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Abstract

This paper studies the problem of text-
attributed graph clustering, which aims to clus-
ter each node into different groups using both
textual attributes and structural information. Al-
though graph neural networks (GNNs) have
been proposed to solve this problem, their per-
formance is usually limited when uncertain
nodes are near the cluster boundaries due to
label scarcity. In this paper, we introduce a new
perspective of leveraging large language mod-
els (LLMs) to enhance text-attributed graph
clustering and develop a novel approach named
Multi-agent Collaboration with Ranking Guid-
ance (MARK). The core of our MARK is to
generate reliable guidance using the collabo-
ration of three LLM-based agents as ranking-
based supervision signals. In particular, we first
conduct the coarse graph clustering, and utilize
a concept agent to induce the semantics of each
cluster. Then, we infer the robustness under
perturbations to identify uncertain nodes and
use a generation agent to produce synthetic text
that closely aligns with their topology. An in-
ference agent is adopted to provide the ranking
semantics for each uncertain node in compari-
son to its synthetic counterpart. The consistent
feedback between uncertain and synthetic texts
is identified as reliable guidance for fine-tuning
the clustering model within a ranking-based su-
pervision objective. Experimental results on
various benchmark datasets validate the effec-
tiveness of the proposed MARK compared with
competing baselines.

1 Introduction

Graph Neural Networks (GNNs) (Hamilton et al.,
2017; Veličković et al., 2017), a popular method
to handle graph, can learn the overall structural
information within graphs but are unable to di-
rectly process the informative text associated with

* Equal contribution, co-first authors.
† Corresponding authors.

nodes. With the advent of the LLMs era (Guo et al.,
2025), research on integrating LLMs with GNNs
for TAGs has garnered increasing attention in re-
cent years (Jin et al., 2024). However, most stud-
ies (Chen et al., 2024c; He et al., 2024; Huang et al.,
2024; Bi et al., 2024) have focused on supervised
tasks, such as node classification and link predic-
tion, leaving text-attributed graph clustering—an
unsupervised task—largely underexplored.

Text-attributed graph clustering utilizes both
structural and textual information to assign nodes
to distinct clusters, ensuring that similar nodes
are grouped together while dissimilar nodes are
dispersed across separate clusters. Since clus-
ter assignments can intuitively reflect communi-
ties within a graph, many real-world problems
can be formulated as graph clustering tasks, such
as identifying friend groups in social networks
(Hartup, 2022) or recommending papers to re-
searchers within the same field (Wu et al., 2022).

Existing methods (Trivedi et al., 2024), after
obtaining cluster assignments from the clustering
model, utilize an LLM-based agent to decompose
the task of querying the clustering categories of
nodes into several sub-tasks, which are then pro-
cessed sequentially to derive the final feedback. Af-
ter filtering out potential incorrect feedback based
on the LLM’s prediction confidence scores, the
clustering model is then fine-tuned using cross-
entropy loss with the feedback-based pseudo-labels.
However, three challenges still remain: (1) Can we
use multi-agent cooperation to query clustering
categories? Queries based on a single agent lack
breadth of knowledge, resulting in an overly narrow
perspective (Guo et al., 2024). (2) Can we develop
filtering strategies that consider both text semantics
and graph topology? The noisy feedback filtering
strategy that relies solely on prediction confidence
utilizes the prior knowledge of LLMs but fails to
leverage the topological perspective from the graph.
(3) Can we choose a more robust fine-tuning loss
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Figure 1: Potential challenges exist before and advan-
tages of MARK compared with traditional methods.

function? When the pseudo-labels contain noisy
feedbacks that may be missed during filtering, the
cross-entropy loss is not robust, leading to overfit-
ting on incorrect clusters (Feng et al., 2021).

In this paper, we introduce a new perspective of
leveraging LLMs to enhance text-attributed graph
clustering and develop a novel approach named
Multi-agent Collaboration with Ranking Guidance
(MARK). The core of our MARK is to generate
reliable guidance using the collaboration of three
LLM-based agents as ranking-based supervision
signals. Specifically, through empirical analysis,
we find that fine-tuning the graph clustering model
on uncertain nodes yields better gains compared to
doing so on certain or random nodes. Inspired by
this, we perform a graph clustering model on two
perturbation graphs in the Graph Clustering En-
gine. We identify the nodes with inconsistent clus-
ter assignments between the two views as uncertain
nodes and employ three agents to query their cluster
categories. In the Concept Agent, we first induce
the concept of each cluster using the nodes close
to the center of each cluster. We calculate the simi-
larity between uncertain nodes and their neighbors
within the corresponding ego-graph to select a few
representative neighbors for each uncertain node.
To reduce the cost of querying neighbor represen-
tatives from the LLM, we use a Generation Agent
to summarize the neighbor representatives and gen-
erate synthetic text with equivalent semantics. In
the Inference Agent, we construct the inference

prompt by appending the cluster concepts obtained
from the Concept Agent to both the uncertain text
and the synthetic text. Since the synthetic text cap-
tures both the topological and semantic information
of the uncertain node, we use the consistency of
the agent’s feedback on the uncertain text and the
synthetic text as a filtering criterion. The feedback
may still be inconsistent with the true labels of un-
certain nodes, even after filtering. Therefore, we
adopt a ranking-based supervision objective during
fine-tuning to enhance the robustness of node repre-
sentations, thereby mitigating the adverse effects of
noise. Overall, the coarse clustering assignments
generated by the graph clustering engine provide
topological information to the multi-agent frame-
work. In turn, the collaborative decisions from
the agents enhance the performance of the graph
clustering engine.

To summarize, the contributions are as follows:
(1) New Perspective. We are the first to connect text-
attribute graph clustering with a multi-agent frame-
work for reliable semantics. (2) Novel Methodol-
ogy. Our MARK leverage the collaboration of a
concept agent, a generation agent and an inference
agent to provide ranking signals, which are utilized
to guide the graph clustering. (3) Extensive Experi-
ments. Experimental results on various benchmark
datasets validate the effectiveness of the proposed
MARK compared with competing baselines.

2 Related Work

Recently, research on the integration of Large Lan-
guage Models (LLMs) and Graph Neural Networks
(GNNs) in text-attribute graphs has garnered in-
creasing attention (Chen et al., 2023; Zhang et al.,
2025; Zhao et al., 2025). Researches can be di-
vided into three categories: (1) LLM-as-encoder.
(Wen and Fang, 2023; Zhao et al., 2023a; Jin
et al., 2023) uses pre-trained language models
(PLMs) (Reimers, 2019) to encode texts, achieving
a hybrid architecture of PLM and GNN. To obtain
expressive representations, (Zhu et al., 2024) uti-
lizes the hidden embeddings of LLMs to construct
node embeddings. (2) LLM-as-predictor. (Chen
et al., 2024a; Zhao et al., 2023b; Tang et al., 2024)
serializes the graph into various sequences, which
are then fed into the LLM for prediction. (Yang
et al., 2021; Yasunaga et al., 2022) adjust tradi-
tional LLM architecture to conduct joint text and
graph encoding. (3) LLM-as-reasoner. Under the
guidance of carefully designed prompts, (Chen
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et al., 2024b; Bi et al., 2024; Wu et al., 2025) en-
ables LLMs to perform inference tasks for node
class or link existence.

The above works almost focus on node classifica-
tion and link prediction, while text-attributed graph
clustering remains under-explored. To the best of
our knowledge, GCLR (Trivedi et al., 2024) is cur-
rently the only study dedicated to text-attributed
graph clustering. GCLR employs a contrastive (Liu
et al., 2023a) and pooling-based (Tsitsulin et al.,
2023; Bianchi et al., 2020; Ying et al., 2018) at-
tributed graph clustering model as its backbone.
GCLR adopts an LLM-as-reasoner architecture de-
scribed above, where the LLM solely offers feed-
back for the fine-tuning of the GNN, thereby elim-
inating the costly pretraining and fine-tuning of
LLMs. Despite the success, the three challenges
discussed in the previous section require further
exploration in this paper.

3 Method

3.1 Problem Formulation

G = (A,D,X) is a text-attributed graph (TAG)
with the adjacency matrix A ∈ {0, 1}N×N , the
raw texts D = {D1,D2, . . . ,DN} and PLM-
encoded textual features X = {x1,x2, . . . ,xN} ∈
RN×D (Reimers, 2019). N denotes the number of
nodes. The node embeddings encoded by GNN are
represented by H = {h1,h2, . . . ,hN} ∈ RN×F .
D and F are the dimensions of node features and
embeddings, respectively. Graph clustering aims
to partition the nodes in the text-attributed graph
G into K disjoint clusters C = {C1, C2, · · · , CK}.
The embedding of the cluster centers is represented
by {µ1, µ2, . . . , µK} ∈ RK×F .

3.2 Overview of MARK

Following the two-stage learning style (Zhang
et al., 2023; Trivedi et al., 2024), our aim is to
leverage the collaboration of multi-agent to pro-
vide ranking signals for the graph clustering.

As described in Figure 2, the proposed MARK
includes a graph clustering engine and three sup-
porting agents: (1) Graph clustering engines build
upon the shoulders of existing advanced graph
clustering models, leveraging their sophisticated
representation capabilities to perform contrastive
learning on two perturbed views. By seeking ro-
bustness in cluster assignments across these two
views, uncertain nodes are identified. (2) The con-
cept agent Mcon selects high-confidence nodes

from each cluster to induce cluster names. The
induced concepts will serve as foundational knowl-
edge for the other two agents, enhancing their capa-
bility to execute specific tasks. (3) The generation
agent Mgen synthesizes virtual text by aggregat-
ing the neighboring texts of each uncertain node,
thereby enhancing data diversity while consider-
ing the neighborhood topology. (4) The inference
agent Minf filters out low-confidence uncertain
nodes by evaluating the consistency of feedback
from LLMs between uncertain texts and synthetic
texts. Finally, we adopt a ranking-based supervised
objective to utilize the filtered nodes for fine-tuning
the graph clustering engine. In the following, we
present them step by step.

3.3 Graph Clustering Engine
After obtaining the coarse clustering assignments,
it is typically necessary to obtain feedback on infor-
mative nodes from the LLM to fine-tune the cluster-
ing model. Existing methods (Trivedi et al., 2024)
typically select nodes with high entropy as candi-
date query nodes. However, nodes with low entropy
may also have incorrect clustering assignments;
thus, selecting only high-entropy nodes rather than
all nodes as candidates for querying can introduce
bias. To address this challenge, we have developed
a robustness-based mechanism for identifying po-
tentially valuable candidate query nodes. We em-
ploy a dual-view contrastive learning framework to
detect clustering discrepancies under perturbations,
treating these non-robust nodes as uncertain nodes
for querying. The fundamental principle behind
this mechanism is to find nodes with ambiguous
category perceptions, which are prone to inconsis-
tent judgments under minor perturbations.

Specifically, we apply perturbations at both fea-
ture level and edge level to obtain two augmented
views of the graph, and then feed them separately
into a shared GNN encoder to get node representa-
tions H′, H′′ ∈ RN×F , where F means the dimen-
sion of the node representations. We align the two
views by alignment loss Lali, as shown below:

Lali = − 1

N

N∑

i=1

log
exp(sim(h′

i,h
′′
i )/τ)∑N

k=1 exp(sim(h′
i,h

′′
k)/τ)

,

(1)
where h′

i and h′′
i are the representations of two

augmentations with regard to the i-th node, sim(∗)
indicates the cosine similarity function, τ controls
the temperature to adjust the distribution. The clus-
tering loss Lclu serves as a flexible plugin, enabling
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You are an AI assistant specializing in text
induction. Please generate a topic name
based on the provided input texts ...

You are an AI assistant specializing in text
generation. Please create a virtual text
based on the surrounding input texts ...

You are an AI assistant specializing in text
inference. Please identify the most likely
cluster to which the given text belongs ...
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Figure 2: Overview of MARK. A graph clustering engine is introduced to identify uncertain nodes. Three agents
(the concept agent, generation agent, and inference agent) collaborate to provide ranking signals for these uncertain
nodes. Finally, consistency feedback serves as a reliable guide for fine-tuning the clustering engine.
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Figure 3: Performance comparison of multi-agent col-
laboration using different node sets.

MARK to utilize the clustering capabilities of any
state-of-the-art graph clustering model. The pre-
training loss for the engine is defined as follows:

Leng = Lali + Lclu. (2)

Subsequently, embeddings H′ and H′′ are used to
derive the clustering assignments C′ and C′′, respec-
tively. We construct GNN-uncertain node set S for
querying LLMs, as shown below:

S = {i ∈ G | C′
i ̸= C′′

i }. (3)

An empirical analysis has been performed to ex-
plain our motivation. As shown in Figure 3, the
results show that, given the ground-truth labels,
fine-tuning the clustering model using the set of
uncertain nodes S yields the most significant per-
formance improvement compared to using certain
nodes or randomly selected nodes. This highlights
the necessity of prioritizing uncertain nodes (Zhang
et al., 2025; Chen et al., 2023).

3.4 Multi-agent Collaboration
Concept Agent for Cluster Induction After ob-
taining cluster assignments Ĉ = {Ĉ1, Ĉ2, · · · , ĈK}
generated by the graph clustering engine, we se-
lect the top-n samples that are closest to the

center of each cluster to construct set Dclo =
{D1

clo,D2
clo, · · · ,DK

clo}. Through querying Mcon,
we acquire the concept Fcon for each cluster along
with its corresponding explanation,

Fcon = Mcon(D1
clo,D2

clo, · · · ,DK
clo). (4)

The acquired cluster concepts Fcon will be lever-
aged to craft the following two agents with more
precisely defined identities, thereby enhancing their
capabilities for specific tasks. The detailed agent
design can be found in Figure 6.

Generation Agent for Neighbor Summary In
order to filter out the LLM responses in S that do
not take topology into account, it is a natural ap-
proach to consider the neighborhood information
of these nodes as an aid in the decision-making
process (Chen et al., 2024b). Unlike GNNs, which
excel at efficiently aggregating information from
neighboring nodes, LLMs face significant chal-
lenges in this regard. To this end, we use Mgen to
aggregate neighbors and generate virtual synthetic
text Fsyn. Following the similarity-based neighbor
selection strategy (Li et al., 2024), we select the
top-k most similar samples from the neighbors of
uncertain nodes to form neighbor description set
Dnei. Subsequently, we input both the concepts
Fcon learned by Mcon and Dnei into Mgen, which
then generates new samples Fsyn,

F i
syn = Mgen(Di,Di

nei,Fcon). (5)

The virtual texts not only capture the topological re-
lationships among nodes within the graph but also
encapsulate the semantic context associated with
those nodes. They play a key role in filtering un-
certain nodes for the following agent. The detailed
agent design is listed in Figure 7.
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Inference Agent for Decision Filtration We
construct the inference prompt by appending the
cluster concepts obtained from the Concept Agent
to both the uncertain node’s text and the synthetic
text. By querying Minf , we get their inferred clus-
ter categories. Since the synthetic text captures
both the topological and semantic information of
the uncertain node, we use the consistency of the
agent’s feedback on the uncertain text and the syn-
thetic text as a filtering criterion to obtain Agents-
resolvable node set R, as shown below:

F i
inf ,F i_syn

inf = Minf (Di,F i
syn,Fcon), (6)

R = {i ∈ S | F i
inf = F i_syn

inf }. (7)

The detailed agent design is listed in Figure 8. In re-
sponse to the LLM’s feedback, we directly leverage
the knowledge contained in the generated texts to
refine the shallow node embeddings X, rather than
relying on explanations provided by the LLM (Qiao
et al., 2025). Specifically, we encode the generated
texts corresponding to the nodes in R using a Pre-
trained Language Model (PLM), then update X
by averaging the sum of these encodings with the
original, which can be expressed as:

x′
i =

xi + PLM(F i
syn)

2
, (8)

where x′
i denotes the updated features guided by

the knowledge of LLMs and i ∈ R.

3.5 Fine-Tuning with Ranking Guidance

Three agents collaborate to filter nodes from the
GNN-uncertain node set S, ultimately obtaining
the Agents-resolvable node set R. This process
is equivalent to conducting a topology-level and
semantic-level ranking of the nodes within the
GNN-uncertain node set through the efforts of mul-
tiple agents. The filtered nodes are those with high
rankings in the S. We should focus on these un-
certain nodes that are considered reliable by the
multi-agent system (Luo et al., 2025; Liu et al.,
2024a), as they can provide ranking-based supervi-
sory signals for fine-tuning.

Existing methods (Trivedi et al., 2024) use cross-
entropy to fine-tune the clustering model. However,
the feedback may still be inconsistent with the true
labels, even after filtering. Due to the lack of robust-
ness of cross-entropy loss to noisy labels (Zhang
and Sabuncu, 2018) and potentially inadequate mar-
gins (Liu et al., 2016), generalization performance

Algorithm 1: MARK

Input: G = (A,X,D), GNN encoder FΘ, training
epoch T , multi-agent execution interval T ′,
learning rate β, number of selected nodes n.

1 Use the graph clustering engine for pre-training;
2 Initialize Agents-resolvable node setR;
3 for i← 1 to T do
4 Augment G: Obtain G′ and G′′;
5 Encode: H′ = F(G′) and H′′ = F(G′′);
6 if i% T ′ == 0 then
7 Get the clustering assignments C′ and C′′ for

the augmented graphs by H′ and H′′;
8 Construct the GNN-uncertain node set S;
9 // Concept Agent

10 Select top-n nodes closest to each cluster
center as query samples;

11 Induce concept of each cluster byMcon;
12 // Generation Agent
13 Select neighbors of uncertain nodes in S

according to similarity ranking;
14 Produce synthetic text for uncertain nodes as

a summary of neighbors byMgen;
15 // Inference Agent
16 Query the clusters for synthetic texts and

uncertain texts;
17 UpdateR by filtering uncertain nodes with

cluster consistency byMinf ;
18 Update X of the nodes inQ by Eq. 8;

19 Calculate the fine-tuning loss Lft in Eq. 10;
20 Update: Θ← Θ− β · ∇Lft;

Output: Final cluster assignments.

deteriorates. Therefore, we adopt a ranking-based
supervision objective during fine-tuning to enhance
the robustness of node representations, thereby mit-
igating the adverse effects of noise.

We bring the uncertain nodes closer to the cluster
identified by the agent while repelling them from
other clusters. Specifically, we first calculate the
similarity between the nodes in R and the cluster
centers. We then pair each uncertain node i with
its corresponding cluster center as a positive pair
F i
inf , treating the remaining clusters as negative

pairs. We apply contrastive learning to the node-
cluster pairs, which acts as a calibration loss for the
coarse clustering assignment, expressed as follows:

Lcal = − 1

|R|
∑

i∈R
log

exp
(
sim

(
hi,µF i

inf

)
/t
)

∑K
k=1 exp (sim (hi,µk) /t)

,

(9)
where t means the temperature, µ denotes the clus-
ter center. Subsequently, we use Lft to fine-tune
the graph clustering engine, that is,

Lft = Leng + Lcal. (10)
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Overall, we consider the graph clustering model
that provides uncertain nodes as the engine for
three agents, establishing a progressive chain that
facilitates collaboration among three agents. In
turn, the collaborative decisions made by these
three agents offer reliable guidance for clustering.
The process of MARK is shown in Algorithm 1.

4 Experiments

4.1 Settings
Dataset We evaluate MARK on four widely used
text-attributed graphs (Chen et al., 2023): Cora,
CiteSeer, PubMed, and WikiCS. The detailed statis-
tics information is listed in Table 1.

Dataset #Node #Edge #Classes #Type

Cora 2,708 5,429 7 Citation
CiteSeer 3,186 4,277 6 Citation
PubMed 19,717 44,335 3 Citation
WikiCS 11,701 215,863 10 Wikipedia

Table 1: Statistics of used datasets.

Models For the graph clustering engine back-
bone, we utilize the state-of-the-art DMoN (Tsit-
sulin et al., 2023) and MAGI (Liu et al., 2024b) as
the baseline models. We select GPT-4o-mini1 as
our agent LLM to generate reliable guidance.

Metrics We adopt four metrics to evaluate clus-
tering results: ACC, NMI, ARI, and F1. The results
are reported for five runs with different random
seeds. Larger values denote better performance.

4.2 Performance Comparison
To more effectively evaluate MARK’s performance
on graph clustering tasks, we adopt two classic clus-
tering baselines, DMoN and MAGI, as the back-
bone clustering engines, deriving two versions of
MARK: MARK-DMoN and MARK-MAGI. We
then compare their performance using four met-
rics across four commonly used graph datasets:
Cora, CiteSeer, WikiCS, and PubMed. Table 2
presents the clustering performance of MARK with
the two distinct backbones. Additionally, DMoN
and MAGI represent the original clustering results,
while "PRE-TRAIN" indicates the clustering re-
sults after the graph clustering engine. Notably,
MARK-DMoN and MARK-MAGI display the fi-
nal clustering performance enhanced by our multi-
agent framework.

1https://openai.com/index/gpt-4o-mini-advancing-cost-
efficient-intelligence/

As shown in Table 2, MARK-MAGI demon-
strates a much more substantial improvement over
the MAGI backbone across the Cora, CiteSeer,
and WikiCS datasets, while displays a smaller in-
crease observed on PubMed, with 1.80% improve-
ment in NMI. Furthermore, MARK-DMoN ex-
hibits the most significant improvement on the Wi-
kiCS dataset, with a 20.80% increase in F1 score.
In conclusion, MARK not only excels across vari-
ous evaluation metrics but also proposes a versatile
framework for enhancing existing graph clustering
methods.

4.3 Ablation Study
To validate the contributions of each proposed
agent to MARK, we conduct comprehensive ab-
lation studies on the Cora and CiteSeer datasets.
Initially, the concept agent assigns topics based on
a selection of typical and high-confidence samples,
which significantly aids in cluster exploration. We
remove the concept agent and substitute it with the
highest-confidence text within each cluster to rep-
resent the cluster, resulting in this variant "W/O
AGENT 1". To illustrate the necessity of the gener-
ation agent, we replace the virtual text synthesized
by the generation agent with text randomly sam-
pled from its neighborhood, referred to as "W/O
AGENT 2". To demonstrate the effectiveness of se-
lectively accepting labels predicted by the inference
agent, we introduce "W/O AGENT 3", in which all
labels are directly assigned by the inference agent
without any filtering.

As illustrated in Table 3, removing the concept
agent results in the most significant performance
drop, while label filtering leads to a notable de-
crease in performance, ranking second in impact.
Specifically, "W/O AGENT 1" achieves an ACC
of 0.591 on the Cora dataset, representing a 12.2%
decrease compared to MARK-MAGI. Meanwhile,
the other variants, "W/O AGENT 2" and "W/O
AGENT 3" experience smaller ACC reductions of
5.1% and 2.6%, respectively, on the same dataset.
In conclusion, the removal of each agent indi-
vidually causes varying degrees of performance
degradation, underscoring the pivotal role each
agent plays in the overall efficacy of the designed
pipeline.

4.4 Sensitivity Analysis
In this section, we present a sensitivity analysis ex-
amining two critical aspects: (1) hyper-parameter
sensitivity and (2) the impact of LLM selection on
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DATASET METRIC DMON PRE-TRAIN MARK-DMON IMP ↑ MAGI PRE-TRAIN MARK-MAGI IMP ↑

CORA

ACC 0.628±0.080 0.671±0.024 0.675±0.017 4.70% 0.664±0.057 0.697±0.018 0.713±0.032 4.90%
NMI 0.490±0.042 0.515±0.011 0.548±0.005 5.80% 0.529±0.010 0.533±0.004 0.578±0.007 4.90%
ARI 0.437±0.069 0.452±0.001 0.473±0.014 3.60% 0.464±0.048 0.489±0.003 0.490±0.022 2.60%
F1 0.565±0.072 0.618±0.028 0.632±0.026 6.70% 0.614±0.055 0.644±0.035 0.670±0.037 5.60%

CITESEER

ACC 0.628±0.023 0.633±0.023 0.646±0.016 1.80% 0.624±0.059 0.650±0.055 0.670±0.022 4.60%
NMI 0.391±0.005 0.419±0.008 0.423±0.012 3.20% 0.411±0.028 0.424±0.025 0.438±0.009 2.70%
ARI 0.384±0.013 0.401±0.013 0.409±0.017 2.50% 0.396±0.043 0.418±0.039 0.432±0.014 3.60%
F1 0.598±0.016 0.608±0.025 0.620±0.012 2.20% 0.586±0.068 0.616±0.059 0.638±0.015 5.20%

WIKICS

ACC 0.326±0.019 0.481±0.021 0.520±0.032 19.40% 0.534±0.049 0.552±0.037 0.606±0.033 7.20%
NMI 0.235±0.023 0.396±0.016 0.416±0.023 18.10% 0.467±0.018 0.476±0.012 0.493±0.010 2.60%
ARI 0.090±0.016 0.213±0.014 0.258±0.044 16.80% 0.381±0.051 0.405±0.039 0.466±0.021 8.50%
F1 0.255±0.023 0.430±0.026 0.463±0.035 20.80% 0.447±0.047 0.457±0.039 0.515±0.052 6.80%

PUBMED

ACC 0.495±0.026 0.576±0.054 0.613±0.001 11.80% 0.590±0.001 0.589±0.001 0.615±0.011 2.50%
NMI 0.157±0.046 0.194±0.035 0.163±0.001 0.60% 0.180±0.001 0.179±0.001 0.198±0.018 1.80%
ARI 0.140±0.058 0.163±0.024 0.179±0.001 3.90% 0.154±0.002 0.152±0.001 0.192±0.018 3.80%
F1 0.462±0.031 0.576±0.053 0.608±0.001 14.60% 0.590±0.001 0.589±0.001 0.611±0.009 2.10%

Table 2: Clustering performance of MARK with two distinct backbones, DMON and MAGI separately. The
boldfaced scores represent the best results.

DATASET METRIC W/O AGENT 1 W/O AGENT 2 W/O AGENT 3 MARK-MAGI

CORA

ACC 0.591±0.052 0.687±0.036 0.662±0.046 0.713±0.032
NMI 0.482±0.029 0.556±0.012 0.544±0.020 0.578±0.007
ARI 0.346±0.038 0.488±0.041 0.428±0.036 0.490±0.022
F1 0.558±0.073 0.646±0.037 0.614±0.055 0.670±0.037

CITESEER

ACC 0.540±0.056 0.638±0.070 0.608±0.040 0.670±0.022
NMI 0.336±0.031 0.414±0.041 0.400±0.023 0.438±0.009
ARI 0.292±0.045 0.409±0.058 0.374±0.039 0.432±0.014
F1 0.500±0.055 0.595±0.077 0.570±0.056 0.638±0.015

Table 3: Ablation Study of MARK-MAGI on CORA
and CITESEER Datasets.

MARK’s performance.
To assess the sensitivity of the proposed frame-

work MARK to hyper-parameters, we conduct two
analyses on the Cora and CiteSeer datasets. The
first analysis examines the hyper-parameter associ-
ated with the number of high-confidence samples
selected by the concept agent in each cluster, as
these samples directly impact the quality of the
cluster topics. The second analysis focuses on the
hyper-parameter controlling the number of neigh-
bors fed into the generation agent, which greatly
influences the quality of the virtual text it synthe-
sizes.

In the context of the concept agent, we inves-
tigate the effect of varying the number of high-
confidence samples on the topic name derived by
the agent, which subsequently influences the cluster
assignments determined by the inference agent and
ultimately impacts the model’s performance. As
depicted in Figure 4, a limited number of samples
may lead to inaccurate or incomplete topic repre-
sentations, while an increasing number of samples
facilitates the exploration of inter-sample similari-
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Figure 4: Sensitivity analysis regarding the number of
high-confidence samples n for the concept agent. Panels
(a) and (b) present the sensitivity analysis results on the
Cora and CiteSeer datasets, respectively.

ties. However, the introduction of additional rela-
tionships within the group can cause the clusters to
become fragmented, resulting in performance fluc-
tuations that are sensitive to the hyper-parameter
settings. As shown in Figure 5, it is observed that
the inclusion of solely the uncertain text may sig-
nificantly impact the quality of the newly generated
text, thereby introducing greater uncertainty into
MARK. Consequently, we propose generating vir-
tual text that incorporates both the uncertain node
and its surrounding neighborhood, leading to a no-
table performance improvement compared to the
approach that disregards neighborhood semantics.

As illustrated in Table 4, we focus on the ef-
fect of LLM selection on the final performance
of MARK-MAGI. We have incorporated two ad-
ditional LLMs, GPT-3.5-turbo and Deepseek-R1,
to examine the impact of LLM selection. Notably,
all three LLMs clearly enhance clustering perfor-
mance when integrated with ranking guidance, al-
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Figure 5: Sensitivity analysis regarding the number of
neighbors k for the generation agent. Panels (a) and (b)
present the sensitivity analysis results on the Cora and
CiteSeer datasets, respectively.

DATASET LLM ACC NMI ARI F1

CORA

GPT-3.5-TURBO 0.714±0.029 0.547±0.015 0.502±0.029 0.683±0.039
GPT-4O-MINI 0.713±0.032 0.578±0.007 0.490±0.022 0.670±0.037
DEEPSEEK-R1 0.707±0.034 0.561±0.019 0.509±0.036 0.676±0.022

CITESEER

GPT-3.5-TURBO 0.660±0.051 0.432±0.023 0.427±0.038 0.628±0.045
GPT-4O-MINI 0.670±0.022 0.438±0.009 0.432±0.014 0.638±0.015
DEEPSEEK-R1 0.666±0.036 0.436±0.023 0.431±0.032 0.613±0.046

Table 4: The impact of the chosen LLM on MARK-
MAGI’s performance. The best results are highlighted
in bold.

though the extent of improvement varies depend-
ing on the specific LLM, evaluation metrics, and
datasets used.

4.5 Case Study
Concept Agent Reveals More Semantic Essence
We present cluster 3 from the CiteSeer dataset as
a representative example, which is associated with
Artificial Intelligence. However, we observe that
node 1528, labeled as Machine Learning, emerges
as the highest-confidence sample within cluster 3.
This highlights a potential limitation: relying solely
on the highest-confidence sample to represent a
cluster may not accurately capture the cluster’s
semantic essence. To address this, we feed the
top-n confidence samples into the concept agent,
and then provide a comprehensive summary of the
cluster’s topic. For instance, when using the top-
10 confidence samples, the concept agent assigns
Probabilistic Models and Learning in Intelligent
Systems to cluster 4. In contrast, when leveraging
the top-200 samples, the derived topic name shifts
to Probabilistic Reasoning and Machine Learning
Techniques. Obviously, the latter aligns much better
with the ground truth Machine Learning, demon-
strating a larger sample size may yields a much
more rich semantics.

Generation Agent Synthesizes Context-aware
Texts To better explore the quality of generated

text considering neighborhood semantics, we take
node 1383 from the CiteSeer dataset as a case
study. Specifically, node 1383 is one of the un-
certain nodes identifying by the graph clustering
engine, labeled as Human Computer Interaction.
As described in Table 9, we then compare the out-
comes of two strategies for novel and virtual text
generation: the former generates text based solely
on the target node 1383 text, while the latter in-
corporates both the target and neighborhood texts.
The target text presents a novel ASL recognition
method, which aligns better with Human Computer
Interaction and is somewhat related to Artificial In-
telligence. The first generation prompt, focused on
ASL frameworks, leads to a misleading predicted
label of Artificial Intelligence. In contrast, the sec-
ond prompt, utilizing the graph structure and neigh-
borhood information, generates a text about gesture
recognition, which is accurately labeled with Hu-
man Computer Interaction. In conclusion, includ-
ing neighborhood texts in the generation prompt
may contribute to higher quality text generation,
providing a more effective and diverse perspective
and enhancing text embeddings.

Inference Agent Filters low quality labels Al-
though the inference agent can predict labels for
uncertain nodes by integrating both texts and con-
texts to some extent, there still exists some random-
ness and misclassification in the label predictions.
Therefore, placing complete trust in the labels pre-
dicted by the inference agent could introduce addi-
tional noise into our pipeline. Instead, we filter out
low-confidence labels by assessing the correspon-
dence between the predicted label for the target
text and the synthesized text. As shown in Table
10, the uncertain node 16 from the CiteSeer dataset
is misclassified as Machine Learning by the infer-
ence agent, while its ground truth is Information
Retrieval.

5 Conclusion

In this paper, we address the challenge of text-
attributed graph clustering by leveraging the com-
plementary strengths of graph neural networks
(GNNs) and large language models (LLMs). Our
proposed MARK is a novel framework that inte-
grates GNNs with multi-agent LLM collaboration
to generate robust, ranking-based guidance. To
overcome the limitations of current approaches,
such as narrow single-agent perspectives, insuffi-
cient noise filtering, and fragile supervision, we de-

6064



sign three collaborative agents: the concept agent
extracts cluster semantics, the generation agent syn-
thesizes topology-aligned text for uncertain nodes,
and the inference agent provides ranking-based
feedback by contrasting uncertain and synthetic
texts. By using consistent LLM feedback as super-
visory signals and incorporating a ranking-aware
loss, MARK effectively reduces noise interference
and enhances clustering robustness. More impor-
tantly, extensive experiments validate that MARK
offers a powerful pipeline for augmenting existing
GNN-based clustering methods with LLMs.

6 Limitations

While the proposed MARK demonstrates promis-
ing performance in text-attributed graph clustering,
an important limitation remains to be considered.
Although topology alignment is enforced for gen-
erated texts, the framework does not explicitly ver-
ify factual consistency between synthetic texts and
real-world knowledge. This may introduce subtle
noise in scenarios requiring strict semantic fidelity.
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A Prompts design for multi-agent framework

The detailed instructions for three agents, concept agent, generation agent and inference agent, are
illustrated in Figure 6, Figure 7 and Figure 8.

# Concept Agent
You are an AI assistant specializing in text induction. Please generate a topic name based on
the provided input texts.
Below are the high-confidence samples related to <dataset field> from a specific cluster. Analyze
the commonalities and core content of these samples and provide a concise summary of the
cluster’s theme. Output the theme as a short name without adding any extra explanations. The
cluster has the following high-confidence samples: <high-confidence texts of the i-th cluster>.
Please comprehensively consider the commonalities between these samples and then conclude
the topic of the cluster concisely. Output the newly generated topic name as a dictionary, with
keys "answer" and "explanation".

Figure 6: The detailed instruction design of the concept agent for cluster induction.

# Generation Agent
You are an AI assistant specializing in text generation. Please create a virtual text based on the
surrounding input texts.
Given a target article related to <dataset field>: <the text of the target article>. The topic of this
article may fall under one of the following clusters: <topic name from Concept Agent>. It has the
following important neighbors which have citation relationship to this article, from most related to
least related: <the texts of Neighbors>. Please consider the information from the target article
and its neighbors, and generate a virtual article similar to the given one, with a title of no more
than 15 words and an abstract limited to 300 words. Output the newly generated virtual article
as a dictionary, with keys "answer" and "explanation".

Figure 7: The detailed instruction design of the generation agent for neighbor summary.

# Inference Agent
You are an AI assistant specializing in text inference. Please identify the most likely cluster to
which the given text belongs.
Given a target article related to <dataset field>: text. Please determine which cluster this
<dataset field> most likely belongs to. The optional clusters are: <topic name from Concept
Agent>. Please comprehensively consider which cluster this article most likely belongs to, only
answer the cluster number directly as a dictionary, with keys "answer" and "explanation".

Figure 8: The detailed instruction design of the inference agent for decision filtration.

B Evaluation Metrics

In our work, we adopt four widely recognized metrics: accuracy (ACC), normalized mutual informa-
tion (NMI), adjusted rand index (ARI), and F1 score (F1), to comprehensively evaluate the clustering
performance of MARK.

• ACC quantifies the alignment between predicted cluster labels and ground-truth labels. In the
context of unsupervised clustering, the predicted clusters are first matched to the true labels using
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the Hungarian algorithm. The value of ACC is then calculated from the resulting confusion matrix
C ∈ RK×K as follows:

ACC =

∑K
i=1Ci,i∑K

i=1

∑K
j=1Ci,j

, (11)

where Ci,j denotes the number of samples whose true label is i and predicted label is j.

• ARI measures similarity between two assignments. Given a set S and two clustering results X =
(X1, X2, ..., Xr) and Y = (Y1, Y2, ..., Ys). Let C =

∑
ij

(nij

2

)
, D =

∑
i

(
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2

)
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)
, where

nij = |Xi ∩ Yj |, ai =
∑

j nij , and bj =
∑

i nij . Then we can calculate ARI as follows:
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C − (D · E)/
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2

)
1
2(D + E)− (D · E)/

(
n
2

) . (12)

• NMI calculates consistency between the predicted and true labels. Given two clustering results
X = (X1, X2, ..., Xr) and Y = (Y1, Y2, ..., Ys),

NMI =
I(X,Y )

max{H(X), H(Y )} , (13)

where I(X,Y ) is the mutual information between X and Y , H(X) and H(Y ) are the entropy of X
and Y respectively.

• F1 Score is computed as the arithmetic mean of the per-class F1 scores and is used to assess clustering
performance. It balances precision and recall, providing a comprehensive measure of a model’s
accuracy.

C Generated concepts

Here are three examples of the ground truth alongside the concepts generated by the concept agent.

Ground Truth Predicted Concept Explanation
Reinforcement
Learning

Reinforcement
Learning and Function
Approximation

The texts consistently discuss various aspects and techniques of rein-
forcement learning, particularly focusing on the challenges and method-
ologies associated with integrating function approximation methods...

Case Based Adaptive Case-Based
Reasoning Systems

The samples in this cluster revolve around the development and enhance-
ment of case-based reasoning systems, focusing on adaptability, learn-
ing from past experiences, and implementing various mechanisms...

Rule Learning Probabilistic Reasoning
and Decision-Making

The cluster focuses on the development and application of probabilistic
models...

Probabilistic
Methods

Bayesian Methods and
Applications

The samples in this cluster focus on various aspects of Bayesian sta-
tistical methods, including parameter estimation, model comparison,
posterior distributions, and applications of Markov Chain Monte Carlo
(MCMC)...

Theory Adaptive Learning and
Inductive Bias

The cluster focuses on various machine learning techniques that empha-
size the importance of learning algorithms’ adaptability...

Genetic Algorithms Evolutionary
Algorithms in Problem
Solving

The cluster highlights the development and application of evolutionary
algorithms, particularly genetic algorithms and genetic programming,
in solving complex computational problems across various domains....

Neural Networks Neural Network Theory
and Applications

The cluster comprises diverse studies focusing on the theoretical under-
pinnings, optimization, architectures, and various applications of neural
networks...

Table 5: Concepts generated by the concept agent on Cora dataset.
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Ground Truth Predicted Concept Explanation
Agents Multi-Agent System

Architectures and
Methodologies

The cluster is characterized by a focus on various aspects of multi-agent
systems including design methodologies, architectures, collaboration
mechanisms, and the handling of complex interactions among agents...

Machine Learning Probabilistic Learning
and Decision Systems

The cluster comprises various papers focusing on the integration of
probabilistic frameworks and learning algorithms across multiple do-
mains, including artificial intelligence, machine learning...

Information
Retrieval

Intelligent Information
Retrieval and Web
Search Techniques

The cluster encompasses diverse research on advanced methodologies
and algorithms for enhancing information retrieval and search capabili-
ties on the web...

Database Query Optimization
and Maintenance in
Data Warehousing

The cluster focus on various techniques and methodologies for opti-
mizing query performance and maintaining data integrity within data
warehousing systems...

Human Computer
Interaction

Ubiquitous Computing
and Interactive
Interfaces

The cluster focus on enhancing human-computer interaction through
ubiquitous computing, mobile devices, and augmented reality...

Artificial
Intelligence

Vision-Based Learning
and Interaction

The cluster encompasses various approaches and systems involving
vision-based techniques for obstacle detection, navigation, gesture
recognition, and human-computer interaction...

Table 6: Concepts generated by the concept agent on CiteSeer dataset.

Ground Truth Predicted Concept Explanation
Computational
linguistics

Multilingual
Terminology and
Language Processing

The samples revolve around terminological databases and technolo-
gies related to language processing and translation across multiple
languages...

Databases Classic Video Game
Developments

The cluster comprises detailed accounts of various classic video
games...

Operating systems Live Operating Systems
and Unix Variants

This cluster is composed of various texts that revolve around live oper-
ating systems...

Computer
architecture

Microprocessor
Architectures and
Technologies

The cluster encompasses a variety of microprocessor architectures,
including RISC, CISC, and several proprietary designs...

Computer security Emerging
Cybersecurity Threats
and Defenses

The texts are related to various aspects of cybersecurity, including
vulnerabilities, attack methodologies...

Internet protocols Network Protocols and
Management

The cluster consists of a wide range of texts detailing various network
protocols...

Computer file
systems

Evolution of Windows
Operating Systems

The cluster contains detailed descriptions and features related to various
iterations of Microsoft’s Windows operating systems...

Distributed
computing
architecture

Service-Oriented
Architectures and
Integration
Technologies

The samples collectively emphasize concepts and technologies related
to service-oriented architectures (SOA), integration frameworks, and
data sharing methodologies...

Web technology Mobile Operating
Systems and Devices

The provided texts explore detailed information on various mobile
operating systems (like iOS and Android)...

Programming
language topics

Programming
Languages and Their
Implementations

The provided samples focus on various programming languages, their
features, implementation techniques...

Table 7: Concepts generated by the concept agent on WikiCS dataset.

D Computational Cost and Runtime Analysis

MARK introduces a novel paradigm to enhance conventional graph clustering methods by incorporating
multi-agent ranking guidance. Specifically, we select two clustering methods, DMoN and MAGI, as the
graph clustering engine separately to identify uncertain node texts, which are then processed by an LLM
and fine-tuned through multi-agent ranking guidance. Consequently, the computational cost and runtime
difference between MARK and its backbone methods stems from the execution of multi-agent module.
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Table 8 presents the computational cost and running time of MARK-MAGI when using the API (based
on GPT-4o-mini). Following the approach of TAPE (He et al., 2023), we estimate both cost and runtime
based on the number of input and output tokens.

Dataset Cora CiteSeer WikiCS PubMed

Cost($) 0.25 0.18 0.55 0.53
Runtime(min) 3.79 2.79 12.15 13.46

Table 8: Computational cost and runtime analysis.

E Case Study

Factual Accuracy of Generated Texts To evaluate the quality of the generated texts, we use the
ROUGE metric (Lin, 2004), where the score ranges from 0 to 1, with a higher score indicating greater
factual alignment between the generated and referenced texts. Specifically, we calculate the ROUGE
score between the generated texts and the referenced target node text, as well as its similar neighboring
texts. For comparison, we also compute the ROUGE score between randomly sampled texts and the same
referenced texts. On the Cora, CiteSeer, and PubMed datasets, the ROUGE scores for the LLM-generated
texts are 0.39, 0.37, and 0.50, respectively, while the scores for the randomly sampled texts are 0.25, 0.25,
and 0.27.

Case Study of Generated Texts Here, we present two case studies to illustrate the quality of the
generated texts. Table 9 shows a comparison between generated texts with and without incorporating
neighborhood texts. Table 10 demonstrates how label filtering, guided by ranking, helps prevent the
introduction of additional noise into the graph clustering engine.

Target Text.
Title: Toward Scalability in ASL Recognition: Breaking Down Signs into Phonemes.
Abstract: In this paper we present a novel approach to continuous, whole-sentence ASL recognition that uses phonemes
instead of whole signs as the basic units... We subsequently train Hidden Markov Models (HMMs) to recognize the
phonemes...
Ground Truth: Human Computer Interaction.
Predicted Label: Artificial Intelligence.
Explanation: This falls under Vision-Based Learning and Interaction as it involves recognizing and interpreting visual
gestures within a computational framework.

Text generated based solely on the target text.
Title: Enhancing ASL Interpretation Through Phoneme-Based Recognition Frameworks.
Abstract: In this paper, we introduce an innovative framework for the interpretation of American Sign Language (ASL) by
focusing on phoneme-level decomposition rather than traditional sign recognition...We utilize advanced Hidden Markov
Models (HMMs) to train our system in recognizing these phonemes...
Predicted Label: Artificial Intelligence.
Explanation: The use of Hidden Markov Models also indicates an emphasis on computational techniques related to vision-
based systems.

Text generated based on both the target and adjacent texts.
Title: Improving Continuous Gesture Recognition with Gesture Segmentation and Classification.
Abstract: In this research, we introduce an innovative framework for continuous gesture recognition that emphasizes the
segmentation of gestures into smaller, classifiable units known as gesture segments...
Predicted Label: Human Computer Interaction.
Explanation: The article focuses on improving continuous gesture recognition, which is directly related to human-computer
interaction.

Table 9: Comparison of generated text quality with and without considering neighborhood texts.

F Generalization Across Backbones and Datasets

To better demonstrate the generalizability and applicability of MARK, we extend it to text-rich graphs
in other domains, such as e-commerce networks. Furthermore, we incorporate additional deep graph
clustering frameworks, namely Dink-Net (Liu et al., 2023a) and HSAN (Liu et al., 2023b), as backbones
to further explore the potential of MARK in enhancing deep graph clustering through this novel paradigm.
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Target Text.
Title: Error-Driven Pruning of Treebank Grammars for Base Noun Phrase.
Abstract: Identification Finding simple, non-recursive, base noun phrases is an important subtask for many natural language
processing applications...
Ground Truth: Information Retrieval.
Predicted Label: Machine Learning
Explanation: The article relates to natural language processing (NLP) and discusses algorithms for identifying base noun
phrases, which involves machine learning methods.

Generated text by generation agent.
Title: Streamlined Algorithms for Identifying Core Verb Phrases in Textual Data.
Abstract: Identifying core verb phrases within textual data is a foundational task in various natural language processing
(NLP) applications...we introduce a streamlined algorithm specifically designed to accommodate the simpler nature of
identifying core verb phrases...
Predicted Label: Information Retrieval.
Explanation: The article focuses on natural language processing (NLP) applications, specifically identifying core verb
phrases in textual data, which is closely related to intelligent information retrieval.

Table 10: Label filtering based on consistency between target text label and generated text label

Generalization Across Backbones MARK introduces a paradigm to enhance deep graph clustering
methods by incorporating multi-agent ranking guidance. In our paper, we use DMoN and MAGI as
baselines, but other deep graph clustering frameworks can also serve as backbones. To further explore
this, we have additionally incorporated Dink-Net (Liu et al., 2023a) and HSAN (Liu et al., 2023b) from
your references as graph clustering engines. Their performance on the Cora dataset is presented below:

METRIC DINK-NET PRE-TRAIN MARK-DINK-NET IMP ↑ HSAN PRE-TRAIN MARK-HSAN IMP ↑
ACC 0.557±0.029 0.613±0.053 0.669±0.020 11.2% 0.646±0.018 0.671±0.023 0.676±0.046 3.0%
NMI 0.434±0.012 0.516±0.013 0.517±0.006 8.3% 0.511±0.014 0.525±0.010 0.544±0.019 3.3%
F1 0.502±0.040 0.561±0.042 0.590±0.035 8.8% 0.593±0.035 0.621±0.023 0.638±0.044 4.5%

Table 11: Clustering performance of MARK-Dink-Net and MARK-HSAN.

Generalization Across Datasets We evaluate MARK on the e-commerce network Books-History (Yan
et al., 2023), which consists of 41,551 nodes, 358,474 edges, and 12 classes. Specifically, the node
attributes represent book descriptions, while the edges indicate that two books are co-purchased or
co-viewed. The performance of MARK is presented in the following table:

METRIC MAGI PRE-TRAIN MARK-MAGI IMP ↑
ACC 0.341±0.024 0.362±0.012 0.367±0.015 2.6%
NMI 0.326±0.010 0.338±0.002 0.341±0.006 1.5%
ARI 0.153±0.010 0.165±0.011 0.207±0.014 5.4%

Table 12: Clustering performance of MARK on Books-History datasets.
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