k

exp

(
Sk

ts

))]

(14)

Next, let us introduce the standard deviations of
the teacher and student models, σt and σs, respec-
tively. These standard deviations are related to the
scaling value coefficients as follows:

tt = σtt

ts = σst
(15)

where t is a baseline scaling value. Substituting
these expressions into the discrepancy formula, we
get:

G (P,Q) = Eu

[(
1

σt
− 1

σs

)
T

−
(
log
∑

j

exp

(
Tj

σt

)
− log

∑

k

exp

(
Sk

σs

))]

(16)

To further analyze the impact of the standard
deviations on the discrepancy, we consider two
scenarios:

Scenario 1: σt > σs
In this scenario, the standard deviation of the

teacher model is greater than that of the student
model. This implies:

1

σt
<

1

σs

For the first term in the discrepancy formula:
(

1

σt
− 1

σs

)
< 0

Since T is generally positive, it follows that:
(

1

σt
− 1

σs

)
T < 0

This means that the first term contributes neg-
atively to G(P,Q), thereby reducing the discrep-
ancy.

For the second term:

log
∑

j

exp

(
Tj

σt

)
− log

∑

k

exp

(
Sk

σs

)

Since σt > σs, the logits of the teacher model
are less magnified compared to those of the student
model. Therefore, we have:

log
∑

j

exp

(
Tj

σt

)
< log

∑

k

exp

(
Sk

σs

)

This indicates that the second term contributes
positively to G(P,Q). To prove that the second
term’s contribution is larger, we consider the prop-
erties of the log-sum-exp function. The log-sum-
exp function is more sensitive to changes in vari-
ance compared to a linear function. Specifically,
the log-sum-exp function can be approximated by
the maximum logit value when the scaling value is
low, making it highly sensitive to the largest logits.
Using this approximation:

log
∑

j

exp

(
Tj

σt

)
≈ 1

σt
max

j
Tj

log
∑

k

exp

(
Sk

σs

)
≈ 1

σs
max
k

Sk

Thus, the second term becomes:

1

σt
max

j
Tj −
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σs
max
k

Sk

Given 1
σt

< 1
σs

, we have:
∣∣∣∣
1
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− 1
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For the first term:
∣∣∣∣
(

1

σt
− 1

σs

)
T

∣∣∣∣ =
(

1

σs
− 1

σt

)
T

Comparing the two terms:
(

1
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− 1

σt

)
T

(
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Sk −
1

σt
max

j
Tj

)
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Since maxj Tj and maxk Sk are typically much
larger than T , the second term’s contribution is
usually significantly larger than the first term’s con-
tribution.

Summary:
In this scenario, the negative contribution of the

first term is smaller in magnitude, while the positive
contribution of the second term is larger. This leads
to an overall increase in the discrepancy G(P,Q).

Scenario 2: σt < σs
In this scenario, the standard deviation of the

student model is greater than that of the teacher
model. This implies:

1

σt
>

1

σs

For the first term in the discrepancy formula:
(

1

σt
− 1

σs

)
> 0

Since T is generally positive, it follows that:
(

1

σt
− 1

σs

)
T > 0

This means that the first term contributes posi-
tively to G(P,Q), thereby increasing the discrep-
ancy.

For the second term:

log
∑

j

exp

(
Tj

σt

)
− log

∑

k

exp

(
Sk

σs

)

Since σs > σt, the logits of the teacher model
are more magnified compared to those of the stu-
dent model. Therefore, we have:

log
∑

j

exp

(
Tj

σt

)
> log

∑

k

exp

(
Sk

σs

)

This indicates that the second term contributes
negatively to G(P,Q).

Why the Second Term’s Contribution is Larger:
Again, considering the properties of the log-sum-

exp function, we use the same approximation:

log
∑
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)
≈ 1

σt
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log
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Thus, the second term becomes:

1
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Given 1
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, we have:
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For the first term:
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Comparing the two terms:
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j
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1

σs
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k

Sk

)

Since maxj Tj and maxk Sk are typically much
larger than T , the second term’s contribution is
usually significantly larger than the first term’s con-
tribution.

Summary:
In this scenario, the positive contribution of the

first term is smaller in magnitude, while the nega-
tive contribution of the second term is larger. This
leads to an overall decrease in the discrepancy
G(P,Q).

Conclusion
The analysis reveals that the impact of the dis-

crepancy variation on knowledge transfer differs
depending on the relative standard deviations of
the teacher and student models:

- When the standard deviation of the teacher
model (σt) is greater than that of the student model
(σs), the positive contribution of the second term
is more significant. This results in an overall in-
crease in the discrepancy G(P,Q). Although the
discrepancy increases, the teacher model’s output
distribution is smoother and contains more infor-
mation. This helps the student model to learn more
details and complex relationships, thereby improv-
ing its performance.

- Conversely, when the standard deviation of the
student model (σs) is greater than that of the teacher
model (σt), the negative contribution of the second
term is more significant. This results in an overall
decrease in the discrepancy G(P,Q). Although the
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Model Method Average WikiText2
LLaMA 13B Teacher Model 64.32 11.58

LLaMA 7B

Sparse Model 54.71 22.54
Dense Model 63.78 12.62

MiniLLM 55.10 22.15
BayesKD (SABO) 60.08 19.05

Table 9: MiniLLM in sparse model

discrepancy decreases, the teacher model’s output
is more concentrated, providing key decision infor-
mation. The student model’s output distribution is
smoother and more accurately mimics the teacher
model’s output distribution, capturing the main de-
cision features and thus improving its performance.

Therefore, the impact of the discrepancy varia-
tion on knowledge transfer requires a detailed anal-
ysis of the specific probability distributions of the
teacher and student models. Understanding these
dynamics is crucial for optimizing the performance
of the student model in various training scenarios.

B Experimental Details

All the experiments are run on 8 A100 GPUs. The
experiments running time is 55 minutes in 7B mod-
els and 30 minutes in 1.1B model. The memory re-
quires 75GB if we load 13B and 5.4B(compressed)
model in 4 bytes/parameter to train in Batch size 4.
Ablation study with error bar:

Ablation Study Results with Error Bar
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Figure 3: The ablation study results with error bar

P-values: We calculated the variance and mean
based on 6 extra experiments in LLaMA 7B group.
Then, we used independent samples t-test to statis-
tically determine whether BayesKD (SABO) has a
significant advantage in Table 10. The table shows
the P-values of BayesKD (SABO) compared to
other methods and whether it has a significant ad-
vantage.

Based on the P-values table (Table 10), we can
summarize the performance of BayesKD (SABO)
compared to Stand KD, Sparse Model (w LoRA),
and BayesKD (Random Search) as follows:

BayesKD (SABO) vs. Stand KD: BayesKD
(SABO) demonstrates significant advantages over
Stand KD on 8 out of 10 datasets, with the excep-
tions being SST-2 and ARC_C. This indicates that
BayesKD (SABO) generally outperforms Stand
KD in most cases, suggesting its effectiveness as
an improved knowledge distillation method.

BayesKD (SABO) vs. Sparse Model (w
LoRA): BayesKD (SABO) shows significant
advantages over Sparse Model (w LoRA) on
all datasets except SST-2, where Sparse Model
(w LoRA) significantly outperforms BayesKD
(SABO). This suggests that while BayesKD
(SABO) is generally more effective than Sparse
Model (w LoRA), there may be specific cases
where Sparse Model (w LoRA) is more suitable.

BayesKD (SABO) vs. BayesKD (Random
Search) : BayesKD (SABO) significantly outper-
forms BayesKD (Random Search) on 7 out of 10
datasets, with the exceptions being Winogrande,
BoolQ, and QQP, where the differences are not
statistically significant. This demonstrates the su-
periority of the Bayesian search approach over the
random search method in most cases, highlighting
the importance of an efficient search strategy in
sparse knowledge distillation.

Overall, these comparisons provide strong ev-
idence for the effectiveness and advantages of
BayesKD (SABO) as a knowledge distillation
method. However, it is important to note that there
are specific cases where other methods may be
more suitable, such as Stand KD for ARC_C and
Sparse Model (w LoRA) for SST-2. Therefore,
the choice of knowledge distillation method should
take into account the characteristics of the target
dataset and the specific requirements of the appli-
cation.

Table 11 shows the mean and variance of differ-
ent methods on different datasets corresponding to
the P-values table.

BayesKD (SABO) vs. Stand KD in Transla-
tion tasks (Table 12 and Table 13): BayesKD
(SABO) consistently outperforms Stand KD across
all translation tasks for both LLaMA3 and Qwen2
models. For example, in Table 12, BayesKD
(SABO) achieves an average score of 24.25 com-
pared to Stand KD’s 21.63, while in Table 13, it
improves the average score to 13.37, outperforming
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Dataset vs. BayesKD (Random
Search)

vs. Sparse Model (w
LoRA)

vs. Sparse Model (wo
LoRA)

vs. Stand KD

OPQA 5.55e-16 (Significant) 0.0018 (Significant) 1.11e-16 (Significant) 0.0002 (Significant)
Hella-
SWAG

1.07e-08 (Significant) 0.0008 (Significant) 2.14e-10 (Significant) 0.0002 (Significant)

Winogrande 0.0584 (Not Significant) 0.0064 (Significant) 1.23e-06 (Significant) 0.0005 (Significant)
PIQA 3.58e-07 (Significant) 0.0005 (Significant) 4.41e-05 (Significant) 4.61e-05 (Significant)
ARC_E 1.04e-12 (Significant) 0.0042 (Significant) 3.79e-15 (Significant) 0.0002 (Significant)
BoolQ 0.6056 (Not Significant) 1.03e-10 (Significant) 1.39e-08 (Significant) 0.0034 (Significant)
ARC_C 5.50e-07 (Significant) 0.0179 (Significant) 1.15e-07 (Significant) 0.1008 (Not Significant)
QQP 0.5941 (Not Significant) 6.57e-07 (Significant) 6.02e-11 (Significant) 2.90e-09 (Significant)
QNLI 1.36e-06 (Significant) 2.06e-06 (Significant) 0.0207 (Significant) 0.0034 (Significant)
SST-2 6.51e-11 (Significant) 5.17e-12 (Significantly

Lower)
8.78e-10 (Significantly
Lower)

0.1765 (Not Significant)

Table 10: P-values of independent samples t-test comparing the performance of BayesKD (SABO) with other
methods on various datasets in the LLaMA7B model. Values in parentheses indicate whether the difference is
statistically significant at α = 0.05. Significant results are shown in bold.

Dataset Metric BayesKD
(SABO)

Dense
Model

Sparse
Model (w
LoRA)

BayesKD
(Random
Search)

Stand KD Sparse
Model (wo
LoRA)

OPQA Variance 2.089256 11.51863 1.666222 0.096833 1.394181 0.318456
Mean 44.72667 44.48 39.51667 39.31 38.53167 36.02667

Hella-SWAG Variance 9.417667 9.729522 2.284522 2.719881 1.034756 0.539322
Mean 72.62 76.80667 67.07333 64.48167 67.24333 62.51667

Winogrande Variance 2.964481 5.893789 2.681358 1.211381 0.361258 1.394889
Mean 65.69833 70.01333 62.185 63.75167 62.805 59.56667

PIQA Variance 5.300647 1.431247 0.897581 0.2142 0.401414 1.021881
Mean 78.46167 79.40833 74.83833 73.24 74.00167 73.39833

ARC_E Variance 7.640856 13.64682 15.51068 2.113767 1.390933 0.471181
Mean 66.22333 73.01333 59.16833 52.72 59.72 51.28167

BoolQ Variance 1.347033 30.72663 0.929522 6.743989 6.166856 2.347567
Mean 68.04 75.935 57.55667 67.33667 62.61667 58.83

ARC_C Variance 2.630947 10.13075 3.144925 1.903247 1.539881 0.712847
Mean 39.97167 45.45833 37.435 33.62833 38.22833 32.92167

QNLI Variance 0.779525 0.698489 0.009356 0.031822 0.067422 1.713947
Mean 52.235 51.33333 51.54667 51.43667 51.65667 53.45167

QQP Variance 11.05059 1.177981 2.143789 3.280289 0.970514 0.223514
Mean 57.01667 48.18833 48.96667 57.72667 46.66167 46.13833

SST-2 Variance 5.483689 3.024456 17.58463 1.010225 9.477692 12.31193
Mean 60.31333 76.67667 85.685 49.285 57.355 74.49

Table 11: Variance and mean for each dataset across different methods in LLaMA7B group.

gpt3_trans en-fr fr-en de-en en-de en-ro ro-en Avg
Dense Model 31.94 29.93 38.54 41.40 21.76 19.99 38.04 31.66
Sparse Model (wo LoRA) 19.26 7.83 31.72 32.05 7.10 7.07 28.96 19.14
Sparse Model (w LoRA) 22.14 15.26 32.58 32.31 11.16 8.03 29.64 21.59
Stand KD 21.88 17.48 32.23 32.40 11.98 7.00 28.43 21.63
BayesKD (SABO) 24.59 19.54 34.16 35.45 13.92 10.21 31.84 24.25

Table 12: Translation tasks on LLaMA3 8B and LLaMA3 70B models.
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gpt3_translation en-fr fr-en de-en en-de en-ro ro-en Avg
Dense Model 12.62 8.55 18.44 20.92 11.40 8.35 27.86 15.45
Sparse Model (wo LoRA) 7.62 2.24 16.51 16.82 6.68 4.17 20.34 10.24
Sparse Model (w LoRA) 8.75 4.37 17.09 18.24 5.85 4.21 21.54 11.44
Stand KD 8.65 5.00 16.90 17.00 6.28 3.67 20.63 11.16
BayesKD (SABO) 9.72 9.59 17.91 19.59 8.30 5.36 23.12 13.37

Table 13: Translation tasks on Qwen2 7B and Qwen2 72B models.

arc_challenge arc_easy boolq hellaswag openbookqa piqa Avg wikitext
25%-Logits Dual-Scaling 45.56 71.13 76.24 74.32 41.80 78.29 64.56 15.77
25%-Single-Temperature 40.86 68.76 66.43 71.79 38.20 75.18 60.20 18.18
Dense-Logits Dual-Scaling 56.81 80.39 84.00 82.72 46.18 84.19 72.38 8.84
Dense-Single-Temperature 54.35 78.59 82.00 80.67 45.70 82.37 70.61 10.38
Original Dense Model 53.16 77.86 81.16 79.11 45.00 80.74 69.50 10.18

Table 14: Comparison of different sparsity rates and temperature/scaling value strategies on LLaMA3 models.

Stand KD’s 11.16.
BayesKD (SABO) vs. Sparse Model (w LoRA)

in Translation tasks (Table 12 and Table 13):
Similarly, BayesKD (SABO) demonstrates clear
advantages over Sparse Model (w LoRA) on
both LLaMA3 and Qwen2 across all translation
tasks. Specifically, in Table 12, BayesKD (SABO)
achieves 24.25 compared to 21.59 for Sparse
Model (w LoRA), and in Table 13, it achieves
13.37, surpassing the 11.44 scored by Sparse Model
(w LoRA).

Comparison of different sparsity rates and
temperature/scaling value strategies (Table 14):
In general tasks, BayesKD (SABO) with logits
dual-scaling strategies, as shown in Table 14, out-
performs single-temperature configurations. For
example, the logits dual-scaling strategy achieves
an average score of 64.56 for 25% sparsity, com-
pared to 60.20 for the single-temperature approach.
This demonstrates the robustness of the logits dual-
scaling configuration in resource-constrained set-
tings.
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