GeAR: Graph-enhanced Agent for Retrieval-augmented Generation

Zhili Shen, Chenxin Diao, Pavlos Vougiouklis, Pascual Merita, Shriram Piramanayagam, Enting Chen, Damien Graux, Andre Melo, Ruofei Lai, Zeren Jiang, Zhongyang Li, Ye Qi, Yang Ren, Dandan Tu, Jeff Z. Pan


Abstract
Retrieval-augmented Generation (RAG) relies on effective retrieval capabilities, yet traditional sparse and dense retrievers inherently struggle with multi-hop retrieval scenarios. In this paper, we introduce G\small{E}\normalsize{AR}, a system that advances RAG performance through two key innovations: (i) an efficient graph expansion mechanism that augments any conventional base retriever, such as BM25, and (ii) an agent framework that incorporates the resulting graph-based retrieval into a multi-step retrieval framework. Our evaluation demonstrates G\small{E}\normalsize{AR}‘s superior retrieval capabilities across three multi-hop question answering datasets. Notably, our system achieves state-of-the-art results with improvements exceeding 10% on the challenging MuSiQue dataset, while consuming fewer tokens and requiring fewer iterations than existing multi-step retrieval systems. The project page is available at https://gear-rag.github.io.
Anthology ID:
2025.findings-acl.624
Volume:
Findings of the Association for Computational Linguistics: ACL 2025
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venues:
Findings | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
12049–12072
Language:
URL:
https://preview.aclanthology.org/ingestion-acl-25/2025.findings-acl.624/
DOI:
Bibkey:
Cite (ACL):
Zhili Shen, Chenxin Diao, Pavlos Vougiouklis, Pascual Merita, Shriram Piramanayagam, Enting Chen, Damien Graux, Andre Melo, Ruofei Lai, Zeren Jiang, Zhongyang Li, Ye Qi, Yang Ren, Dandan Tu, and Jeff Z. Pan. 2025. GeAR: Graph-enhanced Agent for Retrieval-augmented Generation. In Findings of the Association for Computational Linguistics: ACL 2025, pages 12049–12072, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
GeAR: Graph-enhanced Agent for Retrieval-augmented Generation (Shen et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-acl-25/2025.findings-acl.624.pdf