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Abstract

The rapid development of Large Vision-
Language Models (LVLMs) often comes with
widespread hallucination issues, making cost-
effective and comprehensive assessments in-
creasingly vital. Current approaches mainly
rely on costly annotations and are not com-
prehensive – in terms of evaluating all as-
pects, such as relations, attributes, and depen-
dencies between aspects. Therefore, we in-
troduce the FIHA (autonomous Fine-graIned
Hallucination evAluation in LVLMs), which
could access LVLMs hallucination in an LLM-
free and annotation-free way and model the
dependency between different types of hallu-
cinations. FIHA can generate Q&A pairs on
any image dataset at minimal cost, enabling
hallucination assessment from both image and
caption. Based on this approach, we introduce
a benchmark called FIHA-v1, which consists
of diverse questions on various images from
three datasets. Furthermore, we use the David-
son Scene Graph (DSG) to organize the struc-
ture among Q&A pairs, in which we can in-
crease the reliability of the evaluation. We
evaluate representative models using FIHA-v1,
highlighting their limitations and challenges.
We released our code and data at https://
github.com/confidentzzzs/FIHA.

1 Introduction

Large Vision-Language Models (LVLMs) such as
MiniGPT-4 (Zhu et al., 2023) and LLaVA (Liu
et al., 2023c), which extend Large Language Mod-
els (LLMs) by incorporating visual encoders, such
as CLIP (Radford et al., 2021), have shown promi-
nent capabilities in visual understanding and gen-
eration (Zhang et al., 2024). However, LVLMs
suffer from the issue of hallucination, which can
lead to misinterpretation or erroneous assertions of
the visual inputs, thus hindering the performance
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of models in multi-modal tasks (Huang et al., 2023;
Jing et al., 2024; Zhang et al., 2025). Specifically,
the models may describe objects that do not exist
in the image or incorrect object attributes and rela-
tions between objects. Generating such unreliable
content will greatly reduce the model’s credibility.
Therefore, it is crucial to establish a benchmark for
evaluating the hallucination level of LVLMs.

Previous studies (Li et al., 2023d; Wang et al.,
2023b,a), as shown in Table 1, primarily employ a
Question Generation (QG) module to create a set
of validation questions and expected answers (i.e.,
Q&A pairs) for hallucination evaluation. These
generated questions are then used to evaluate hallu-
cinations in LVLMs. Despite the compelling suc-
cess of the existing work, they still face two main
challenges: (1) The existing work overlooks the
dependency between different kinds of questions.
For example, if the answer to “Is there a bike?” is
no, dependent questions like “Is the bike yellow?”
should be skipped, detailed explanations can be
found in the Appendix C. (2) Additionally, most
prior work heavily relies on human annotations
(Wang et al., 2023a) or LLMs (Li et al., 2023c) to
generate Q&A pairs used in hallucination evalua-
tion, which can be costly or labor-intensive.

To mitigate these limitations, we propose Fine-
grained Hallucination Evaluation (FIHA), an au-
tomatic evaluation framework for assessing fine-
grained and diverse hallucinations in large-scale
vision-language models. The framework accepts
either images or captions as input and generates
Q&A pairs by extracting objects, attributes, and en-
tity relations. It then formulates diverse questions
(e.g., “what”, “who”, “which”, etc.) that allow
for free-form responses. By integrating BLIP-2
(Li et al., 2023b) for caption generation, Fast R-
CNN (Girshick, 2015) for feature extraction, and a
question-generation template, our pipeline enables
fully automatic Q&A generation without relying
on LLMs or manual annotations.
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Table 1: Comparison with other benchmarks. Dis. denotes Discriminative and Gen. denotes Generative.

Evaluation Methods
Discriminative Hallucination Task Type

Dependency LLM Free Annotation Free
Object Attribute Relation Dis. Gen.

POPE (Li et al., 2023d) ✓ × × ✓ × × ✓ ✓
NOPE (Lovenia et al., 2023) ✓ × × ✓ × × × ✓
CIEM (Hu et al., 2023) ✓ ✓ × ✓ × × × ✓
Bingo (Cui et al., 2023a) × × × × ✓ × ✓ ×
AMBER (Wang et al., 2023a) ✓ ✓ ✓ ✓ ✓ × ✓ ×
HallusionBench (Liu et al., 2023a) × × × × ✓ × ✓ ×
MHaluBench (Chen et al., 2024) ✓ ✓ × × ✓ × × ×
Hal-Eavl (Jiang et al., 2024a) ✓ ✓ ✓ ✓ ✓ × × ✓
FIHA (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We organize Q&A pairs using the Davidson
Scene Graph (DSG) (Cho et al., 2023). The DSG
ensures leaf node responses depend on root node
answers, reducing errors and improving reliabil-
ity. Our Q&A pairs include negative, narrative,
and interrogative questions, allowing a progressive,
comprehensive evaluation of image understanding.

We make the following key contributions
through this work:

• To the best of our knowledge, FIHA is the first au-
tomated hallucination evaluation framework that
is LLM-free and annotation-free. This approach
not only scales efficiently but also minimizes la-
bor and associated costs.

• Based on FIHA, we generate a DSG-based fine-
grained evaluation benchmark FIHA-v1 that in-
cludes Q&A pairs evaluating various types of
hallucinations and the semantic dependency rela-
tion organized by DSG.

• We evaluate and analyze several mainstream
open-source and close-source LVLMs with
FIHA-v1, providing valuable insights into their
performance.

2 Methodology

In this section, we introduce the overall pipeline of
FIHA as illustrated in Figure 1. In summary, our
pipeline offers two approaches for Q&A generation.
The first is based on images: given an image I , we
extract the necessary entities, including features
such as objects, object attributes, and relations. Us-
ing a rule-based method, we then generate the Q&A
pairs. The second approach is based on captions.
If an image does not already have a caption, we
can use BLIP-2 (Li et al., 2023b) to generate cap-
tions. Alternatively, if the dataset includes original
captions, we can use them directly as input, pass

them through the feature extraction process, and
generate the corresponding Q&A pairs.

2.1 Fine-grained Information Extraction

2.1.1 Information Acquisition from the
Caption

Q&A generation based on caption includes caption
generation (optional if original datasets include
captions) and extract information (object existence,
object attributes and object relations) and using
these information to generate Q&A pairs.

Caption Generation. Image captions can depict
an image in detail, demonstrating fine-grained vi-
sual information, such as objects, attributes and
relations. Inspired by the findings of previous re-
search (Li et al., 2023d), which indicate that smaller
vision-language models tend to produce more con-
cise responses with fewer hallucinations compared
to mainstream LVLMs. As such, we select BLIP-2
to generate a caption for the image. This step al-
lows us to generate highly credible captions based
on the image.

Fine-grained Information Extraction. In this pro-
cess, we take either the generated captions (if the
ground-truth caption is not available) or the ground-
truth captions, depending on the user’s needs, as
input and extract information such as object exis-
tence, object attributes, and relations from the cap-
tions. For extracting objects and attributes in the
caption, we use SpaCy’s (Honnibal and Montani,
2017) part-of-speech tagging feature to identify ob-
jects and their corresponding attributes, such as
numerals, adjectives, and verbs. As a result, we ob-
tain all the ground truth objects and their attributes
as: GC

O,A = {o1 : A1, o2 : A2, . . . , on : An},
where n is the number of objects. oi is the i-
th object and Ai is all attributes for the i-th ob-
ject. Relations from the captions are extracted
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Figure 1: Overview of FIHA framework. FIHA extracts entities, attributes, and relations from images and captions
respectively, and generates comprehensive and diverse questions to thoroughly detect hallucinations. In the Figure,
we can see that no large language model (LLM) (Achiam et al., 2023) or additional manual annotations are used.

using the Stanford CoreNLP library1, which pro-
vides a powerful suite of NLP tools for perform-
ing various linguistic analyses on text, making
it an ideal choice for relation extraction. From
this process, we obtain all the relations: GC

R =
{R1(o

1
R1

, o2R1
), . . . , Rm((o1Rm

, o2Rm
))}, where m

is the number of relations. Ri is the i-th relation
for the objects o2Ri

and o2Ri
.

2.1.2 Information Acquisition from the Image

As the caption may lose some information in the
image, our second approach to extract informa-
tion is directly from images, which provides richer
and more detailed information than captions alone.
For object and attribute extraction, we use Ground-
ing DINO (Liu et al., 2023d), a well-established
and widely used object detection method based
on Transformer architecture. Grounding DINO
has been a pioneering approach in the field of ob-
ject detection due to its ability to quickly iden-
tify objects within an image while simultaneously
predicting their attributes. This method allows
us to retrieve the ground truth objects along with
their corresponding attributes such as color, size,

1https://stanfordnlp.github.io/
CoreNLP/.

and shape, forming a set of objects and attributes:
GI

O,A = {o1 : A1, o2 : A2, . . . , on : An}, where
n represents the number of objects detected. In
addition to identifying objects and their attributes,
it is crucial to understand how these objects inter-
act or relate within the scene. For this purpose,
we employ RelTR (Cong et al., 2022), a cutting-
edge method designed to generate sparse scene
graphs by decoding visual appearances and learn-
ing both subject and object queries from the image
data. RelTR enables us to extract meaningful re-
lationships between the detected objects, such as
spatial relations (e.g., one object being behind or
near another) and actions (e.g., wearing or holding),
resulting in a set of ground truth relations: GI

R =
{R1(o

1
R1

, o2R1
), . . . , Rm((o1Rm

, o2Rm
))}, where m

denotes the number of relationships extracted from
the image. By combining both object detection
and relational extraction, this approach provides
a comprehensive understanding of the visual con-
tent, which is essential for generating accurate and
meaningful Q&A pairs.

2.2 Question Answer Pair Generation

Next, we generate corresponding Q&A pairs for the
extracted image and text information, respectively.

12016

https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/


Figure 2: Example of extracted information.

After reorganizing them through DSG, they can be
directly input into the model to detect the level of
hallucination.

We use two kinds of questions for hallucina-
tion evaluation. The first type is Yes-No questions,
which check object existence, such as “Is there any
{objk}?" and object relations like “Is there a {obj1}
near the {objk}?". These questions help determine
whether specific objects and their relationships are
present within an image. Additionally, Yes-No
questions assess attributes by asking about features
like color, size, or location.

The second type is Wh-Questions, which add
diversity to the evaluation by incorporating inter-
rogative words such as “what”, “who", “which”,
“where”, and “how many”. These questions elicit
more detailed, free-form responses, typically no
longer than three words. For example, “What
color is the {objk}?" or “Which object is near the
{objk}?" help assess the finer details about objects
and their relationships. Unlike traditional halluci-
nation evaluations that primarily rely on Yes-No
questions, our approach includes both types to pro-
vide a more comprehensive assessment.

We introduce Negative Questions for both Yes-
No and Wh-Questions. These questions are cre-
ated by replacing real objects, attributes (e.g., color,
size), and relations in the original Q&A pairs with
non-existent ones. For example, "Is there a car
here?" becomes "Is there a plane here?" using a ran-
domly selected object from a pre-constructed set.
To ensure accurate evaluation, we avoid including
objects present in the current image in the candidate
set. These questions are answered with negative
pronouns like "none," "nobody," or "nowhere."

2.3 Davidson Scene Graph

To model the dependency between objects, attri-
butions, and relations accurately and improve the
reliability of hallucination evaluation, we introduce

Table 2: The number of questions generated by FIHA
from various datasets.

Source From Image From Caption

MSCOCO 25,699 13,007
Foggy 7,232 2,801

Visual Genome 1,566 476

the Davidsonian Scene Graph (DSG) (Cho et al.,
2023) mechanism. The DSG schematic diagram
can refer to Figures 1 and 8. The DSG can be un-
derstood as a post-processing step for the Q&A
pairs. After obtaining all the Q&A pairs, we orga-
nize them into multiple tree-like structures, where
each Q&A pair serves as a node. According to
the structure of the tree-like structures, each node
is either a root node or a leaf node. Specifically,
the entire process is divided into three steps. In
step 1, we set the question about the existence of
a certain object as the root node. In step 2, we
set all questions related to the object of the root
node, such as those about its attributes and rela-
tions, as corresponding leaf nodes. Finally, in step
3, determine whether the root node question is an-
swered correctly; if not, there is no need to judge
the questions at the leaf nodes, and we directly de-
termine that all questions on the tree are answered
incorrectly. For instance, after step 1 and step 2,
we obtain a list of questions such as LQ = {Q1 :
Independent,Q2 : Depends on Q1}. Before de-
termining if the answer to Q2 is correct, we first
assess Q1, which concerns the accuracy related to
the root node. If the question about the existence
of an object, which is at the root node, is answered
incorrectly, we consider that all other related ques-
tions must be hallucinatory.

3 Experiments

3.1 Setup

Datasets. We construct a hallucination evaluation
benchmark FIHA-v1 based on three datasets: the
MSCOCO (Lin et al., 2014), the Foggy (Cordts
et al., 2016) and Visual Genome (Krishna et al.,
2017). MSCOCO is a large image dataset by
Microsoft with over 330,000 images. More than
200,000 are annotated across 80 object categories.
Foggy is a synthetic fog dataset with 1,500 images,
each in three fog levels (no fog, medium fog, dense
fog). Visual Genome has 108,077 images with
some overlap with MSCOCO. For our benchmark,
we only use the test sets of these datasets to avoid
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Table 3: Evaluation results of LVLMs on questions generated from images and captions using FIHA. The upper part
is from the MSCOCO dataset and the bottom part is from the Foggy dataset. F1 (Gen) is the BERTScore value
calculated from the standard answers and model outputs for all Wh-Questions. For more details, please refer to the
explanation of Metrics in Section 3.1.

Model
Question Generated from Image Question Generated from Caption

Acc. P. R. F1 F1 (Gen) Acc. P. R. F1 F1 (Gen)

MSCOCO
mPLUG-Owl 42.1 70.2 61.4 43.7 15.2 31.4 61.6 55.5 31.2 11.4
MiniGPT-4 23.5 27.5 22.2 22.1 21.6 15.9 25.7 28.8 14.2 18.4
MultiModal-GPT 59.1 46.4 47.1 46.6 16.1 23.8 39.6 45.7 22.1 10.8
LLaVA-1.5-7B 77.8 77.0 65.9 67.7 21.4 50.7 64.9 67.5 50.5 13.7
LLaVA-1.5-13B 78.9 80.9 66.4 68.3 20.9 47.6 64.2 65.5 48.5 13.8
InstructBLIP 84.7 83.3 78.6 80.4 21.8 65.7 69.5 77.4 64.2 14.1
GPT-4V 87.2 81.4 86.3 85.5 25.2 70.3 71.5 75.8 69.3 22.7

Foggy
mPLUG-Owl 64.8 60.2 51.1 42.7 18.6 29.5 58.9 51.6 25.6 29.3
MiniGPT-4 30.1 30.2 27.6 28.1 9.4 23.4 34.4 37.8 23.0 11.6
MultiModal-GPT 50.2 48.7 46.1 45.8 17.6 28.1 43.9 47.9 25.4 24.5
LLaVA-1.5-7B 67.7 68.4 56.2 52.9 19.7 29.1 50.0 49.2 25.8 27.5
LLaVA-1.5-13B 68.1 71.5 56.1 52.3 18.8 28.9 49.2 49.8 25.5 27.7
InstructBLIP 70.9 75.6 60.2 58.8 20.3 32.8 58.3 53.2 30.5 29.2
GPT-4V 76.3 70.1 64.6 66.0 16.2 33.7 53.3 51.7 32.1 21.7

Visual Genome
mPLUG-Owl 41.8 68.9 60.9 43.3 16.4 44.6 71.7 51.8 33.8 24.1
MiniGPT-4 22.9 26.8 22.0 21.8 22.3 15.9 25.7 28.8 14.2 16.8
MultiModal-GPT 58.8 46.1 46.9 46.3 17.2 65.3 65.2 62.2 61.7 21.7
LLaVA-1.5-7B 77.7 77.2 61.1 67.9 20.6 56.4 73.8 62.0 52.6 20.1
LLaVA-1.5-13B 79.0 81.2 66.7 68.6 20.9 74.3 79.6 68.8 69.2 20.2
InstructBLIP 84.5 83.7 79.0 80.7 22.4 67.7 78.4 71.9 66.7 26.8
GPT-4V 87.0 81.2 86.0 85.3 23.7 84.2 78.9 84.1 82.2 26.0

overlap with training data used by LVLMs.
Metrics. We use Accuracy (Acc.), Precision (P.),

Recall (R.), and F1 Score (F1) as evaluation metrics
for Yes-No questions. For Wh-Questions, we use
the F1 (Gen) from BERTScore (Zhang et al., 2020)
for evaluation.

Models. We select seven mainstream LVLMs
for evaluation: mPLUG-Owl (Ye et al., 2023),
MiniGPT-4 (Zhu et al., 2023), MultiModal-GPT
(Gong et al., 2023), LLaVA-1.5-7B (Liu et al.,
2023c), LLaVA-1.5-13B (Liu et al., 2023c), In-
structBLIP (Dai et al., 2023), and GPT-4V (Ope-
nAI, 2024).

3.2 Data Processing and Analysis

We randomly selected 500 images from the
MSCOCO dataset, 150 images from the Foggy,
and 50 from the Visual Genome dataset. Using the
process described in Section 2, we generate tens of
thousands of Q&A pairs. The detailed data statis-
tics of our FIHA-v1 benchmark can be found in
Table 2.

Figure 3 illustrates the distribution of question
types generated from images and captions. The pro-
portion of questions related to objects, attributes,
and relations is relatively balanced, reflecting the
rationality of the method design. It is noteworthy
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Attribute
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Object

Attribute

(a) From caption 

(b) From image 

Figure 3: Distribution of two types of question, i.e., Yes-
No and Wh-questions.

that the abundance of the question category reflects
FIHA’s effective capability in generating tasks of
the generation type, thereby enabling a more effec-
tive assessment of hallucinations.

3.3 Experimental Results

3.3.1 Overall Results on Datasets Generated
by FIHA

We show the hallucination comparison of the seven
mainstream LVLMs on our FIHA-v1 in Table 3.
From this Table, we have several observations. 1)
It’s worth highlighting that GPT-4V excels in both
image and caption Q&A pairs, achieving the best
performance among the evaluated models. 2) The
second-best performer is InstructBLIP, which sig-
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Table 4: The fine-grained assessment of LVLMs evaluates object, attribute, and relation accuracy using Q&A pairs
generated from captions in the MSCOCO and Foggy Cityscapes datasets.

Model
Object Attribute Relation

Acc. P. R. F1 Acc. P. R. F1 Acc. P. R. F1

MSCOCO
mPLUG-Owl 57.3 75.7 47.3 48.0 20.6 55.7 53.5 20.4 22.7 56.5 55.8 22.7
MiniGPT-4 66.2 59.5 62.6 59.5 9.6 12.8 9.2 9.4 4.7 12.1 11.4 4.9
MultiModal-GPT 51.6 54.1 51.5 42.5 16.0 39.2 42.8 15.8 12.1 30.8 39.6 11.8
LLaVA-1.5-7B 79.2 82.4 77.5 78.4 27.9 55.6 56.7 27.8 47.9 59.1 69.7 44.7
LLaVA-1.5-13B 70.8 80.6 70.2 68.3 34.3 56.4 59.7 33.7 42.1 58.3 66.6 48.1
InstructBLIP 84.6 87.7 81.4 84.2 61.0 62.2 76.2 55.6 57.5 61.0 75.7 52.1
GPT-4V 90.8 87.7 89.8 88.6 83.6 77.7 85.2 79.8 66.2 61.2 73.2 58.3

Foggy
mPLUG-Owl 52.9 32.3 50.0 39.2 15.7 54.8 52.1 15.3 11.8 34.6 46.9 11.1
MiniGPT-4 62.1 60.6 58.4 57.8 9.6 25.1 14.6 9.3 8.5 23.2 26.5 8.5
MultiModal-GPT 52.9 59.7 52.6 42.1 12.6 33.9 38.6 12.5 11.5 33.3 39.4 11.4
LLaVA-1.5-7B 54.0 63.3 54.0 44.4 11.5 33.2 46.0 10.8 15.4 47.8 48.9 15.1
LLaVA-1.5-13B 54.2 62.8 54.2 44.6 11.3 31.4 46.3 10.6 14.9 47.0 48.6 14.6
InstructBLIP 54.2 65.2 53.9 44.2 20.7 55.1 54.6 20.6 15.9 48.5 49.2 15.6
GPT-4V 61.8 69.6 59.2 54.5 11.1 37.0 33.1 11.0 20.4 50.5 50.4 20.3

nificantly outperforms other models except GPT-
4V across most metrics. 3) Additionally, we have
observed that model parameters are also signifi-
cant factors affecting performance. For instance,
LLaVA-1.5-13B provides a more comprehensive
improvement over the LLaVA-1.5-7B.

In addition, we also show the performance of
7 mainstream LVLMs on FIHA-v1 based on the
Visual Genome dataset. The results show a similar
trend as compared to the performance in MSCOCO
datasets. Specifically, the GPT-4V performs best
and MiniGPT-4 performs the worst. LLaVA-1.5-
13B performs better than LLaVA-1.5-7B, which
also indicates that the model parameter size influ-
ences the performance.

3.3.2 Fine-Grained Results
Furthermore, we evaluate the model’s performance
from more dimensions (i.e., the object existence,
attribute, and relation) with FIHA. We show the
fine-grained evaluation results in Table 4.

Object Hallucination From the results for the
object, we can observe that even after introducing
more negative samples, the Accuracy and Preci-
sion of the models remain high, indicating that
most models have a strong capability to determine
whether an object exists or not. In comparison, the
Recall is somewhat lower, indicating that the model
still has a tendency to lean towards affirmative re-
sponses.

Attribute Hallucination From the results for the
attribute, tt is evident that this part of the hallucina-

tion is much more difficult to identify. Compared
to the object itself, its color, quantity, size, and so
on are indeed more challenging to judge. Even the
best-performing GPT-4V has an F1 score of less
than 80 on regular data. Moreover, the performance
of the vast majority of models plummets on special
datasets, indicating that the robustness of existing
LVLMs needs to be enhanced.

Relation Hallucination From the results for the
relation, this part is the most challenging, with
the F1 score of GPT-4V on regular data not even
reaching 60%. The potential reason is that Q&A
pairs of the relation types involved more than one
object, which makes it challenging.

4 Analysis

In this section, we further evaluate the effective-
ness of our benchmark FIHA-v1 by four research
questions.

4.1 How Reliable is FIHA?
To evaluate the benchmark’s reliability, we man-
ually check the accuracy of Q&A pairs in FIHA-
v1 generated by the pipeline, verifying if the an-
swers match the questions. In the human evaluation
process, we employ annotators manually evaluate
whether the answer is right in each image, question,
and answer pair. Whether it is a Yes-No question or
a Wh-Question, it will be marked as True or False,
that is, whether the answer is right for the ques-
tion. The final accuracy is calculated as (num_true
/ (num_true + num_false)). Table 5 shows that
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Table 5: The results of human evaluation (accuracy) of
Q&A pairs generated from different datasets.

Source From Image From Caption

MSCOCO 98.2 96.0
No Foggy 98.1 96.1

Medium Foggy 97.6 94.5
Dense Foggy 96.3 94.1

Q&A pairs from image captions are 96% accu-
rate on MSCOCO samples. The MSCOCO-based
pipeline using Grounding DINO achieves 98.2%
accuracy, with 1.8% errors, such as missing details
or misidentifying colors. Overall, FIHA shows
high reliability in generating datasets for evalu-
ating hallucinations in LVLMs, with near-perfect
accuracy in caption-based datasets.

We also test on complex images using the Foggy
dataset (Cordts et al., 2016), which test evaluates
noise’s effect on the framework’s accuracy. Exam-
ples are in Appendix B.

As shown in Table 5, under dense fog, the ac-
curacy for Q&A pairs generation from images is
96.3%, while for Q&A pairs generation from cap-
tions, it is 94.1%. For medium fog, the accuracies
are 97.6% and 94.5%, respectively. Under no fog,
the accuracies are 98.1% and 94.1%, similar to
MSCOCO results.

The results show that as fog increases, the accu-
racy of FIHA’s Q&A pairs decreases, highlighting
the challenge of blurry images.

4.2 What is the Impact of Introducing DSG?
To improve hallucination assessment, we propose
the DSG mechanism, which models dependen-
cies between hallucination types. Table 6 shows
that stronger models like GPT-4V and LLaVA-1.5-
13B exhibit smaller performance drops (6.0% and
2.7%), indicating their robustness to dependency-
based evaluations. In contrast, weaker models such
as MultiModal-GPT and mPLUG-Owl show sub-
stantial declines (21.3% and 29.6%), reflecting fre-
quent root-level errors that propagate to leaf-level
questions, which these models might otherwise an-
swer correctly under standard evaluation.

The results reveal that most hallucination errors
occur at fundamental levels, such as object recogni-
tion, with models like LLaVA-1.5-13B maintaining
high accuracy due to fewer cascading errors. Preci-
sion drops more than recall across models, suggest-
ing that DSG effectively uncovers false positives.
For example, MiniGPT-4’s precision decreased by
11.0%, highlighting previously unnoticed errors.

Table 6: The performance decrease of various LVLMs
after introducing DSG.

Model Acc.↓ P.↓ R.↓ F1↓ F1 (Gen)↓
mPLUG-Owl 29.6 22.1 14.0 28.7 14.2
MiniGPT-4 62.6 51.8 62.1 61.2 42.3
MultiModal-GPT 21.3 27.6 21.9 24.3 12.9
LLaVA-1.5-7B 4.2 11.7 4.5 4.8 5.7
LLaVA-1.5-13B 2.7 8.1 3.3 3.6 5.1
InstructBLIP 5.7 9.6 5.7 5.7 6.9
GPT-4V 6.0 9.9 5.4 8.4 3.9

While InstructBLIP shows a significant F1 drop
(from 9.6% to 5.7%), GPT-4V remains relatively
stable (9.9% to 8.4%), suggesting stronger contex-
tual reasoning. These results demonstrate that DSG
provides a rigorous evaluation, exposing model
weaknesses that standard assessments may miss.

4.3 How and Why LLM is Free?
FIHA has a big benefit: it doesn’t need extra big
language models like GPT-4. This is shown when
we make questions from true information. We do
this with Python code, and you can find more de-
tails in Section 2.2 and Appendix A.

We don’t use big language models to help make
questions because they cost a lot. For example, if
someone wants to make questions for 500 pictures,
they would need about 36,900 questions (like we
saw with MS COCO). This would cost almost $400
in API fees, which is very expensive.

4.4 Is the Information Extracted from Images
More Comprehensive?

As shown in Figure 1, we extract information from
both the image and the caption to construct Q&A
pairs. Typically, the image itself contains more
abundant information. In this section, we will ver-
ify whether the information extracted from the im-
age is more comprehensive and diverse than that
extracted from the caption. We have separately
counted the number of six different types of Q&A
pairs from image and caption, mainly focusing on
the three directions of object, attribute, and rela-
tion. As shown in Figure 4, it is evident that the
information extracted from the image surpasses the
information extracted from the caption.

4.5 Why are Performance on our Benchmark
Lower Than Others?

In the experiment, we observe that our test results
are lower than others, e.g., POPE (Li et al., 2023d)
and HaELM (Wang et al., 2023b), indicating that
FIHA can detect more difficult and distinct issues.
We analyze that there are mainly three reasons:
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across different types of hallucination from image and
caption.

firstly, we added a large number of misleading neg-
ative samples, and since the model tends to give
affirmative answers (Section 3.3.1), this increases
the difficulty of evaluation. Secondly, the role of
DSG directly impacts the results and improves the
reliability of the evaluation method. Finally, the
comprehensiveness of FIHA is more challenging
than methods that focus primarily on generating
coarse-grained object-level questions.

4.6 Will Using Fixed Templates Limit the
Diversity and Types of Questions?

According to the description of LVLM hallucina-
tions in the existing work (Bai et al., 2024), the
types of questions usually limited, even if the ques-
tions are generated by LLMs. We compared the
method (Chen et al., 2024; Jiang et al., 2024b) of
using LLMs to generate questions and found that
the diversity of questions generated by the LLM-
based method is similar to our method.

4.7 Why Are the Metrics Lower on the Foggy
Dataset Compared to MSCOCO?

There are mainly two reasons: 1. The Foggy
dataset is a collection of images captured in foggy
weather conditions, which inherently falls under
the category of complex scenes (such as nighttime,
underwater, rainy conditions, etc.). Due to reduced
visibility in foggy environments, many objects in
the images become blurred, increasing the diffi-
culty for models to accurately recognize them. 2.
The training set of MSCOCO is commonly used
for training various LVLMs, while datasets of the
Foggy type are rarely used for training. There-
fore, we can see Foggy as a out-of-distribution test
setting. This results in the various LVLMs being
unfamiliar with the Foggy style.

5 Related Work

In this section, we mainly discuss existing Large
Vision-Language Models (LVLMs) and the halluci-
nation problems that exist in LVLMs.

Large Vision-Language Model With the suc-
cess of pretraining in LLMs (Touvron et al., 2023)
and VFMs (Awais et al., 2023), many researchers
(Alayrac et al., 2022; Li et al., 2023a) extended
LLMs to understand real-world images through
LVLMs, benefiting from in-context and few-shot
learning. This led to a rise in visual instruction-
adapted LVLMs (Liu et al., 2023c; Zhu et al., 2023;
Dai et al., 2023; Gong et al., 2023), which show
strong generalization across VL tasks. Most use
GPT-4 to generate multimodal instruction datasets
and multi-stage pretraining to align visual data
with LLMs. For example, Liu et al. (Liu et al.,
2023c) aligned LLaMA (Touvron et al., 2023) with
a visual encoder output, while Zhu et al. (Zhu
et al., 2023) fine-tuned Vicuna (Peng et al., 2023)
for cross-modal alignment. Similarly, Multimodal
GPT (Gong et al., 2023) and InstructBLIP (Dai
et al., 2023) used VL datasets, with the former us-
ing BLIP2 (Li et al., 2023b) and the latter starting
from Flamingo (Alayrac et al., 2022).

Despite these advances, LVLMs still struggle
with hallucinations in textual output, limiting their
effectiveness in vision-language tasks (Rohrbach
et al., 2018).

Hallucination in LVLMs Recent studies have
focused on hallucination in LVLMs. Some works,
summarized in Table 1, address hallucination de-
tection and evaluation (Li et al., 2023d; Wang et al.,
2023b,a; Jing et al., 2023), while others propose
mitigation methods (Liu et al., 2023b; Zhou et al.,
2023; Yin et al., 2023; Jing and Du, 2024; Jing
et al., 2025). For instance, Bingo (Cui et al., 2023b)
evaluates GPT-4V’s hallucinations with bias and in-
terference, and HallusionBench (Guan et al., 2024)
diagnoses entangled language hallucinations and
visual illusions. AutoHallusion (Wu et al., 2024)
generates benchmarks by manipulating images to
challenge language priors, and Hal-Eval (Jiang
et al., 2024b) categorizes hallucinations into ob-
jects, attributes, relations, and events.

Despite progress, fine-grained detection is less
explored. Li et al. (Li et al., 2023d) introduced
POPE to evaluate object-level hallucinations, show-
ing LVLMs’ susceptibility. Wang et al. (Wang
et al., 2023b) proposed HaELM, creating a hallu-
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cination dataset and fine-tuning LLaMA for detec-
tion. These methods focus on object-level issues
or require training. To address limitations, Wang
et al. (Wang et al., 2023a) developed AMBER, a
benchmark for generative and discriminative tasks
involving object, attribute, and relation hallucina-
tions, though it depends on human annotations.

Existing methods mostly primarily use LLMs
to extract key information from image captions,
such as objects, colors, positions, etc. Based on
the extracted keywords and different prompts, the
LLM then generates corresponding questions. For
each generated question, the LLM also provides
the corresponding answer. It can be seen that ev-
ery step relies entirely on the LLM and manually
designed prompts. In contrast, our method does
not rely on LLMs for any step, from key informa-
tion extraction to question and answer generation.
When generating questions, it fills in pre-defined,
well-structured templates, ensuring both accuracy
and controllable question types. Therefore, our
method is effeicent and not costly.

6 Conclusion

In recent years, large vision-language models have
developed quickly, but hallucinations remain a se-
rious concern. Current hallucination evaluation
methods face problems like high costs, limited
scope, and lack of generalization. Thus, we intro-
duce FIHA, a multi-dimensional detection method
that requires no LLMs and no annotations. FIHA
can automatically create high-quality Q&A pairs
for any image dataset. We conducted a thorough
analysis of the performance of mainstream LVLMs,
identified the issues, and proposed potential meth-
ods for improvement. In the future, we will delve
deeper into methods for alleviating hallucinations.

Liminations

FIHA has comprehensive features and maintains
a high overall quality. Despite the limitations dis-
cussed in the previous analysis section, there are ad-
ditional constraints in some aspects. The generated
Q&A primarily focuses on the existence, attributes,
and relations of main objects in the images, while
lacking in Q&A for surrounding and minor objects.
This is due to the FRCNN’s lower confidence in
detecting small and less obvious objects.
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A Code Example for Generating QA
Pairs Based on Extracted Information

1 if relation.endswith(tuple([’ing’, ’ed’
])):

2 question = f"Is the {subject} {
relation} the {object} in the
image?"

3 elif relation.endswith(tuple([’over’, ’
under’, ’above’, ’near’, ’behind’, ’
on’, ’at’])):

4 if obj_is_living(object):
5 question = f"Who is {relation}

the {object} in the image?"
6 else:
7 question = f"What is {relation}

the {subject} in the image?"

B Example of foggy Cityscapes Images
datasets

Figure 5: no foggy

Figure 6: medium foggy

Figure 7: dense foggy

C Expalnation for DSG

Depending on the answers, some questions in the
hallucination benchmark become invalid and thus

should not be asked to the LVLM to evaluate hal-
lucination. As shown in Figure 8, if the answer
to “are there any flowers here?” is no, dependent
questions like “are the flowers white?” should be
skipped – the LVLM may often say “the flower
doesn’t exist, but it is white”.
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Figure 8: The diagram on the right is a schematic illustration of the impact on the results after the introduction of
DSG.
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