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Abstract

Recent advances in language modeling demon-
strate the need for high-quality domain-specific
training data, especially for tasks that re-
quire specialized knowledge. General-purpose
models, while versatile, often lack the depth
needed for expert-level tasks because of lim-
ited domain-specific information. Domain
adaptation training can enhance these models,
but it demands substantial, high-quality data.
To address this, we propose ORBIT, a cost-
efficient methodology for curating massive,
high-quality domain-specific datasets from
noisy web sources, tailored for training spe-
cialist large language models. Using astron-
omy as a primary case study, we refined the
1.3T-token FineWeb-Edu dataset into a high-
quality, 10B-token subset focused on astron-
omy. Fine-tuning LLAMA-3-8B on a 1B-
token astronomy subset improved performance
on the MMLU astronomy benchmark from
69% to 76% and achieved top results on As-
troBench, an astronomy-specific benchmark.
Moreover, our model (Orbit-LLaMA) outper-
formed LLAMA-3-8B-BASE, with GPT-4o
evaluations preferring it in 73% of cases across
1000 astronomy-specific questions. Addition-
ally, we validated ORBIT’s generalizability by
applying it to law and medicine, achieving a
significant improvement of data quality com-
pared to an unfiltered baseline. We open-source
the ORBIT methodology, including the curated
datasets, the codebase, and the resulting model
at https://github.com/ModeEric/ORBIT-Llama.

1 Introduction

The rapid advancement of large language mod-
els (LLMs) has transformed natural language pro-
cessing (NLP) and artificial intelligence (AI), with
general-purpose models like GPT-4 (Hurst et al.,
2024) and LLaMA (Dubey et al., 2024) demon-
strating versatility across tasks such as knowledge
retrieval, open-domain question answering, and

linguistic applications. However, these models of-
ten struggle in specialized domains, such as as-
tronomy, where deep, nuanced understanding and
up-to-date factual accuracy are crucial (Singhal
et al., 2023). This performance gap arises because
general-purpose LLMs must balance performance
across a wide range of tasks, diluting domain-
specific knowledge (Li et al., 2024; Yang et al.,
2024b).

To address this limitation, domain-specialized
LLMs can allocate their capacity toward master-
ing specific domains, offering greater depth and
accuracy. However, building these models is chal-
lenging due to the need for high-quality, domain-
specific datasets. Conventional approaches, such as
using academic sources like arXiv papers (Nguyen
et al.; Pan et al., 2024), tend to focus on highly
technical content, neglecting the breadth and di-
versity needed for effective model generalization.
Alternatively, web-sourced datasets offer greater di-
versity but are often noisy, containing irrelevant or
low-quality content. Traditional filtering methods,
such as keyword-based or rule-based approaches,
frequently fail to balance coverage and quality, po-
tentially excluding relevant data while admitting
suboptimal material.

In this work, we propose ORBIT, a novel, scal-
able data curation framework for creating high-
quality, domain-specific datasets. ORBIT com-
bines embedding-based similarity matching with
a BERT-based regression model to filter large-
scale web datasets efficiently. By focusing on
both semantic relevance and educational value,
this methodology ensures that the curated datasets
are both diverse and tailored to specific domains.
Using astronomy as the primary case study, we
curated a 10-billion-token dataset derived from
FineWeb-Edu (Penedo et al., 2024), incorporating
a broader range of content compared to prior ap-
proaches like AstroLLaMA (Nguyen et al.), which
rely solely on arXiv abstracts. The inclusion of
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web-sourced educational content alongside aca-
demic texts enables ORBIT to balance depth and
diversity, capturing a more comprehensive under-
standing of domain-specific knowledge.

To demonstrate the generalizability of ORBIT,
we also applied it to law and medicine, achieving
significant quality improvements in these domains.
GPT-4o evaluations rated the curated datasets at an
average educational value of 3.05 and 2.9 on a scale
of 0-5 per document, respectively, compared to an
unfiltered baseline of approximately 0.4. These
results highlight ORBIT’s ability to extract domain-
relevant, high-quality data across diverse fields.

Fine-tuning a LLAMA-3-8B model on a ran-
domly sampled 1B-token astronomy subset of
the ORBIT-curated dataset results in substantial
improvements on astronomy-specific tasks. Our
model (Orbit-LLaMA) achieves a 7-point accu-
racy gain over the base LLaMA-3-8B model (from
69.08% to 76.3%) on the MMLU astronomy bench-
mark and outperforms AstroLLaMA (66.45%) by
a significant margin. Furthermore, ORBIT-trained
models surpass state-of-the-art performance on var-
ious astronomy baselines, receiving higher ratings
from both GPT-4o evaluations and domain experts
in the vast majority of cases. These results under-
score the value of ORBIT’s methodology in pro-
ducing specialized datasets that enhance both the
depth and breadth of domain-specific knowledge
in LLMs.

The key contributions of this paper are:

• We introduce ORBIT, a generalizable, scal-
able framework for filtering noisy web data
into high-quality, domain-specific datasets, ad-
dressing challenges of scalability, noise, and
coverage balance.

• We demonstrate ORBIT’s generalizability by
applying it to multiple domains, including as-
tronomy, law, and medicine, achieving signifi-
cant quality improvements in each field with
minimal computational overhead.

• We present a specialized astronomy dataset
curated using ORBIT, comprising 10 billion
tokens that combine academic rigor with web-
scale diversity, advancing prior work limited
to arXiv-based sources.

• We train a state-of-the-art astronomy-
specific language model (which we call Or-
bit), fine-tuned on a subset of the ORBIT-

curated dataset, achieving significant perfor-
mance gains on astronomy-related bench-
marks and surpassing existing models, includ-
ing AstroLLaMA, in expert evaluations.

By presenting ORBIT and its application to as-
tronomy, as well as its successful extension to law
and medicine, we provide a generalizable frame-
work for developing targeted, domain-specific AI
tools. This methodology has the potential to ac-
celerate scientific research, education, and practi-
cal applications across a wide range of specialized
fields.

2 Related Work

2.1 Data Curation for Language Models
Recent research has demonstrated the paramount
role of high-quality data in the development of
large language models. For instance, the techni-
cal reports of models like LLama-3 (Grattafiori
et al.) and Qwen-2 (Yang et al., 2024a) emphasize
extensive data curation methodologies for general-
purpose language models. These efforts have led
to significant performance gains, even when model
architectures and parameter sizes remain largely
unchanged (e.g., the transition from LLama-2 to
LLama-3).

Several efforts have focused on automated data
curation techniques. Chen et al. (2023) proposed
a method to automatically filter and clean web-
crawled data to build high-quality training cor-
pora, while Gururangan et al. (2020) developed
a data selection method for identifying domain-
relevant examples within large datasets. Further-
more, Kreutzer et al. (2022) demonstrated that
smaller, carefully curated datasets often outperform
larger but noisier datasets.

However, these methods often face limitations
when applied to highly specialized domains. Many
automated filtering techniques rely on general qual-
ity metrics or term whitelisting, which can inad-
vertently include irrelevant or low-quality content
while excluding high-quality data that does not fit
predefined patterns. For instance, filtering by spe-
cific terms or phrases, such as LaTeX commands,
may be effective in domains like mathematics but
fails in more diverse fields like astronomy where
specialized exact terms do not exist or are more
varied. Additionally, many datasets rely on scraped
web data, which presents risks related to copyright
issues, noise, and incomplete data extraction from
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APIs, further limiting the potential for domain-
specific curation.

2.2 Domain-Specific Language Models
Advances in natural language processing have led
to the rise of domain-specific language models that
are fine-tuned on specialized corpora. These mod-
els are designed to perform well within particu-
lar domains, outperforming general-purpose mod-
els on domain-specific tasks (Beltagy et al., 2019).
However, each of these approaches has notable
limitations.

For example, Azerbayev et al. (2024) introduced
LLEMMA, an open-source language model for
mathematics that achieves state-of-the-art results
on the MATH benchmark. LLEMMA filters data
based on whether it contains LaTeX syntax, a tech-
nique well-suited to mathematics but restrictive
when applied to other fields, such as astronomy or
biology, where such syntactic markers do not exist.
This method risks excluding valuable content that
lacks LaTeX or including low-quality data simply
because it contains LaTeX markup.

Similarly, Singhal et al. (2023) developed Med-
PaLM 2, a medical domain model that achieved
85.4% accuracy on US Medical Licensing Exami-
nation (USMLE) questions. However, its approach
to fine-tuning is relatively limited, relying primar-
ily on instruction fine-tuning without deep post-
training adjustments specific to medical literature,
limiting its adaptability for more niche medical
tasks.

Other domain-specific models face similar lim-
itations in data sourcing. Yang et al. (2023) intro-
duced FinGPT, which demonstrates strong perfor-
mance on financial tasks, but it heavily relies on
domain-specific data sources like SEC filings and
NYSE transaction reports. These data sources are
highly specific to the financial domain and do not
generalize well to other fields, limiting the flexibil-
ity of such models.

Nguyen et al. introduced AstroLLaMA, a 7-
billion-parameter model fine-tuned on the abstracts
of 300,000 astronomy papers from arXiv. Further-
more, Ting et al. (2024) builds upon this work with
larger and more modern models. While these works
show strong performance in generating scientifi-
cally relevant text completions, limiting the dataset
to only arXiv papers (and in this case, only to cer-
tain sections such as the Abstract and Introduction)
restricts the breadth and depth of the information
available for fine-tuning. The homogeneous dis-

Algorithm 1 Orbit Domain-Specific Dataset Cura-
tion Pipeline

Input: Corpus of documents, astronomy-related
terms, similarity threshold τ , educational value
threshold η
Output: Filtered astronomy-specific dataset
Initialize astronomy vector A by averaging em-
beddings of astronomy-related terms
Stage 1: Embedding-Based Threshold Filter-
ing
for each document D in the corpus do

Compute document vector B by aggregating
embeddings of tokens in D
Calculate similarity: Similarity(D) = A·B

|A|∗|B|

if Similarity(D) > τ then
Retain document D

end if
end for
Stage 2: BERT-Based Regressor Evaluation
for each retained document D do

Compute educational value score EV (D) us-
ing BERT-based regressor
if EV (D) > η then

Retain document D
end if

end for
Return filtered dataset

tribution of similarly formatted research abstracts
leads to a lack of data diversity that reduces the
model’s capacity to generalize across broader ap-
plications within the domain.

These models highlight the importance of high-
quality, domain-specific datasets for effective
model performance but also demonstrate the chal-
lenges in collecting and curating sufficiently di-
verse and representative datasets.

3 Dataset Curation Methodology

3.1 Choice of Corpus
For this study, we selected the FineWeb-Edu

dataset (Penedo et al., 2024) as our primary corpus.
FineWeb-Edu is a specialized subset of FineWeb,
which is a large-scale, high-quality dataset derived
from CommonCrawl web data, specifically de-
signed for pretraining large language models. The
FineWeb-Edu dataset uses the Open Data Com-
mons License Attribution family. FineWeb-Edu
focuses on “educational content” based on prompt
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engineering strategies and contains approximately
1.3 trillion tokens, curated by filtering out content
with lower educational value. This subset allowed
us to begin with a high-quality dataset that is more
focused and manageable for the specific tasks re-
quired in astronomy. Figure 1 illustrates the com-
prehensive filtering pipeline from FineWeb-Edu to
ORBIT (our method), highlighting the quality and
size at each step with examples of what has been
eliminated.

3.2 Methodology for Domain-Specific Dataset
Curation

Our research presents a novel approach to curating
a high-quality, domain-specific dataset for astro-
nomical language models. This methodology com-
bines advanced natural language processing tech-
niques with rigorous quality assurance measures to
produce a dataset that balances complex reasoning
tasks with factual content in the field of astronomy.
Our approach is designed for cost-effectiveness,
using a combination of broad initial filtering and
more thorough assessments at later stages to opti-
mize the dataset’s quality and relevance. Our full
filtering method is shown in Algorithm 1.

3.2.1 Stage 1: Initial Domain-Specific
Filtering

We developed a lexicon of 101 single-word
astronomy-related terms, encompassing concepts
from astrophysics, cosmology, and space explo-
ration. To efficiently process large volumes of text,
we implemented a static-embedding-based match-
ing technique utilizing GloVe word embeddings
(Pennington et al., 2014). A representative astron-
omy aggregated embedding vector A was com-
puted by averaging the embeddings of all terms.
For each document in FineWeb-Edu, we calculated
a document vector and computed its cosine simi-
larity with A. Documents exceeding a similarity
threshold of τ = 0.2 were retained for further anal-
ysis. This threshold was empirically determined to
balance dataset size and quality. After this stage,
approximately 20B tokens of the corpus remained.

3.2.2 Stage 2: Educational Value Assessment
After the initial filtering, we applied a more thor-
ough evaluation to refine the dataset further, focus-
ing on its educational merit. Without this second
phase, we would be left with a number of low-
qualtiy documents, as shown in Figure 3. Furthre-
more, if only Stage 2 was applied, the computa-

tional cost would increase significantly. For ex-
ample, if Stage 1 keeps 1

100 of the total data, the
number of NVIDIA A100 GPU hours needed for
stage 2 would decrease by 100x. See Table 1 for
more information.

We developed a BERT-based regressor model
(Devlin et al., 2019), using Huggingface’s
HUGGINGFACEFW/FINEWEB-EDU-CLASSIFIER

model, trained to evaluate the educational value of
astronomy-related text on a scale of 0 to 5.

The training dataset for this model was meticu-
lously curated through a multi-step process:

1. Random sampling of 50,000 documents from
the embedding-filtered corpus to ensure topic
diversity.

2. Automated evaluation of each sampled doc-
ument using GPT-4o model (OpenAI et al.,
2024), which was prompted to assess the edu-
cational value on a 6-point scale (0-5).

3. Collection of both quantitative scores and
qualitative justifications for each evaluation,
used for prompt engineering.

The language model was instructed to consider
factors such as depth of astronomical content, clar-
ity of explanations, relevance to a general audi-
ence, and the presence of advanced concepts. Our
prompt, inspired by Yuan et al. (2024) (see Ap-
pendix), emphasized educational value specific to
the domain of astronomy. See Figure 2 for a vi-
sual of our Stage 2 pipeline. We kept any value
above or equal to our threshold η = 3, resulting
in approximately 10 billion tokens of high-quality,
astronomy-relevant content.

3.2.3 Cross-Domain Validation: Law and
Medicine

To assess the generalizability of ORBIT, we ex-
tended the dataset curation pipeline to two addi-
tional domains: law and medicine. Using the
same methodology applied to astronomy, we devel-
oped domain-specific lexicons for these fields. For
law, the lexicon included terms such as “litigation,”
“precedent,” and “contract,” while for medicine, it
featured terms like “pathology,” “oncology,” and
“metastasis.” The complete lists of terms for each
domain are provided in the Appendix.

Stage 1 filtering, based on embedding-based sim-
ilarity, was adapted to these domains by computing
aggregated embedding vectors from their respec-
tive lexicons. For each document in FineWeb-Edu,
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Figure 1: Comprehensive Filtering Pipeline from FineWeb-Edu to ORBIT. The pipeline emphasizes the quality
and size of the dataset. The orange includes common filtering methods formalized in Wenzek et al. (2020). The
yellow summarizes large-scale semantic filters from Raffel et al. (2023). The green includes the additional semantic
filters and the BERT-based classifier used to filter for educational relevance in FineWeb-Edu. The blue outlines our
contributions: GloVe-based embedding thresholding and a BERT classifier for educational relevance specific to
astronomy. See subsections 3.2 and 3.2.2 for details on our contributions.

Table 1: Comparison of Processing Time and Cost for Dataset Filtering. Stage 1 filtering retains 1% of documents
(and thus tokens), drastically reducing the effective dataset size for Stage 2. Stage 2 alone processes the full dataset.
The combined approach significantly lowers the time and cost of Stage 2. Pricing estimates are based on current
market rates and hardware usage. Furthermore, both stages are fully parallelizable, meaning additional hardware
can cause linear decrease in time for an approximately constant price.

Scenario Processing Unit Total Time Total Cost Quality

Stage 1 Only Intel Core i9 (16 cores) 177 hours $44 Medium
Stage 2 Only A100 PCIe GPU (1 unit) 12,000 hours $16,200 Highest
Stage 1 + Stage 2 Intel Core i9 + A100 PCIe GPU 297 hours $206 Highest

Figure 2: Full Stage 2 pipeline visualized.

the cosine similarity between its embedding vec-
tor and the domain-specific aggregated vector was
calculated. Documents exceeding the similarity
threshold of 0.2 were retained for further analysis.

4 Experiments

To validate the effectiveness of the ORBIT method-
ology, we conducted a series of experiments focus-
ing on the quality of the curated dataset, the impact
of fine-tuning on model performance, and the in-
fluence of different thresholding values within the
pipeline. These experiments aim to assess how
ORBIT’s two-stage filtering approach improves
dataset relevance and educational value while bal-
ancing dataset size and computational cost. Addi-
tionally, we evaluate the performance of models
fine-tuned on ORBIT-curated datasets with varying

Figure 3: Distribution of educational value scores (rang-
ing from 0 to 5) assigned by the BERT-based regressor
model to a sample of 1000 astronomy-related docu-
ments. This visualization demonstrates the validity of
the classifier by showing alignment with expected dis-
tributions based on held-out test sets and expert evalua-
tions.

similarity and educational value thresholds, exam-
ining their impact on downstream tasks. The results
provide insights into the trade-offs between dataset
size, quality, and curation efficiency, while demon-
strating the effectiveness of ORBIT for training
astronomy-specialized language models. Below,
we outline the experimental setup, datasets, and
evaluation metrics used to address these questions.
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4.1 Experimental Setup
For our experiments, we utilized the Delta GPU
cluster at the National Center for Supercomput-
ing Applications, equipped with 8 NVIDIA A100
GPUs, each with 40GB of memory. The model,
named Orbit-LLaMA, was derived from Meta’s
LLaMA-3-8B (Dubey et al., 2024), an 8-billion-
parameter language model optimized for large-
scale training. We used the Punkt tokenizer from
NLTK for sentence segmentation during prepro-
cessing. LLaMA-3 operates under the LLaMA 3
Community License Agreement. See the Appendix
for more training details.

4.2 Effect of Thresholding, Embedding
Methods, and Keyword Search

To explore the effectiveness of various filtering
strategies, we tested the impact of:

1. Different threshold values in embedding simi-
larity filters.

2. Multiple embedding methods, including fast-
Text, 100-dimensional, and 300-dimensional
embeddings.

3. Keyword filtering approaches compared to un-
filtered datasets.

This analysis assessed how these methods bal-
ance dataset quality and coverage. The perfor-
mance of each filtering strategy was measured
based on average scores obtained from downstream
tasks, as shown in Figure 4. Error bars indicate the
standard error of the mean (SEM), highlighting
variability. The results underscore how keyword fil-
ters and embedding-based thresholds can improve
dataset curation by focusing on the most relevant
content.

The results demonstrate that:

• Higher threshold values generally reduce
dataset size while maintaining or improving
average scores.

• Embedding methods showed slightly varying
efficacy.

• Keyword filtering, while simpler, achieved
competitive performance by focusing on
domain-specific terminology.

• No filtering resulted in the largest datasets but
the lowest scores.

Figure 4: Average Score vs Percent Kept, comparing
different filtering methods: embedding thresholds (fast-
Text, 100d, 300d), keyword filtering, and no filtering.
The x-axis is log-scaled for clarity.

4.3 Cross-Domain Validation: Law and
Medicine

To evaluate ORBIT’s generalizability, we applied
the dataset curation pipeline to two additional do-
mains: law and medicine. Stage 1 filtering was
adapted to these domains by constructing domain-
specific lexicons, following the methodology de-
scribed in Section 3.2. For law, the lexicon included
terms such as “litigation,” “precedent,” and “con-
tract,” while for medicine, it featured terms like
“pathology,” “oncology,” and “metastasis” (see the
GitHub for full term lists).

Embedding-based similarity filtering retained ap-
proximately 1.0% of the initial corpus for law and
1.0% for medicine, similar to the retention rate
observed for astronomy. The average educational
value scores, evaluated using GPT-4o, showed sig-
nificant improvements over the unfiltered baseline
(0.3), with 2.9 for medicine and 3.05 for law.

These scores align closely with the results ob-
tained for astronomy, indicating that Stage 1 fil-
tering alone is sufficient to extract high-quality,
domain-specific content across diverse fields.

4.4 Benchmarks and Baselines
We used multiple-choice perplexity prediction to
select answers and conducted qualitative pair-
wise comparisons rated by expert astronomers
and GPT-4 for accuracy, clarity, and reasoning.
Baseline models were AstroLLaMA-3-8B (Pan
et al., 2024), the prior state-of-the-art in astron-
omy language modeling, and Meta-LLaMA-3-8B,
a general-purpose model.
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4.4.1 Quantitative Evaluation
We evaluated Orbit-LLaMa using multiple datasets,
including the astronomy section of the MMLU
benchmark (Hendrycks et al., 2021) and two
versions of AstroBench, the official, validated
multiple choice one(Ting et al., 2024), and the
Huggingface-only dataset containing three sub-
sets covering important subtests in astronomy (as-
troBench, 2024a,b,c).

A total of three datasets were used for quantita-
tive analysis:

1. MMLU Benchmark: The astronomy section
of MMLU evaluates factual knowledge and
reasoning across topics like stellar formation
and cosmology, testing scientific depth in lan-
guage models.

2. Hugging Face AstroBench Subcategories:
Organized into subcategories:

• Basic Knowledge (BK): Tests core as-
tronomy concepts.

• Scientific Calculation (SC): Involves
solving astrophysical numerical prob-
lems.

• Knowledge Application (KA): Assesses
applying knowledge to novel scenarios.

Each subcategory is scored separately for de-
tailed performance analysis.

3. Official AstroBench Benchmark: A com-
prehensive dataset of 4,425 multiple-choice
questions from 885 Annual Review of Astron-
omy and Astrophysics articles (1963–2023).
It provides an aggregated performance score,
covering diverse topics such as quasars, cos-
mological simulations, and the circumgalactic
medium.

4.4.2 Qualitative Evaluation
We compared responses from Orbit-LLaMA, As-
troLLaMA, and Meta-LLaMA using 24 test ques-
tions developed by Astronomy Ph.D. students and
faculty. Responses were ranked for accuracy (or,
for active areas of research, likelihood), clarity, and
reasoning using preference ratings for each model,
and detailed feedback on the model’s strength’s and
weaknesses.

4.5 Experiment Results
Orbit-LLaMa outperformed baselines on all met-
rics. On the MMLU astronomy section, Orbit-
LLaMa scored 76 compared to 69 (Meta-LLaMA)

and 66.45 (AstroLLaMA). On AstroBench subcate-
gories, Orbit-LLaMa excelled in Basic Knowledge
(45.53%), Scientific Calculation (30.28%), and
Knowledge Application (45.53%). On the official
AstroBench, Orbit-LLaMa scored 69.7, surpassing
AstroLLaMA (66.4) and Meta-LLaMA (61.5).

Table 2 summarizes the results, showing Orbit’s
superior performance in both specific tasks and
overall benchmarks.

Pairwise comparisons confirmed Orbit-
LLaMA’s superiority, with win rates over 92%
against baselines (Table 3). Expert feedback
highlighted its accuracy, clarity, and reasoning
improvements. See the appendix for detailed
examples.

Qualitative results by astronomy graduate stu-
dents further validate these conclusions

1. Preference Ratings: Four graduate students
selected the best response for each question.
Majority consensus was reached for 83% of
questions, with Orbit-LLaMA preferred for
66% of total responses (Table 4).

2. Detailed Feedback: Reviewers noted:

• Meta-LLaMA: Responses often re-
peated content and lacked focus.

• Orbit-LLaMA: Delivered clear and con-
cise answers resembling student-created
work.

• AstroLLaMA: Long, research-style re-
sponses with structural and coherence
issues.

5 Discussion

The results demonstrate the utility of the OR-
BIT methodology in addressing key challenges in
domain-specific dataset curation and fine-tuning.
By using a two-stage filtering process, ORBIT bal-
ances relevance and quality while remaining com-
putationally efficient. Stage 1’s embedding-based
similarity filtering significantly reduces the dataset
size, while Stage 2’s educational value assessment
ensures the retained data is highly relevant and
informative. This layered approach enables the cre-
ation of datasets that are both comprehensive and
focused, as evidenced by its application to astron-
omy, law, and medicine.

Fine-tuning Orbit-LLaMA on the ORBIT-
curated dataset led to notable improvements across
multiple benchmarks, including MMLU astronomy
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Table 2: Performance Comparison of Models on MMLU and AstroBench Tasks. MMLU sections with problem
counts include AS: Astronomy (152), CC: College Chemistry (100), CP: College Physics (102), CPH: Conceptual
Physics (235), HSC: High School Chemistry (203), HSP: High School Physics (151). AstroBench sections with
problem counts include KA: Knowledge Application (276), SC: Scientific Calculation (251), BK: Basic Knowledge
(8772), Astrobench (4425).

Model AS (152) CC (100) CP (102) CPH (235) HSC (203) HSP (151) KA (276) SC (251) BK (8772) AstroBench

AstroLLaMA 66.45 47.00 38.24 55.74 53.20 41.06 39.84 29.48 63.75 66.4
Meta-LLaMA 69.08 44.00 37.25 54.04 52.22 41.72 41.46 25.90 65.50 61.5
Orbit-LLaMA 76.30 52.00 47.10 56.20 53.70 43.10 45.53 30.28 69.96 69.7

Table 3: Win Rates and Tie Percentages Between Models.

Models Compared Meta-LLaMA Orbit-LLaMA AstroLLaMA Tie

Meta-LLaMA vs Orbit-LLaMA 25.4 73.0 - 1.6
Meta-LLaMA vs AstroLLaMA 84.3 - 10.5 5.22
Orbit-LLaMA vs AstroLLaMA - 93.0 5.0 2.0

Model Selected Output(%)

Meta-LLaMA 22.1%
Orbit-LLaMA 66.3%
AstroLLaMA 11.6%

Table 4: The total number of times each model’s re-
sponse was selected from total votes cast (N = 95).

and AstroBench. The gains in both quantitative
metrics and qualitative evaluations highlight the
impact of curating diverse and high-quality domain-
specific data. The inclusion of a mix of academic
and educational content allowed the model to excel
in tasks requiring both factual knowledge and nu-
anced reasoning, demonstrating the value of com-
bining depth with breadth in training corpora.

The success of ORBIT in multiple domains also
suggests its scalability and adaptability. However,
differences in domain-specific challenges, such as
interdisciplinary overlaps or evolving knowledge in
fields like medicine, highlight the need for further
refinement. Future work could focus on automating
lexicon creation and optimizing threshold selection
to streamline application to new domains.

Overall, the experiments validate the potential
of domain-adapted LLMs when supported by ro-
bust curation pipelines like ORBIT. This approach
addresses limitations in general-purpose models
for specialized tasks, emphasizing the importance
of targeted datasets for achieving state-of-the-art
performance in specific fields.

6 Conclusion

This paper presents a novel approach to creating
high-quality, domain-specific datasets for training
language models, with a focus on the field of as-
tronomy. Our methodology, combining embedding-
based matching and BERT-based regression for
data filtering and selection, has demonstrated sig-
nificant potential for enhancing the performance of
language models in specialized scientific domains.
Furthermore, we validated the scalability and gen-
eralizability of this approach by extending it to the
domains of law and medicine, achieving similar
improvements in dataset quality.

The key findings of our study include:

1. The effectiveness of our data curation method-
ology in creating balanced, high-quality
datasets that support both complex reason-
ing and factual knowledge across multi-
ple domains, including astronomy, law, and
medicine.

2. Significant improvements in model perfor-
mance on astronomy-related tasks, even with
relatively small-scale training data, highlight-
ing the potential for efficient resource utiliza-
tion.

3. The adaptability of our methodology to di-
verse scientific and professional fields, demon-
strating that domain-specific models can out-
perform general-purpose models in special-
ized tasks.

In conclusion, our work represents a significant
step toward more efficient and effective AI tools
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for specialized scientific and professional domains.
As this field continues to evolve, we anticipate
that domain-specific language models will play
an increasingly important role in supporting re-
search, education, and decision-making across a
wide range of disciplines. Moreover, we believe
that ongoing collaboration between AI researchers
and domain experts will be essential to unlocking
the full potential of these models in addressing
complex, real-world challenges.
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7 Limitations

While the ORBIT methodology and the resulting
Orbit model show significant promise, it is essen-
tial to acknowledge several limitations that may
impact their applicability and effectiveness. These
limitations are categorized into technical and social
aspects to provide a comprehensive understanding
of the challenges involved.

7.1 Technical Limitations
The primary technical limitations of the ORBIT
methodology and the Orbit model are as follows:

• Domain-Specific Generalizability. Although
ORBIT has proven effective in the field of as-
tronomy, its applicability to other domains
remains untested. Domains with less struc-
tured data or those that are highly interdisci-
plinary may require additional adaptations to
the filtering and evaluation processes. Defin-
ing domain-specific terms and educational
value criteria in such fields could pose unique
challenges that the current methodology does
not address.

• Dependence on Embedding Models. The
embedding-based filtering approach relies

heavily on the quality and coverage of pre-
trained word embeddings, such as fastText.
These embeddings may not fully capture the
nuances of highly specialized or emerging as-
tronomical terminology, potentially leading
to the exclusion of relevant content or the in-
clusion of less pertinent material. Enhancing
embedding models to better represent domain-
specific language could mitigate this limita-
tion.

• Computational and Resource Constraints.
Despite the efficiency gains from using frame-
works like DeepSpeed and FlashAttention v2,
the fine-tuning process for large models like
Orbit demands substantial computational re-
sources. This requirement may limit accessi-
bility for smaller research teams or institutions
with limited budgets. Additionally, scaling the
methodology to accommodate larger datasets
or models with higher parameter counts may
encounter practical barriers related to memory
and processing power.

• Evaluation Scope. The current evaluations
are primarily focused on astronomy-specific
tasks and benchmarks such as MMLU and
AstroBench. This narrow scope may limit
the generalizability of the findings, as broader
benchmarks that include interdisciplinary or
collaborative tasks have not been assessed.
Expanding the evaluation to encompass a
wider range of benchmarks would provide
a more comprehensive assessment of the
model’s utility.

• Dynamic Nature of Scientific Knowledge.
Astronomy is a rapidly evolving field, and the
curated dataset represents a specific temporal
snapshot. As new discoveries and theories
emerge, the model’s relevance and accuracy
may decline without ongoing updates. Devel-
oping methods for efficiently integrating new
knowledge into existing models is necessary
to maintain their effectiveness over time.

Addressing these technical limitations will re-
quire future work to explore the adaptability of
the ORBIT methodology across domains, enhance
embedding models for better domain-specific repre-
sentation, and develop scalable solutions to manage
computational demands.

We acknowledge the assistance of ChatGPT for
paraphrasing and shortening text in this document.
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All content generated with AI was carefully re-
viewed and validated by the authors.

8 Ethical Considerations

The development of domain-specific language mod-
els like Orbit raises several ethical considerations
that warrant careful examination:

• Transparency and Open Sourcing. Open-
sourcing the methodology, dataset, and code-
base promotes transparency and ensures that
other researchers can replicate and validate
our findings. However, this accessibility also
increases the risk of misuse. For example,
malicious actors could adapt the approach to
create highly specialized LLMs for unethi-
cal purposes, such as generating misleading
or pseudoscientific content within specialized
domains.

• Mitigation of Misuse. To mitigate risks of
misuse, safeguards such as dataset provenance
disclosure, ethical use guidelines, and commu-
nity oversight should be implemented. Openly
documenting the sources and filtering criteria
ensures clarity about the data used, while eth-
ical use guidelines can provide clear bound-
aries for the responsible use of the dataset
and methodology. Encouraging the research
community to establish and enforce standards
for domain-specific LLMs can help prevent
misuse.

• Bias and Representation. While we have
curated a dataset with a focus on educational
value and scientific rigor, the model could in-
advertently propagate biases present in the
source data. Historical datasets may reflect
outdated or unbalanced perspectives, such
as overrepresenting contributions from cer-
tain geographic regions or underrepresenting
emerging subfields within astronomy. These
biases can perpetuate systemic inequities if
not carefully addressed.

• Bias Mitigation Strategies. Post-hoc audits
can analyze representation across subfields,
geographic regions, and demographics of au-
thorship. Iterative refinement, through peri-
odic dataset updates and expanding coverage
of underrepresented areas, can further reduce
bias. Engaging a diverse group of domain

experts to guide future dataset expansions en-
sures inclusive curation processes.

• Representation and Inclusivity. The cu-
rated dataset may inadvertently exclude con-
tributions from underrepresented groups or
regions, thereby limiting the model’s inclu-
sivity. Ensuring diverse representation in the
data sources is crucial for developing mod-
els that reflect a wide range of perspectives
and knowledge bases. Failure to address these
disparities can perpetuate existing inequities
within the scientific community.

• Transparency and Accountability. While
documenting dataset provenance and filtering
criteria promotes transparency, ensuring ac-
countability in the development and deploy-
ment of domain-specific models requires on-
going efforts. Establishing clear ethical guide-
lines and engaging in community oversight
are essential steps toward responsible AI de-
velopment.

FineWeb-Edu, our baseline dataset, explicitly
addresses the removal of personally identifying
and offensive content, as well as trying to address
the mentioned issues above. By proactively ad-
dressing these ethical considerations, we aim to
promote responsible development and deployment
of domain-specific language models that support
equitable and transparent scientific advancement.
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scoring system assigns a score from 0 to 5 based
on the depth, clarity, and relevance of the content.
The prompt guides evaluators in determining the
quality of information to ensure only high-value
educational material is selected for domain-specific
training.

prompt = f""" Please evaluate the
educational value of the following
astronomy -related text from a web
document. Use this 6-point scoring
system:

0 points: No astronomy content at all.
1 point: Minimal astronomy information ,

or astronomy mixed with non -
astronomical content.

2 points: Covers basic astronomical
concepts but lacks depth or
comprehensive explanation.

3 points: Clear explanation of concepts
with relevant examples , educational
for a general audience.

4 points: In-depth knowledge , covers
advanced concepts or recent
discoveries , well -structured and
engaging.

5 points: Exceptionally high educational
value , expert -level insights ,

connects multiple concepts ,
addresses misconceptions , inspires
further learning.

Provide a brief justification (up to 100
words) and conclude with the score

in the format "Score: X".

Here ’s the text to evaluate:

{text }"""

A.2 Training Details
The training of the Orbit-LLaMA model was con-
ducted using the DeepSpeed framework, leverag-
ing Zero-2 optimization for efficient memory man-
agement and scaling. FlashAttention v2 was
employed to enhance the efficiency of the self-
attention mechanism, improving both memory us-
age and computational speed.

Training Configuration:

• Epochs: 1

• Block Size: 512 tokens

• Effective Batch Size: 8

• Learning Rate: 2× 10−5

• Learning Rate Schedule: Linear warmup
over 500 steps followed by cosine decay

• Optimizer: AdamW with parameters β1 =
0.9, β2 = 0.95, and weight decay of 0.01

• Gradient Clipping: 1.0

• Precision: Mixed precision training enabled
with bf16 to reduce memory usage and accel-
erate training

Optimization Techniques:

• DeepSpeed Zero-2 Optimization: Reduced
memory footprint by partitioning optimizer
states, gradients, and parameters across GPUs,
enabling effective training of large models.

• FlashAttention v2: Minimized memory us-
age during self-attention computations, allow-
ing for faster training without compromising
accuracy.

A.3 Qualitative Evaluation Methodology
A.3.1 Test Questions and Development

Process
A set of 24 test questions was developed by three
Ph.D.-track astronomy graduate students and a fac-
ulty member from an anonymized university. These
questions were designed to evaluate the models’ ca-
pabilities across a broad range of topics, including:

• Basic Definitions and Conceptual Knowl-
edge: For example, defining astronomical
terms.

• Problem-Solving in Complex or Ambigu-
ous Scenarios: For instance, addressing
under-explored areas of astronomy.

• Support for Research-Oriented Tasks:
Such as code generation for data analysis or
simulations.

Each question was carefully reviewed to ensure it
was appropriate for benchmarking a wide range of
tasks and model competencies.

A.3.2 Evaluation Framework
The responses from Orbit, AstroLLaMA, and Meta-
LLaMA were evaluated using the following crite-
ria:

• Accuracy of Content: How well the response
aligned with established scientific understand-
ing.

• Clarity of Explanation: The readability and
coherence of the generated response.
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• Reasoning: The logical structure and han-
dling of complex, ambiguous topics.

The evaluation process consisted of two phases:

1. Preference Ratings: Four graduate students
were asked to select their preferred response
for each question, considering the aforemen-
tioned criteria. This approach allowed review-
ers to account for cases where correctness was
unclear or when responses were partially cor-
rect.

2. Detailed Feedback: Two astronomy gradu-
ate students with Teaching Assistant grading
experience analyzed the responses in-depth,
identifying strengths, weaknesses, and id-
iosyncrasies of each model.

A.3.3 Model-Specific Observations
Detailed grader comments highlighted the follow-
ing characteristics:

• Meta LLaMA-3: Generated verbose and
repetitive answers, occasionally diverging
from the original prompt. It was prone to cre-
ating irrelevant subtopics and exhibited issues
with coherence.

• Orbit LLaMA: Produced concise, relevant
responses that were easier to follow. It occa-
sionally adopted a teaching-style format, re-
sembling lecture notes or student-generated
answers.

• AstroLLaMA: Generated longer, more
research-like responses. While it included
citations, these were not always accurate or
relevant. Responses tended to drift off-topic
and lacked logical progression.

These qualitative observations, combined with
the preference ratings, helped identify Orbit
LLaMA as the most effective overall. Full re-
sponses from all models for each test question,
along with grader comments, are provided in the
supplementary material.

A.4 Model Generations Comparison
The following section presents a comparison of re-
sponses from three models—Meta LLaMA-3, Or-
bit LLaMA, and AstroLLaMA—to a sample ques-
tion. Each response is evaluated based on accuracy,
clarity, and reasoning.

A.4.1 Sample Question
What challenges do spacecraft face when
crossing the heliopause, and how do
these challenges impact the design of in-
terstellar missions?

A.4.2 Responses and Evaluations
• Meta LLaMA-3 Response:

Crossing the heliopause poses
several challenges for spacecraft.
Firstly, the heliopause region is a
highly dynamic environment, with
intense solar wind and interstel-
lar magnetic fields. These can
cause significant disturbances in the
spacecraft’s trajectory and naviga-
tion, making it difficult to accu-
rately predict the spacecraft’s po-
sition and velocity. Additionally,
the solar wind can cause ioniza-
tion and plasma flow, which can af-
fect the spacecraft’s communication
and power systems. The interstellar
magnetic field can also induce cur-
rents in the spacecraft’s structure,
which can lead to heating and po-
tential damage. To address these
challenges, interstellar missions typ-
ically use advanced navigation and
control systems, as well as sophisti-
cated shielding and power systems.
The shielding is used to protect
the spacecraft from ionization and
plasma flow, while the power sys-
tems are used to generate and dis-
tribute electricity to the spacecraft’s
systems and instruments. Overall,
crossing the heliopause is a com-
plex task that requires careful plan-
ning and design to ensure the safety
and success of the spacecraft.

Evaluation: Score: 3. Meta LLaMA-3 pro-
vides a reasonable overview of the challenges
spacecraft face when crossing the heliopause,
mentioning solar wind disturbances, ioniza-
tion, and the need for advanced systems to
mitigate these challenges. However, the re-
sponse could have provided more specificity
about the unique nature of the heliopause and
its implications for spacecraft design. There
was an emphasis on general navigational and
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shielding challenges that, while relevant, did
not delve deeply into the unique aspects of the
heliopause.

• Orbit LLaMA Response:

The heliopause, the boundary be-
tween the solar wind and interstellar
space, presents unique challenges
for spacecraft crossing it. One of
the primary challenges is naviga-
tion. Without the solar wind to pro-
vide a reference point, spacecraft
must rely on other methods such
as star-tracking or pulsar naviga-
tion to determine their position and
trajectory. This requires complex
navigation systems that can oper-
ate in the absence of the familiar
solar wind. Another challenge is
the radiation environment. The he-
liopause is surrounded by a region
of intense radiation, including cos-
mic rays and solar wind particles.
This radiation can damage space-
craft electronics and pose a threat
to the health of the crew. To mit-
igate these risks, spacecraft must
be equipped with advanced radia-
tion shielding and backup systems.
Additionally, the distance and com-
munication lag between Earth and
the spacecraft make real-time con-
trol of the mission impossible. This
requires spacecraft to be fully au-
tonomous, capable of making com-
plex decisions and adjustments on
their own. Overall, these challenges
highlight the need for advanced
technology and innovative solutions
to enable successful interstellar mis-
sions.

Evaluation: Score: 4. Orbit LLaMA pro-
vides a concise and relevant description of the
challenges at the heliopause, such as naviga-
tion difficulties due to the lack of solar wind
and the increased radiation environment. It
clearly explains the need for radiation shield-
ing, autonomy, and advanced navigation sys-
tems, directly correlating these challenges
with the design implications for interstellar
missions. This response was clear, accurate,

and focused on the question.

• AstroLLaMA Response:

Crossing the heliopause presents
several challenges for interstellar
missions, including the interaction
of the spacecraft with the solar wind
and its magnetic field, as well as
the presence of interstellar material
such as interstellar dust and the in-
terstellar magnetic field. The he-
liopause acts as a barrier, preventing
the spacecraft from directly inter-
acting with the interstellar medium.
However, a boundary layer where
interactions between the solar wind
and the interstellar medium occur is
expected to form at the heliopause.
The spacecraft may encounter sev-
eral layers of plasma and magnetic
fields across the boundary layer,
which can affect its trajectory and
instruments. The spacecraft may
also be exposed to interstellar dust,
which can be a potential risk to the
spacecraft and instruments. The
spacecraft designers must consider
these challenges and design the
spacecraft accordingly, including
protective measures and additional
instruments to study the interstellar
medium.

Evaluation: Score: 3. AstroLLaMA offers
an extensive explanation of the heliopause and
discusses various physical phenomena asso-
ciated with it. However, while it provides a
broad scientific context, it is overly detailed
in parts not directly pertinent to the question,
which could overwhelm or confuse readers
seeking a direct answer. The response lacks
specific mention of direct spacecraft design
implications, which are crucial for answering
the question on interstellar mission design.

B Supplementary Figures and Tables

B.1 Residual Components Distribution
The distribution of residual components for the
domain-specific embeddings (m = 100) is visu-
alized below. The residuals exhibit a normal dis-
tribution centered near zero, validating that noise
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diminishes with an increasing number of domain-
relevant terms. This result supports the robustness
of our astronomy vector in representing domain
relevance while minimizing noise.

B.2 Sample Qualitative Evaluation
B.3 Instructions to Reviewers and Annotator

Details
To evaluate the quality of the model outputs, we
recruited four graduate students in astronomy who
volunteered to participate in the evaluation pro-
cess. The primary goal was to compare responses
generated by three models—Orbit LLaMA, As-
troLLaMA, and Meta LLaMA-3—on a set of
astronomy-related questions, focusing on accuracy,
clarity, and reasoning.

B.3.1 Instructions to Annotators
Annotators were provided with a detailed set of
instructions that outlined the evaluation criteria and
process. They were asked to:

1. Read and Assess: Carefully review the re-
sponses generated by the three models for
each test question.

2. Evaluate Against Criteria:

• Accuracy: Determine if the content of
the response is factually correct and rele-
vant to the question.

• Clarity: Assess whether the response is
well-structured, easy to read, and free of
ambiguity.

• Reasoning: Evaluate the logical struc-
ture and whether the response adequately
addresses complex or ambiguous aspects
of the question.

3. Rank the Responses: Rank the responses
from the three models in order of preference
for each question, with justifications for their
rankings.

4. Provide Feedback: Offer detailed comments
on strengths and weaknesses for each re-
sponse, particularly highlighting areas where
models excelled or failed.

B.3.2 Recruitment and Voluntary
Participation

All annotators were graduate students specializ-
ing in astronomy. They volunteered for the task,
and their contributions were limited to evaluating a

manageable set of 24 test questions, ensuring the
workload was minimal. No monetary or material
compensation was provided as they were willing
participants.

B.3.3 Consent
All participants were informed about the purpose
of the evaluation and the intended use of their feed-
back for research and publication. Consent was
obtained prior to their participation, ensuring ethi-
cal compliance.

B.3.4 Anonymity
To protect the privacy of the annotators, we do
not report individual demographic or geographic
characteristics. This decision aligns with their pref-
erence for anonymity while contributing to the re-
search.

This structured process ensured high-quality, ex-
pert feedback for evaluating model performance
while adhering to ethical standards and respecting
the privacy of participants.

B.3.5 Sample Question
What challenges do spacecraft face when
crossing the heliopause, and how do
these challenges impact the design of in-
terstellar missions?

B.3.6 Responses and Evaluations
• Meta LLaMA-3 Response:

Crossing the heliopause poses
several challenges for spacecraft.
Firstly, the heliopause region is a
highly dynamic environment, with
intense solar wind and interstel-
lar magnetic fields. These can
cause significant disturbances in the
spacecraft’s trajectory and naviga-
tion, making it difficult to accu-
rately predict the spacecraft’s po-
sition and velocity. Additionally,
the solar wind can cause ioniza-
tion and plasma flow, which can af-
fect the spacecraft’s communication
and power systems. The interstellar
magnetic field can also induce cur-
rents in the spacecraft’s structure,
which can lead to heating and po-
tential damage. To address these
challenges, interstellar missions typ-
ically use advanced navigation and
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control systems, as well as sophisti-
cated shielding and power systems.
The shielding is used to protect
the spacecraft from ionization and
plasma flow, while the power sys-
tems are used to generate and dis-
tribute electricity to the spacecraft’s
systems and instruments. Overall,
crossing the heliopause is a com-
plex task that requires careful plan-
ning and design to ensure the safety
and success of the spacecraft.

Evaluation: Score: 3. Meta LLaMA-3 pro-
vides a reasonable overview of the challenges
spacecraft face when crossing the heliopause,
mentioning solar wind disturbances, ioniza-
tion, and the need for advanced systems to
mitigate these challenges. However, the re-
sponse could have provided more specificity
about the unique nature of the heliopause and
its implications for spacecraft design. There
was an emphasis on general navigational and
shielding challenges that, while relevant, did
not delve deeply into the unique aspects of the
heliopause.

• Orbit LLaMA Response:

The heliopause, the boundary be-
tween the solar wind and interstellar
space, presents unique challenges
for spacecraft crossing it. One of
the primary challenges is naviga-
tion. Without the solar wind to pro-
vide a reference point, spacecraft
must rely on other methods such
as star-tracking or pulsar naviga-
tion to determine their position and
trajectory. This requires complex
navigation systems that can oper-
ate in the absence of the familiar
solar wind. Another challenge is
the radiation environment. The he-
liopause is surrounded by a region
of intense radiation, including cos-
mic rays and solar wind particles.
This radiation can damage space-
craft electronics and pose a threat
to the health of the crew. To mit-
igate these risks, spacecraft must
be equipped with advanced radia-
tion shielding and backup systems.

Additionally, the distance and com-
munication lag between Earth and
the spacecraft make real-time con-
trol of the mission impossible. This
requires spacecraft to be fully au-
tonomous, capable of making com-
plex decisions and adjustments on
their own. Overall, these challenges
highlight the need for advanced
technology and innovative solutions
to enable successful interstellar mis-
sions.

Evaluation: Score: 4. Orbit LLaMA pro-
vides a concise and relevant description of the
challenges at the heliopause, such as naviga-
tion difficulties due to the lack of solar wind
and the increased radiation environment. It
clearly explains the need for radiation shield-
ing, autonomy, and advanced navigation sys-
tems, directly correlating these challenges
with the design implications for interstellar
missions. This response was clear, accurate,
and focused on the question.

• AstroLLaMA Response:

Crossing the heliopause presents
several challenges for interstellar
missions, including the interaction
of the spacecraft with the solar wind
and its magnetic field, as well as
the presence of interstellar material
such as interstellar dust and the in-
terstellar magnetic field. The he-
liopause acts as a barrier, preventing
the spacecraft from directly inter-
acting with the interstellar medium.
However, a boundary layer where
interactions between the solar wind
and the interstellar medium occur is
expected to form at the heliopause.
The spacecraft may encounter sev-
eral layers of plasma and magnetic
fields across the boundary layer,
which can affect its trajectory and
instruments. The spacecraft may
also be exposed to interstellar dust,
which can be a potential risk to the
spacecraft and instruments. The
spacecraft designers must consider
these challenges and design the
spacecraft accordingly, including
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protective measures and additional
instruments to study the interstellar
medium.

Evaluation: Score: 3. AstroLLaMA offers
an extensive explanation of the heliopause and
discusses various physical phenomena asso-
ciated with it. However, while it provides a
broad scientific context, it is overly detailed
in parts not directly pertinent to the question,
which could overwhelm or confuse readers
seeking a direct answer. The response lacks
specific mention of direct spacecraft design
implications, which are crucial for answering
the question on interstellar mission design.

C Additional Mathematical Foundations

C.1 Efficient Domain-Specific Dataset
Curation

The core objective of language models is to esti-
mate the probability distribution over sequences
of words by predicting each token based on pre-
ceding ones. This is achieved through training
on large datasets, where the model minimizes the
negative log-likelihood (cross-entropy loss) across
the corpus. Model performance tends to improve
predictably with the number of parameters, as
greater capacity enables capturing more complex
patterns—up to a limit governed by dataset quality
and complexity (Kaplan et al., 2020).

Domain-specific models, such as the astronomy-
focused variant presented here, face unique chal-
lenges in obtaining sufficient, high-quality data, as
general-purpose datasets often include noise or ir-
relevant content. A refined dataset requires filtering
methods that prioritize domain relevance without
extensive computational costs.

To address this, we developed a method that
leverages cosine similarity between token embed-
dings and a representative aggregated word embed-
ding derived from a predefined list of astronomy-
related terms. This approach enables efficient fil-
tering by identifying documents based on their se-
mantic similarity to the target domain.

C.1.1 Decomposition of Embeddings
We assume that each astronomy-related term’s em-
bedding can be decomposed into two components:

eti = a+ ri, (1)

where:

• eti ∈ Rd is the normalized embedding vector
of the i-th astronomy-related term.

• a ∈ Rd is the domain-specific astronomy
component common to all astronomy-related
terms.

• ri ∈ Rd is the random noise component
unique to each term, with E[ri] = 0.

The astronomy aggregated embedding vector A
is defined as the average of the embeddings of all
astronomy-related terms:

A =
1

m

m∑

i=1

eti = a+
1

m

m∑

i=1

ri. (2)

By the Law of Large Numbers, as the number of
astronomy-related terms m increases, the average
of the random components converges to zero:

lim
m→∞

1

m

m∑

i=1

ri = 0. (3)

Therefore, for sufficiently large m, the as-
tronomy aggregated vector A approximates the
domain-specific component a:

A ≈ a. (4)

The mean vector A also serves as the mathe-
matical minimum point for minimizing the sum of
squared Euclidean distances between A and each
individual astronomy-related embedding eti . For-
mally, A minimizes the following objective:

A = arg min
x∈Rd

m∑

i=1

∥eti − x∥2. (5)

This property ensures that A is the most repre-
sentative point in the embedding space for the set
of astronomy-related terms.

C.1.2 Error Analysis
The error introduced by the random components
ri can be quantified by analyzing the difference
between the astronomy aggregated vector A and
the true domain-specific component a:

E = A− a =
1

m

m∑

i=1

ri.

We aim to analyze the expected and actual error
rates to ensure that our theoretical results are sound.
Specifically, we verify that the random vectors ri ∈
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Rd are independently and identically distributed
(i.i.d.) with mean zero.

To validate the properties of the residual com-
ponents ri, we conducted experiments using the
GloVe word embeddings (Pennington et al., 2014).
We assessed whether the residual components for
a significant number of astronomy-related terms
have an expected value around zero and how the
error ∥E∥ behaves as a function of m.

We selected a list of 101 astronomy-related
terms (see the GitHub for the exact list) and ex-
tracted their corresponding embeddings from the
pre-trained GloVe model. We computed the as-
tronomy aggregated vector A as the average of m
randomly selected term embeddings and calculated
the error vector E = A − a, where a is the true
average embedding computed using all available
astronomy-related terms.

C.1.3 Computational Efficiency
To filter a large corpus efficiently, we employ a
combination of embedding-based similarity filter-
ing and BERT-based classification. The pipeline’s
goal is to reduce the dataset to the most relevant
documents before applying more computationally
expensive processes.

Given a document D with s tokens
{w1, w2, . . . , ws}, each token has a corre-
sponding normalized embedding ewj ∈ Rd.
The document vector B is the average of these
embeddings:

B =

∑s
j=1 ewj

m
.

The relevance to the astronomy domain is as-
sessed using cosine similarity between B and the
astronomy vector A:

Similarity(D) =
A ·B

|A| ∗ |B| .

A document is retained if this similarity exceeds
a threshold τ .

C.1.4 Formalized Pipeline
1. Embedding Lookup: For each token wj in

document D, retrieve its embedding ewj from
a hashmap. Runtime: O(1)

2. Document Vector Computation: Calculate
B =

∑s
j=1 ewj . Runtime: O(s · d)

3. Similarity Calculation: Compute cosine sim-
ilarity between A and B. Runtime:
O(d)

4. Thresholding: Retain the document if the
similarity exceeds τ . Runtime: O(1)

Total Complexity per Document: O(s · d)
Given N documents, each with s tokens on av-

erage, the overall complexity for the filtering step
is:

O(N · s · d)
Optimizations Implemented:

• Precomputation of Normalized A: Elimi-
nates repeated division during similarity com-
putation.

• Vectorized Operations: Speeds up vector cal-
culations using optimized libraries.

• Parallel Processing: Distributes the workload
across multiple cores.

D Mathematical Foundations

D.1 Efficient Domain-Specific Dataset
Curation

The core objective of language models is to esti-
mate the probability distribution over sequences
of words by predicting each token based on pre-
ceding ones. This is achieved through training
on large datasets, where the model minimizes the
negative log-likelihood (cross-entropy loss) across
the corpus. Model performance tends to improve
predictably with the number of parameters, as
greater capacity enables capturing more complex
patterns—up to a limit governed by dataset quality
and complexity (Kaplan et al., 2020).

Domain-specific models, such as the astronomy-
focused variant presented here, face unique chal-
lenges in obtaining sufficient, high-quality data, as
general-purpose datasets often include noise or ir-
relevant content. A refined dataset requires filtering
methods that prioritize domain relevance without
extensive computational costs.

To address this, we developed a method that
leverages cosine similarity between token embed-
dings and a representative aggregated word embed-
ding derived from a predefined list of astronomy-
related terms. This approach enables efficient fil-
tering by identifying documents based on their se-
mantic similarity to the target domain.
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D.1.1 Decomposition of Embeddings
We assume that each astronomy-related term’s em-
bedding can be decomposed into two components:

eti = a+ ri, (6)

where:

• eti ∈ Rd is the normalized embedding vector
of the i-th astronomy-related term.

• a ∈ Rd is the domain-specific astronomy
component common to all astronomy-related
terms.

• ri ∈ Rd is the random noise component
unique to each term, with E[ri] = 0.

The astronomy aggregated embedding vector A
is defined as the average of the embeddings of all
astronomy-related terms:

A =
1

m

m∑

i=1

eti = a+
1

m

m∑

i=1

ri. (7)

By the Law of Large Numbers, as the number of
astronomy-related terms m increases, the average
of the random components converges to zero:

lim
m→∞

1

m

m∑

i=1

ri = 0. (8)

Therefore, for sufficiently large m, the as-
tronomy aggregated vector A approximates the
domain-specific component a:

A ≈ a. (9)

The mean vector A also serves as the mathe-
matical minimum point for minimizing the sum of
squared Euclidean distances between A and each
individual astronomy-related embedding eti . For-
mally, A minimizes the following objective:

A = arg min
x∈Rd

m∑

i=1

∥eti − x∥2. (10)

This property ensures that A is the most repre-
sentative point in the embedding space for the set
of astronomy-related terms.

D.1.2 Error Analysis
The error introduced by the random components
ri can be quantified by analyzing the difference
between the astronomy aggregated vector A and
the true domain-specific component a:

E = A− a =
1

m

m∑

i=1

ri.

We aim to analyze the expected and actual error
rates to ensure that our theoretical results are sound.
Specifically, we verify that the random vectors ri ∈
Rd are independently and identically distributed
(i.i.d.) with mean zero.

To validate the properties of the residual com-
ponents ri, we conducted experiments using the
GloVe word embeddings (Pennington et al., 2014).
We assessed whether the residual components for
a significant number of astronomy-related terms
have an expected value around zero and how the
error ∥E∥ behaves as a function of m.

We selected a list of 101 astronomy-related terms
(see Section ??) and extracted their corresponding
embeddings from the pre-trained GloVe model. We
computed the astronomy aggregated vector A as
the average of m randomly selected term embed-
dings and calculated the error vector E = A− a,
where a is the true average embedding computed
using all available astronomy-related terms.

Figure 5: Distribution of residual components for the
domain-specific embeddings (m = 100). The residuals
exhibit a normal distribution centered near zero, validat-
ing that noise diminishes with an increasing number of
domain-relevant terms. This result supports the robust-
ness of our astronomy vector in representing domain
relevance while minimizing noise.

D.1.3 Computational Efficiency
To filter a large corpus efficiently, we employ a
combination of embedding-based similarity filter-
ing and BERT-based classification. The pipeline’s
goal is to reduce the dataset to the most relevant
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documents before applying more computationally
expensive processes.

Given a document D with s tokens
{w1, w2, . . . , ws}, each token has a corre-
sponding normalized embedding ewj ∈ Rd.
The document vector B is the average of these
embeddings:

B =

∑s
j=1 ewj

m
.

The relevance to the astronomy domain is as-
sessed using cosine similarity between B and the
astronomy vector A:

Similarity(D) =
A ·B
|A| · |B| .

A document is retained if this similarity exceeds
a threshold τ .

D.1.4 Formalized Pipeline
1. Embedding Lookup: For each token wj in

document D, retrieve its embedding ewj from
a hashmap. Runtime: O(1)

2. Document Vector Computation: Calculate
B =

∑s
j=1 ewj . Runtime: O(s · d)

3. Similarity Calculation: Compute cosine sim-
ilarity between A and B. Runtime:
O(d)

4. Thresholding: Retain the document if the
similarity exceeds τ . Runtime: O(1)

Total Complexity per Document: O(s · d)
Given N documents, each with s tokens on av-

erage, the overall complexity for the filtering step
is:

O(N · s · d)
Optimizations Implemented:

• Precomputation of Normalized A: Elimi-
nates repeated division during similarity com-
putation.

• Vectorized Operations: Speeds up vector cal-
culations using optimized libraries.

• Parallel Processing: Distributes the workload
across multiple cores.
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