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Abstract

Transformers have achieved state-of-the-art per-
formance in morphological inflection tasks, yet
their ability to generalize across languages and
morphological rules remains limited. One pos-
sible explanation for this behavior can be the de-
gree to which these models are able to capture
implicit phenomena at the phonological and
subphonemic levels. We introduce a language-
agnostic probing method to investigate phono-
logical feature encoding in transformers trained
directly on phonemes, and perform it across
seven morphologically diverse languages. We
show that phonological features which are lo-
cal, such as final-obstruent devoicing in Turk-
ish, are captured well in phoneme embeddings,
whereas long-distance dependencies like vowel
harmony are better represented in the trans-
former’s encoder. Finally, we discuss how these
findings inform empirical strategies for training
morphological models, particularly regarding
the role of subphonemic feature acquisition.

1 Introduction

The transformer architecture has revolutionized nat-
ural language processing and computational lin-
guistics since its introduction by Vaswani et al.
(2017). While it has achieved state-of-the-art re-
sults across various tasks, much remains to be un-
derstood about its inner workings and representa-
tions. Investigating how transformers acquire and
use linguistic knowledge is crucial for assessing
their ability to generalize beyond shallow pattern
recognition. One such aspect is morphological
knowledge, such as that examined in tasks like
morphological inflection (Cotterell et al., 2017),
where a model predicts a word’s inflected form
given a lemma and morphosyntactic attributes. For
example, for the English lemma “hug” and the mor-
phosyntactic attributes VERB;PAST, the model
should output “hugged”. In many languages, mor-
phology interacts in meaningful ways with phono-
logical attributes, for example through the phe-

nomenon of harmony, raising the question of how
this correspondence is manifested in model repre-
sentations. This question is hard to pursue due to
the general scarcity of multilingual morphological
data, which hinders models’ ability to generalize to
new lemmas and morphosyntactic attributes (Gold-
man et al., 2022; Kodner et al., 2023b) and to adapt
to the diversity of morphological processes (Kod-
ner et al., 2022). In this work, we present a
language-agnostic method for testing phonologi-
cal features and long-context feature agreement in
models trained on a morphological task.1 We do
so by training designated probing classifiers that
predict linguistic properties from a model’s internal
representations (Belinkov, 2022). We show how
a morphological transformer implicitly acquires
phonological knowledge, complementing previous
findings regarding the representations found in neu-
ral phoneme embeddings (Rodd, 1997; Silfverberg
et al., 2021; Muradoglu and Hulden, 2023; Mirea
and Bicknell, 2019; Silfverberg et al., 2018; Ko-
lachina and Magyar, 2019; Steuer et al., 2023) and
the information conveyed by morphological mod-
els (Muradoglu and Hulden, 2023; Kodner et al.,
2023a; Gorman et al., 2019). Unlike previous work,
we demonstrate via explainability methods that
model representations explicitly encode phonolog-
ical features, and quantify how well they are en-
coded across languages and features. We test the
hypothesis that when trained on reliable phonologi-
cal representations, models acquire subphonemic
features such as VOICE or ROUND (Chomsky and
Halle, 1968) that play a role in morphology, and
that this ability depends on a language’s reliance
on such features in encoding inflectional proper-
ties. We find that local phenomena, such as final
consonant devoicing, are captured in the character
embeddings, while long-distance phenomena are
better represented in contextualized embeddings

1https://github.com/MeLeLBGU/
probing-subphonemes

12954

https://github.com/MeLeLBGU/probing-subphonemes
https://github.com/MeLeLBGU/probing-subphonemes


from the transformer encoder. Finally, we argue for
current practices in language transfer of morpho-
logical models based on our results.

2 Probing Phonological Features

Our experiments consist of three stages: training
a phonemic transformer model on a morphologi-
cal task for a language; probing the embeddings
for phonological features; and analyzing the probe
using minimum description length (MDL).

2.1 Phoneme-based Transformer

We use a character-based encoder-decoder trans-
former which achieves state-of-the-art results on
morphological inflection (Wu et al., 2021). This ar-
chitecture is relatively small and employs a feature-
invariant positional encoding for morphosyntactic
tags, making their order irrelevant to the model.
We modify the architecture by weight tying, us-
ing the same embedding table for both the encoder
and decoder during training and evaluation (Press
and Wolf, 2017). We train the transformer on the
SIGMORPHON 2017 shared task dataset (Cot-
terell et al., 2017) which covers multiple languages
with diverse typologies.2 To directly analyze the
representation of phonological features, we tran-
scribe the lemmas from standard orthographic form
to International Phonetic Alphabet (IPA) using
Epitran (Mortensen et al., 2018),3 a rule-based
grapheme-to-phoneme tool.4 We refer to IPA char-
acters as phonemes interchangeably.

We train two versions of the transformer: (i) an
inflection model, trained on the phonemic tran-
scriptions of the morphological inflection task; and
(ii) a lemma copying model, where we replace
each morphosyntactic attribute with COPY and set
the inflected form as identical to the lemma. We
then probe the phoneme embeddings and the en-
coder using a set of probe tasks.

2.2 Probe Tasks

We design two types of probes to evaluate how well
phonological features are embedded by a model.
The phoneme probe assesses the phoneme embed-
dings, while the harmony probe evaluates the en-
coder’s output vectors. Separate probes are trained
for each (phonological feature, language) pair.

2For Hebrew (vocalized), we use the dataset from Kodner
et al. (2022).

3Version 1.25.1.
4For Hebrew (voc), we use a dedicated API (Cohen, 2019).

Figure 1: t-SNE projection of phoneme embeddings
after training on Turkish morphological inflection. Char-
acters from each seed are presented in a distinct color.

Extracting phonological features. We use Pan-
Phon (Mortensen et al., 2016)5 to map each
phoneme to its corresponding phonological fea-
tures, each represented as a ternary value: +, −, or
0 (meaning “irrelevant”), demonstrated in Table 1.

Phoneme probe. For each phonological feature,
we train a probe using the phoneme embeddings as
input and the feature values as labels. However, the
limited number of phonemes per language makes it
insufficient for training a probe and may leave some
feature values out of distribution. To mitigate this,
we augment the dataset by training the transformer
with multiple random seeds, generating a diverse
set of phoneme embeddings. Due to computational
constraints, we additionally apply oversampling
by a factor of three. To see whether embeddings
from different seeds exhibit inherent structure, we
project them into a 2D plane (Figure 1) using t-
SNE (Van der Maaten and Hinton, 2008). The lack
of clustering among identical phonemes suggests
that this data augmentation strategy effectively di-
versifies the embeddings.

Harmony probe. To investigate how well the
transformer encodes long-distance phonological
dependencies, we design a probe that mimics vowel
and consonant harmony rules. We generate nonce
words using the method and code from Muradoglu
and Hulden (2023, §3). The probe’s inputs are the
contextualized phoneme vectors produced from the
encoder for these nonce words, taken from the last
layer of the encoder when passed on nonce words,
with beginning-of-sequence and end-of-sequence
tokens attached. The probe classifies the harmony

5Version 0.21.1.
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syl son cons cont delrel lat nas strid voi sg cg ant cor distr lab hi lo back round tense long

k (phoneme) − − + − − − − 0 − − − − − 0 − + − + − 0 −
köpek (v. harmony) + + − + − − − 0 + − − 0 − 0 − − − − 0 0 −
köpek (c. harmony) − − + − − − − 0 − − − 0 − 0 0 0 − 0 − 0 −

Table 1: Phonology features extracted via Panphon for the probes: a single phoneme and (vowel / consonant)
harmony type for the word köpek (dog in Turkish).

type of each word for both vowel and consonant
harmony: + if all phonemes are + or 0, − if all are
− or 0, and 0 if the word is disharmonic, containing
both + and − values, demonstrated in Table 1.
We train separate probes for vowel and consonant
harmony for each phonological feature, but only
if at least two phonemes in the language exhibit +
and − values each for that feature.

2.3 MDL Probes
Traditional probing methods use metrics like ac-
curacy or F1 score to estimate how well embed-
dings encode linguistic properties. However, this
approach has several limitations. A probe may per-
form well even with randomly assigned labels or
when applied to randomly-initialized representa-
tions. To address this, we adopt an information-
theoretic approach (Voita and Titov, 2020) and re-
port a metric based on the probe’s minimum de-
scription length (MDL) instead. This method ac-
counts for the probe’s complexity, making it more
robust and comparable across different models and
linguistic properties. For each phonological fea-
ture, we compute MDL using the online coding
approach: We segment the probe dataset at sequen-
tial indices t0 < t1 < · · · < tS = n, where n
is the size of the probe’s dataset. A probe θi is
trained on each prefix of the data while measuring
cross-entropy loss on the next segment.6 Summing
these losses yields the total description length of
the feature:

L = t0 log2 K −
S−1∑

i=0

log2 pθi(yti+1:ti+1 |xti+1:ti+1), (1)

where K is the number of classes (in our case, 3).
To normalize across datasets of different sizes,

we compute a compression score by dividing the
uniform coding length by the MDL, providing a
comparable measure of how efficiently phonolog-
ical information is encoded across different lan-
guages with varying phoneme inventories:

6To address class imbalance, we weigh the loss by the
inverse frequency of each feature. The probe’s architecture
follows Voita and Titov (2020) and is implemented as a multi-
layer perceptron with two hidden layers of 100 neurons each.

C =
n log2K

L
. (2)

Analyze a probe using compression score charac-
terizes the strength of regularity in the embeddings
with respect to the labels. While it is a strictly rela-
tive metric, higher values indicate stronger regular-
ity and therefore that the labels are better encoded
in the embeddings.

3 Results

We apply our method to a set of seven languages
selected to provide reasonable diversity with re-
spect to morphophonological phenomena.7 These
languages represent different morphological typolo-
gies: agglutinative / fusional, prefixing / suffixing /
non-concatenative; and exhibit diverse phonolog-
ical rules, such as palatalization and vowel har-
mony. We focus on languages with low ortho-
graphic depth, which allows us to probe phoneme
embeddings in a way comparable to probing char-
acter embeddings in standard orthography.

We first compare the results to a control prob-
ing task where the phonological features (labels)
are randomly shuffled (Hewitt and Liang, 2019).
The results, presented in Figure 2, validate that the
compression score is a good indicator of phono-
logical feature representation in the embeddings,
as all scores remain below 1.0. We next discuss
specific morphophonological phenomena and how
they manifest in the data.

Turkish final-obstruent devoicing. In Turkish,
a word-final [-CONTINUANT] consonant is de-
voiced. Moreover, in accusative case the consonant
becomes voiced, and a [+HIGH, -ROUNDED]
vowel is suffixed, with the BACK value subject to
vowel harmony. For example, kebap (the kebab)
becomes kebabı (ACC the kebab). Our probe shows
that both VOICE and CONTINUANT features have
a relatively good compression score in both probes,
with more prominence compared to other features
in the inflection task.

7Feature inclusion score (Ploeger et al., 2024) of 0.63.
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Figure 2: Compression scores (C) of phoneme embeddings: phonological features are plotted on the y-axis
(abbreviated), and languages are on the x-axis (represented by their ISO 639-3 code). From left to right: inflection
model, lemma copying, and control task.

Hungarian gemination. Nearly every phoneme
in Hungarian has a corresponding [+LONG] vari-
ant of it in the phonetic inventory. There are two
processes that can alter the value of the LONG fea-
ture: gemination, where consonants at the end
of a verb become [+LONG] before a suffix, and
degemination, where [+LONG] consonants be-
come [-LONG] when preceded or followed by
another consonant. Among all languages and fea-
tures in the phoneme probe, the compression score
for LONG in Hungarian is the highest in the inflec-
tion model. We hypothesize that this is due to two
factors: (i) morphological alternations affecting
the gemination process, and (ii) the high entropy
of LONG, which effectively separates Hungarian’s
phonetic inventory, allowing the probe to achieve a
relatively high compression score.

Long-context feature agreement. Vowel har-
mony is a rule requiring all vowels in a word to
share a specific phonological feature. For example,
Turkish and Hungarian exhibit vowel harmony for
ROUND and BACK. Since this rule influences both
phonotactics and morphology, we expect these fea-
tures to have high compression scores. While this
is not observed in the phoneme probe (Figure 2),
the harmony probe results (Figure 3) show high
compression scores for context-dependent embed-
dings in the inflection model. Results for probing
consonant harmony are provided in Appendix A.

4 Discussion

We showed that a morphological transformer can
effectively acquire phonological features. The qual-
ity of their representation, as reflected by the com-
pression score (C), varies across features and lan-
guages, and is influenced by how informative they

Figure 3: Compression scores (C) for probing vowel
harmony. Inflection model on the left, lemma copying
on the right.

are per language. Features prominent in phono-
tactics or in short-context environments are repre-
sented better in the phoneme embeddings, while
those more present across long contexts are repre-
sented better through the encoder. Higher scores
are generally observed for features that are more
central to morphology and phonology, though these
results may also be influenced by the quality of the
datasets or grapheme-to-phoneme tools. Surpris-
ingly, in the phoneme probe, the lemma copying
model achieves on par with or even better than the
inflection model. We believe this might be due to
dataset noise, as explored in prior work (Wiemer-
slage et al., 2023). Future work could investigate
the variance across languages and models.

Our findings complement work that showed
that adding subphonemic features hardly improves
model performance, suggesting these are already
present in their representations (Wiemerslage et al.,
2018; Guriel et al., 2023). Our lemma copying
findings reinforce the common practice of pre-
training models for this task before turning to in-
flection (Yang et al., 2022; Liu and Hulden, 2022;
Anastasopoulos and Neubig, 2019), which has been
argued to succeed due to inducing “copy bias”
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and to coaxing attention modules towards mono-
tonicity (Aharoni and Goldberg, 2017). Finally,
our results imply that the demonstrated success of
transfer learning in morphological inflection, even
between typologically unrelated languages (Mc-
Carthy et al., 2019; Elsner, 2021), might stem from
the model’s ability to acquire subphonemic fea-
tures, which are approximately universal (Mielke,
2008) and therefore transferable.

5 Conclusion

In this paper we analyze phonological transformers
trained on a type-level morphological task, finding
that these models acquire subphonemic features.
We show that the degree to which these features are
embedded in the transformer’s representation de-
pends on the feature’s importance for the morphol-
ogy and phonology of the language it is trained for;
and on the locality of the feature’s importance: in
the encoder, long-context features are more salient.

We use these results to explain empirical training
methods used in the morphology inflection domain.
We hope this analysis will add an analytical tool in
explaining morphological models using phonology
acquisition.

Limitations

Our suggested probing method that outputs a
compression score, although language-agnostic,
might have underlying biases in its components:
the transliteration tools, the character-based trans-
former and the morphology inflection datasets’
quality. While discussing common strategies in
morphology inflection, we omitted a popular data
augmentation called data hallucination (Anasta-
sopoulos and Neubig, 2019), where new training
examples are synthesized from existing training
examples by identifying a (possibly discontinuous)
word stem and replacing this with a random char-
acter sequence. Since this augmentation might
indulge phonologically invalid words, we decided
not to incorporate it to our method and results.
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A Consonant Harmony Results

Figure 4 displays the results of the consonant har-
mony probe.

12960

https://doi.org/10.7275/R5NZ85VD
https://doi.org/10.7275/R5NZ85VD
https://doi.org/10.18653/v1/2023.sigtyp-1.10
https://doi.org/10.18653/v1/2023.sigtyp-1.10
https://doi.org/10.18653/v1/2023.sigtyp-1.10
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/W18-5818
https://doi.org/10.18653/v1/W18-5818
https://doi.org/10.18653/v1/2023.findings-acl.207
https://doi.org/10.18653/v1/2023.findings-acl.207
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2021.eacl-main.163
https://doi.org/10.18653/v1/2022.sigmorphon-1.23
https://doi.org/10.18653/v1/2022.sigmorphon-1.23


Figure 4: Compression scores for probing consonant harmony. Inflection model on the left, lemma copying on the
right.
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