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Abstract

User profile embedded in the prompt template
of personalized recommendation agents play a
crucial role in shaping their decision-making
process. High-quality user profiles are essential
for aligning agent behavior with real user inter-
ests. Typically, these profiles are constructed
by leveraging LLMs for user profile modeling
(LLM-UM). However, this process faces sev-
eral challenges: (1) LLMs struggle with long
user behaviors due to context length limita-
tions and performance degradation. (2) Ex-
isting methods often extract only partial seg-
ments from full historical behavior sequence,
inevitably discarding diverse user interests em-
bedded in the omitted content, leading to in-
complete modeling and suboptimal profiling.
(3) User profiling is often tightly coupled with
the inference context, requiring online process-
ing, which introduces significant latency over-
head. In this paper, we propose PersonaX,
an agent-agnostic LLM-UM framework to
address these challenges. It augments down-
stream recommendation agents to achieve
better recommendation performance and in-
ference efficiency. PersonaX (a) segments
complete historical behaviors into clustered
groups, (b) selects multiple sub-behavior se-
quences (SBS) with a balance of prototypical-
ity and diversity to form a high-quality core
set, (c) performs offline multi-persona profiling
to capture diverse user interests and generate
fine-grained, cached textual personas, and (d)
decouples user profiling from online inference,
enabling profile retrieval instead of real-time
generation. Extensive experiments demon-
strate its effectiveness: using only 30-50% of
behavioral data (sequence length 480), Per-
sonaX enhances AgentCF by 3-11% and
Agent4Rec by 10-50%. As a scalable and
model-agnostic LLM-UM solution, PersonaX
sets a new benchmark in scalable user model-
ing. The code is available at URL .

Thttps://github.com/Ancientshi/PersonaX

1 Introduction

Recent advances in LLMs (Yang et al., 2023;
Qin et al., 2023; Xu et al., 2025a,b) have en-
abled instruction-based agents (Xu et al., 2025b)
to excel in autonomous interaction and decision-
making (Li et al., 2023; Wang et al., 2024a,c).
By integrating realistic user profiles into prompts,
these agents achieve personalization and effec-
tively mimick real user behaviors (Sun et al.,
2024; Shao et al., 2023). Personalized recommen-
dation agents—such as AgentCF (Zhang et al.,
2024b), Agentd4Rec (Zhang et al., 2024a), and
RecAgent (Wang et al., 2024b)—inherit this po-
tential yet face a challenge: users seldom state their
preferences explicitly, leaving them implicit in their
historical behavioural traces. Hence, modeling rep-
resentative descriptive user profiles from implicit
feedback becomes crucial for unleashing the full
power of personalized recommendation agents.

Recommendation agents typically employ large
language models for real-time user modelling
(LLM-UM). The profile produced by the LLM
is embedded in the prompt and guides the model
when generating recommendations for a target item.
Existing LLM-UM methods can be grouped into
three categories. Demonstration approaches en-
code the user’s behavior sequence (BS) directly
into the prompt as in-context examples, allowing
the LLM to generalize from explicit demonstra-
tions (P1 et al., 2020; Dai et al., 2023; Liu et al.,
2023). Summarization techniques distill exten-
sive interaction histories into concise textual per-
sonas that capture core preference signals; this strat-
egy, shown to improve personalization (Richard-
son et al., 2023), is adopted by ONCE (Liu et al.,
2024) and Agent4Rec (Zhang et al., 2024a). More-
over, methods like AgentCF (Zhang et al., 2024b)
and RecAgent (Wang et al., 2024b) adopt a Reflec-
tion approach, employing reflection mechanisms
(Cheng et al., 2023; Zhao et al., 2024a; Shi et al.,
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Task Description:
We provide [User Profile], you need
play the role of the user. And we also
provide [Candidate Item]. You need to

Profile Retrieval Judge whether you like the item or not.

(Given Target Item) Candidate Item:
- Title: Sofia's Dream; Brand.: Visit
Amazon's Katja Marek Page;
—_  »  Category: Books, Crafis, Hobbies
Relevant Snippet User Profile:
{Placeholder}

Figure 1: PersonaX is a user-modeling tool that leverages historical behavioral data to construct multiple persona,
which is cached for retrieval by downstream agent. In the left panel, PersonaX.A visualizes the overall behavior
distribution, the results of clustering, and selected/unselected samples. PersonaX.B, depicts how sampling budgets

are allocated at a 50% selection ratio.

2024a) on the behavior sequence to iteratively re-
fine user persona.

LLM-UM depends on historical behavioral se-
quences (BS) that encode rich preference signals. A
straightforward strategy is to employ the Full data
into the LLM for profiling (Zhang et al., 2024a), but
this quickly becomes infeasible as sequence length
grows. Recent sampling truncates the user’s be-
havior sequence to its most recent interactions,
prioritizing short-term interests (Hou et al., 2024;
Zhang et al., 2024b). This strategy depends on
temporal information that are only available during
online inference. Consequently, both the sampling
and the subsequent LLM-UM process must be per-
formed online. Alternatively, Relevance sampling
(Salemi et al., 2024; Zhang et al., 2024a; Zhou et al.,
2024) selects those past behaviors most pertinent
with the target item for capturing long-term pref-
erence patterns. Like Recent sampling, it relies on
item-specific contextual signals that only become
available at inference time—so this strategy also
must be executed online.

We identify three principal limitations in the
way current LLM-UM methods utilize historical
behavioral data: (1) Difficulty profiling from
long behavior sequences. Summarization-based
approaches are constrained by LLMs’ maximum
input length and suffer from the “lost-in-the-
middle” phenomenon (Zhao et al., 2024b; Shi
et al., 2024b,c; Borgeaud et al., 2022; Lewis et al.,
2020), whereby critical mid-sequence context is
omitted, undermining accurate preference infer-
ence. Reflection-based methods, in turn, incur
prohibitive computational cost and latency when
reasoning over very lengthy sequences. Further-

more, excessive behavioral data introduce noise
and redundancy that obscure truly salient signals.
(2) Sampling inevitably incurs information loss.
By omitting valuable behavioral signals, existing
sampling strategies can compromise the quality
of the generated user profile. (3) Profiling relies
on online contextual information and results in
inference latency. Both recent and relevance sam-
pling strategies require real-time contextual inputs
(e.g., current timestamp, target item), which man-
dates modeling user profiles at inference time and
incurs decision-making latency overhead.

To address these challenges, we propose Per-
sonaX, a novel LLM-UM framework that performs
end-to-end profile from long behavioral sequences
in an offline setting, cached for online retrieval
by downstream recommendation agents for deci-
sion making. Such paradigm significantly reduces
online inference latency and enhances overall rec-
ommendation performance, their architecture is
illustrated in Figure 1. PersonaX segments full his-
torical behaviors into clustered groups and selects
sub-behavior sequences (SBS) for each cluster with
prototypicality-diversity balanced sampling. Sum-
marization or Reflection is conducted on SBS in
an offline manner, generating multiple fine-grained
personas that capture diverse user interests. Those
cached textual representations are then retrieved
by downstream recommendation agents during on-
line inference stage. PersonaX prioritizes example
quality over quantity, using only a small fraction
of behavioral data (sequence length < 5) to select
compact yet informative SBS and avoid selecting
irrelevant or noisy samples, thus overcoming issues
such as input length constraints and mid-content
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oversight. Compared to both Recent and Relevance
sampling, our method constructs a high-fidelity
core-set that preserves the full spectrum of user
interests, thereby avoiding information loss. Per-
sonaX assumes responsibility for profile modeling,
enabling cached profile retrieval instead of on-the-
fly generation and thereby eliminating application
agents’ online inference latency.

In summary, our contributions are threefold.
(1) PersonaX Framework: We introduce Per-
sonaX, an LLM-based user-profile modeling frame-
work oriented for recommendation agents. By
decoupling profile generation from online infer-
ence, PersonaX eliminates real-time modeling
overhead—accelerating inference—and delivers
more representative user profiles that substan-
tially boost downstream recommendation perfor-
mance. (2) Data-Efficient Core Behavior Selec-
tion: We introduce a novel strategy for selecting
core behaviors via clustering, adaptive allocation of
sampling budgets, and a prototypicality-diversity-
balanced in-cluster selection mechanism. By us-
ing only 30-50% of the data utilization and ig-
nore other redundant behaviors, our method gen-
erates multiple compact sub-behavior sequences
(SBSs), each capturing a distinct facet of user pref-
erences. (3) Extensive Validation: We evalu-
ate PersonaX with two leading recommendation
agents—AgentCF and Agent4Rec— on next-item
ranking tasks across three datasets of varying se-
quence lengths. PersonaX consistently boosts rank-
ing accuracy (3—-11% for AgentCF; 10-50% for
Agent4Rec) and accelerates online inference effi-
ciency.

2 Preliminary

2.1 User Modeling

Let S = {(Il, Ll), (IQ, LQ), ey (In, Ln)} de-
notes a user’s historical behavior sequence of
length n, where I; represents the i-th interacted
item and L; € {0, 1} indicates the corresponding
interaction label (O for dislike and 1 for like). We
define the task of user modeling is to construct a
precise and representative user persona P(S) by
leveraging the historical behavioral data S, where
P(+) is a user modeling method (e.g., Summariza-
tion and Reflection). The learned user persona
should capture the implicit preference patterns un-
derlying interactions, enabling augmentation for
downstream instructional agent recommendation.

2.2 Sub-Behavior Sequence (SBS) Selection.

To tackle the challenge of LLM-UM struggling
with analyzing long behavior sequence, sampling
methods are often employed on the full historical
sequence S. These methods aim to extract a Sub-
Behavior Sequence (SBS) that retains the most es-
sential information necessary for accurate user pro-
filing while significantly reducing sequence length.
Formally, let S* = {fl,fQ, e ,fk} C S denote
the SBS of length k (k < n), where fz represents
the i-th selected behavior. The selection ratio, %,
quantifies the compression achieved.

3 Method

3.1 Behavior Clustering

We employ hierarchical clustering to group items
based on user interest similarity, treating each clus-
ter as a cohesive analysis unit. A language embed-
ding model E(-), such as BGE Embedding (Chen
et al., 2024) or EasyRec (Ren and Huang, 2024),
encodes each item I; into a dense vector e;. Let
E = {e1,eq,...,e,} represent the item embed-
dings from the user’s interaction history. Pair-
wise similarity is measured via Euclidean distance:
d(ei, ej) = Hez — €j||2, denoted as diyj.

Clustering is controlled by a distance threshold
T, which restricts the maximum intra-cluster dis-
tance while preventing merges between clusters
with inter-cluster distances below 7. The result-
ing clusters C = {c1,c2,...,cn} satisfy Intra-
cluster constraint: Ve € C,VI;,I; € ¢,d;j < T
and Inter-cluster constraint: Ve, ¢ € C,cp #
cqd(cp,cq) > T.

3.2 Sampling Budget Allocation

Given a finite budget & for sampling historical be-
haviors, we propose a Sampling Budget Allocation
Strategy to distribute this budget across clusters.
The algorithm dynamically adjusts allocation based
on cluster size distribution, ensuring that smaller
clusters are given sufficient attention while prevent-
ing larger clusters from dominating the selection
process. This promotes a balanced distribution of
selected samples, preserving the diversity of sam-
pled behaviors and maintaining a representative
coverage of the data (Zheng et al., 2023).

The strategy first sorts clusters by size in ascend-
ing order. Each cluster is initially assigned an aver-
age allocation q. If a cluster’s size is smaller than g,
it receives its exact size, and q is recalculated based
on the remaining quota. Otherwise, the cluster is
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Algorithm 1 Sampling Budget Allocation

Algorithm 2 In-Cluster Selection

1: Input: Set of clusters C = {ci,c2,...,cm}, Cluster
size list s = {s1,82,...,8m} where s; = |¢;|, Total
sampling budget k

2: Output: Allocation list A = {a1,a2,...,am}
3: function ALLOCATEBUDGET(C, s, k)
4: Sort s in ascending order and obtain sorted indices I
5 Initialize allocation A <« [0,0,...,0]
6 Remaining budget B + k
7: for each cluster ¢ in sorted order do
8: T <— number of remaining clusters
9 q < B //r > Average allocation per remaining
cluster
10: a; < min(s;,q) > Allocate min of cluster size
or q
11: B+ B—a, > Update remaining budget
12: end for
13: while B > 0 do > Distribute any remaining budget
14: for each cluster ¢ in sorted order if a; < s; do
15: a; +—a; +1
16: B+~ B-1
17: if B = 0 then break
18: end if
19: end for
20: end while
21: Restore original order for A using I

22: return A
23: end function

allocated q. This process repeats iteratively until
the entire budget is assigned. Algorithm 1 details
the method, and Figure 1.B illustrates an example,
where smaller clusters are fully allocated first, and
the remaining budget is evenly distributed among
larger clusters.

3.3 In-Cluster Selection

After partitioning user behaviors into semantically
coherent clusters and each cluster is allocated with
a sampling quota, we are to select a representa-
tive subset from each cluster. Data selection meth-
ods that greedily choose items closest to the clus-
ter centroid (e.g., (Welling, 2009; Rebuffi et al.,
2017; Sorscher et al., 2022)) yield overly homo-
geneous user profiling, while boundary-focused
strategies (e.g., (Paul et al., 2021; Toneva et al.,
2019)) risk overemphasizing diversity at the ex-
pense of prototypical patterns. To address these
issues, we introduce a sampling strategy that bal-
ances prototypicality and diversity within each clus-
ter. For a cluster ¢;, its centroid is computed as
Wi = ﬁ > e E(I;). Let ¢! denote the selected
subset from ¢;. Our goal is to maximize both the
similarity of selected items to the centroid and the
diversity among them:

1: Input: Cluster ¢; = {I1, I2, ..., I, }, centroid p;, selec-
tion size a;, weights w), and wyq.

2: Output: Sub-Behavior Sequence S; .
3: function DYNAMICSELECT(c;, i, @i, Wp, Wq)
4: Initialize ¢} < 0
5: Compute item embeddings E(c;) =
{e1,e2,...,e,,}, where e; is the embedding of
item I; € c;.
6: Select the initial item:
€init — arg e Iené?c” d(ej7 I'I’L)
7: Update C: — CfU{einj[} and E(Cl) — E(ci)\{emn}.
8: while |¢]| < a; do
9: Compute Marginal Gains:
10: foralle; € E(c;) do
11: Compute prototypicality gain:
Wp
e;) =
gP( J) 1—|—d(ej,,ui)
12: Compute diversity gain:
gafe;) = 224 S d(e; @)
d\€j5) — C 7y €b
ey€Ecy
13: end for
14: Evaluate Selection Priority:
15: Identify the item maximizing the combined gain:
ej =arg max (gp(e;) + ga(e;))
e; €E(c;)
16: Update ¢; < ¢; U {ej} and E(c;) < E(c) \
{e5}.

17: end while

Chronologically sort ¢} to get S
18: return S;
19: end function

1 2
Y e twi = Y d(ea,
Hiéx<wp =, L+ d(ej, i) e a | L= te eb))
i aslpCCy

K3
i ]
j€eq

a#b

Here, w, = a0 and wg = 1 — wy, with the
hyperparameter « tuning the trade-off: values near
1.001 approximate centroid selection, while values
around 1.4 approach boundary selection. Empir-
ically, « is set between 1.06 and 1.08 (see Sec-
tion 5.4). We frame the selection as discrete op-
timization problem and using a Greedy Selection
algorithm (Algorithm 2) to solve it, which itera-
tively selects the element with the highest marginal
gain. A visual explanation of the selection algo-
rithm is provided in Appendix E, and Appendix F
provides a convergence analysis of the proposed ob-
jective function and demonstrates how the greedy
algorithm can attain suboptimal performance.
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Table 1: Time complexity analysis. Cluster, A.1 and A.2 refers to clustering method used in Section 3.1, Algorithms 1

and 2, respectively.

Agent LLM-UM Strategy

Offline Phase Complexity

Online Phase Complexity

AgentCFlpecen; 1 Refiection - OKT + N; - T)
AgentCFyeievance + Reftection O(nd) Ni-OQ@kT +d+T)
Agent4RECkcen + Summarization - O(T'+Nr-T)
Agent4ReCjevance + Summarization O(nd) Ni-O(d +2T)
AgentCFp . .x O(C - 2kT + nd + Cluster + A.1 + A.2) N;-O(T +d)
Agent4Recp, o .x O(CT + nd + Cluster + A.1 + A2) N;-O(T +d)

The design of our objective function is inspired
by prior studies in data selection and empirical find-
ings (Sorscher et al., 2022), which demonstrate that
for small datasets, prioritizing simple, prototypical
examples yields the greatest benefit, whereas for
sufficiently large datasets, selection methods that
emphasize harder examples improve the general-
ization of deep learning models.

- Brommmssnesecsmn,
,
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N
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Figure 2: Online time cost analysis.

3.4 Offline Profiling and Online Selection

After selecting representative SBS, PersonaX con-
tinue to construct persona offline. Given a se-
lected behavior subset ¢}, we generate a corre-
sponding persona p; = P(c). To ensure contextu-
ally relevant recommendations, PersonaX retrieves
the most pertinent persona snippet Pyelecteq Online,
which is integrated into prompt templates to in-
struct agent recommendation.

4 Efficiency Analysis

Recent sampling operates in constant time O(1).
Let O(d) denotes the time required to encode an
item into an embedding vector, and O(n log k) rep-
resents the complexity of selecting the k£ most rel-
evant/recent items from n items. Thus Relevance
sampling has a time complexity of O(nd+nlog k).
For SBS sampling applied in PersonaX, we use
O(Cluster + Alg.1 + Alg.2) represent the time cost
for process we depict from Section 3.1 to 3.3. Let

C' denote the number of clusters, O(T") the time
complexity of a single API request to the LLM,
and N; the number of candidate items inferred per
time. We perform an analysis of the time com-
plexity during both offline and online stages asso-
ciated with two recommendation agents AgentCF
and Agent4Rec. Additionally, we evaluate their
time cost with the use of PersonaX for compari-
son. The results are summarized in Table 1. The
detailed illustrations are provided in Appendix A.

The primary contributors to time consump-
tion are 7' and d, while O(C), O(nlogk),
O(Cluster+A.1+A.2) in ranking, clustering, and
sampling are negligible. Assuming n = 500,
C =20,T =3,d = 0.1, and £ = 10, and
varying Ny over 5, 10, and 20. Additionally, to
model a realistic production setting in which rec-
ommendation agents server online continuously,
we assume that persona in PersonaX is cached for
D = 10 successive inference calls. In practice,
this conservative threshold means the persona is
refreshed whenever ten new user behaviors are ob-
served, preventing profile staleness; the actual re-
fresh interval can be tuned empirically. Because
vanilla AgentCF and Agent4Rec must regenerate
the user profile at every call, their online latency
is multiplied by D, whereas PersonaX-assisted
variants avoid this overhead altogether. Figure 2
visualises the resulting online time consumption.
The bar for AgentCFRrelevance+Reflection 1S Omitted be-
cause its latency is orders of magnitude higher than
that of the other methods and would dominate the
plot. We mainly make a comparison when back-
bone recommendation agent as Agent4Rec which
is more realistic, we observe that PersonaX-assisted
Agent4Rec reduces runtime by 95% compared with
the Agent4Rec variant that employs Relevance sam-
pling, while recudes runtime by 91% for variants
that use Recent sampling.
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5 Experiments

In this section, we are to address these research
questions (RQs): e RQ1: How does PersonaX
improve downstream agent recommendation, and
how the performance compared with baseline ap-
proaches? e RQ2: How does the sampling size
of historical behaviors affect the efficacy of user
modeling? e RQ3: How sensitive is our method
to hyper-parameter settings, and how can optimal
parameters be chosen?

5.1 Experimental Setup
5.1.1 Datasets

We evaluate on two widely used subsets of the
Amazon review dataset (Ni et al., 2019): CDs and
Vinyl and Books. For the CDs dataset, similar to
the settings in (Zhang et al., 2024b), we consider
two variants, CDsse and CDs,qp, Which have average
user interaction sequence lengths of 50 and 200,
respectively. For the Books dataset, rather than
restricting each user’s interactions to 20 items as in
(Zhang et al., 2024a), we adopt the approach out-
lined in (Pi et al., 2019, 2020) to construct longer
sequences, resulting in Books,ge. A more detailed
description, statistical analysis, and reproducibility
are provided in Appendix B.

5.1.2 Evaluation

We utilize all the interaction data except the most
recent one to construct the user’s behavior his-
tory (Kang and McAuley, 2018). And the most
recent interaction is reserved for testing. We ran-
domly sample 9 negative items and combine them
with the positive item, converting these 10 items
into textual descriptions to form the candidate set.
For evaluation metric, we adopt the typical top-
N metrics hit rate (HR@{1, 5}), normalized dis-
counted cumulative gain NDCG@{5}) (Jarvelin
and Kekildinen, 2002) and Mean Reciprocal Rank
(MRR@{10}) (Sarwar et al., 2001). For all eval-
uation metrics in our experiments, higher values
indicate better performance. Also, an intuitive case
study is provided in Appendix G.

5.1.3 Downstream Recommendation Agent

We select two recommendation agents AgentCF
(Zhang et al., 2024b) which models user personas
using a Reflection mechanism, and Agent4Rec
(Zhang et al., 2024a) which captures users’ unique
preferences through a Summarization method. Fur-
ther details on the foundational methods can be
found in Appendix C. The original AgentCF offers

two configurations—AgentCF (Recent+Reflection)
and AgentCF (Relevance+Reflection)—while the
standard Agent4Rec corresponds to Agent4Rec
(Full+Summarization).

5.1.4 Baseline Comparison

To rigorously assess the benefit of integrating Per-
sonaX, we enlarge the comparison scope beyond a
mere juxtaposition of PersonaX-assisted AgentCF
and Agent4Rec with their original implementa-
tions. Specifically, we pair two LLM-UM meth-
ods—Reflection and Summarization—with six rep-
resentative behavior-sequence sampling strategies
that serve as baselines: (1) Full (Zhang et al.,
2024a): Using complete user behavior sequence.
(2) Recent (Zhang et al., 2024b): Selecting the most
recent behaviors to capture the user’s short-term
preferences. (3) Relevance (Zhang et al., 2024b;
Pi et al., 2020): Retrieving the subset of behav-
iors most pertinent to the recommendation scenario
from the user’s long-term preferences. (4) Random
(Guo et al., 2022; Prabhu et al., 2020): Randomly
selecting a portion of behaviors, it is a robust and
effective sampling method. (5) Centroid Selection
(Welling, 2009; Rebuffi et al., 2017; Sorscher et al.,
2022): As outlined in Section 3.3, we configure
o = 1.001 in Algorithm 2. This configuration pri-
oritizes the selection of samples that are closest
to the cluster centroid, effectively capturing the
most prototypical data points within the cluster. (6)
Boundary Selection (Paul et al., 2021; Toneva et al.,
2019): As detailed in Section 3.3, we set o = 1.4
in Algorithm 2. Under this setting, the algorithm
selects samples located at the cluster boundary and
emphasizes the diversity coverage.

5.1.5 Implementation Details

We applied AgentCF to CDsse, and Agent4Rec
for CDs;pe and Booksyge. For PersonaX, extensive
experiments were conducted under diverse
hyper-parameter configurations: the distance
threshold 7 € {0.5,0.7} and the trade-off
parameter € {1.01,1.04,1.08,1.1}. Differ-
ent selection ratios (%) were tested, including
{10, 30, 50, 70,90, 100} for all three datasets. We
also ensured that each cluster sampled at least
one behavior by enforcing £ = min(m, n - ratio).
To evaluate the performance of the baseline
methods, we varied the hyper-parameter selection
ratio across different ranges for each dataset.
Specifically, for CDssp, the selection ratio was
chosen from {0.02,0.06, 0.08,0.1,0.16,0.2,0.3}.
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Table 2: Performance comparison study.

LLM-UM Reflection Summarization
Datasets CDssg CDs 00 Booksyge
Metrics Hit@l Hit@5 NDCG@5 MRR@I0 | Hit@l Hit@5 NDCG@5 MRR@I0 | Hit@l Hit@5 NDCG@5 MRR@10
Full 19.00  66.00 42.56 39.38 36.00 67.00 5175 50.78 19.00  50.00 34.59 35.76
Random 31.00  67.00 49.18 47.74 36.00  68.00 51.26 50.24 33.00 73.00 53.59 50.50
Recent 34.00  69.00 50.69 49.31 39.00  68.00 53.89 53.34 35.00  74.00 55.23 52.76
Relevance | 40.00  69.00 54.97 54.47 51.00  73.00 61.73 61.98 61.00  80.00 71.50 71.86
Centroid 43.00  66.00 55.21 55.91 42.00  70.00 57.07 56.53 60.00  81.00 71.61 70.67
Boundary | 42.00 68.00 55.85 55.73 48.00  66.00 57.13 58.71 58.00  80.00 70.38 69.55
Ours 45.00  72.00 57.34 58.38 55.00 75.00 64.56 65.06 65.00 83.00 74.26 73.22
Similarly, for CDsppp, it ranged over Table 3: Performance of PersonaX at different selection
{0 005.0.01.0.02.0.03.0.05.0.08.0 1} and ratios. We hlghllght best performance, and the
.005,0.01,0.02,0.03,0.05,0.08,0.1%,
for Booksigp, the selection ratio spanned Reflection on CDss,

{0.002,0.005,0.008,0.011,0.014}. These selec-
tion ratios settings were made to evaluate the
baseline methods at equivalent levels of data
resource utility, ensuring a fair and controlled
comparison with PersonaX whose SBS sizes
are listed in Table 3. The prompt templates are
provided in Appendix H.

5.2 Performance Evaluation (RQ 1)
Key observations and insights from Tables 3 high-

light the robustness and effectiveness of our pro-
posed method across various agent recommenda-
tion approaches, datasets, and evaluation metrics.
PersonaX consistently outperforms the Full ap-
proach under any level of data resource utiliza-
tion, even in scenarios where PersonaX achieves
its least favorable results. Notably, on the Books,sge
dataset, which features longer behavior sequences,
our method achieves significant improvements over
the Full methods. This phenomenon highlights the
shortcomings of existing agent recommendation
methods in handling long behavior sequences, but
PersonaX fills this critical research gap.

Table 2 reports the best MRR @10, highlighting
PersonaX’s performance advantages over baselines.
Our approach demonstrates substantial improve-
ments over the widely adopted and strong baseline
method, Relevance. For example, on the CDssp
dataset, our method achieves a Hit@1 score of
45.00, significantly exceeding the 40.00 obtained
by Relevance. Similarly, we observe the subop-
timal performance of the Centroid and Boundary
methods, particularly on CDsyg. Upon analysis,
we attribute the underperformance of the Centroid
method to its tendency to sample overly homoge-
neous information, which results in overly simplis-
tic and narrow user personas. While the Boundary
method ensures sample diversity, an excessive fo-
cus on diversity can dilute the representation of
typical user persona characteristics. In contrast,

Ratio | #SBS | HR@1 HR@5 NDCG@5 MRR
100 5.56 41.00 67.00 54.67
90 4.69 42.00 69.00 55.66 55.22
70 3.52 70.00 54.95
50 2.88 41.00 67.00 54.69 55.08
30 1.83 45.00 72.00 57.34 58.38
10 1.0 42.00 56.07 55.25
Summarization on CDszq
Ratio | #SBS | HR@1 HR@5 NDCG@5 MRR
100 8.15
90 7.19 49.00 70.00 59.66 59.95
70 5.48 47.00 71.00 60.54 60.54
50 3.59 55.00 75.00 64.56 65.06
30 2.3 51.00 73.00 62.45 62.42
10 1.0 47.00 72.00 61.91 60.99
Summarization on Bookssp
Ratio | #SBS | HR@1 HR@5 NDCG@5 MRR
100 15.35 | 61.00 83.00 73.56 72.18
90 11.74
70 8.41 64.00 81.00 72.55 72.62
50 4.2 65.00 83.00 74.26 73.22
30 1.82 64.00 82.00 73.68 72.14
10 1.0 63.00 83.00 72.90 71.75

our method consistently delivers superior and sta-
ble performance, highlighting the effectiveness of
balancing prototypicality and diversity. This equi-
librium enables our approach to capture nuanced
user personas with greater precision, establishing it
as a robust and versatile solution for user modeling.

5.3 Sampling Size Investigation (RQ 2)

Understanding the influence of sequence length of
SBS on the efficacy of user modeling is a pivotal re-
search question. Traditional recommendation sys-
tems have largely relied on long-sequence model-
ing strategies, such as SIM (Pi et al., 2020), which,
when applied to datasets like Amazon Books, typi-
cally sample 10 interactions to approximate short-
term behavioral patterns and 90 interactions for
long-term modeling. However, in the context
of LLM-UM, prior works such as AgentCF and
Agent4Rec have yet to conduct a systematic inves-
tigation into the effect of sequence length on user
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Figure 3: Analysis of the impact of sampling size on user modeling.

modeling performance.

To address this gap, we first conduct analysis
on PersonaX. As shown in Tables 3, the results
indicate that performance generally peaks at in-
termediate selection ratios or short SBS lengths.
For instance, 30% selection ratio for CDssg and
50% for both CDs,pp and Bookssgg. We further
examined the performance of three sampling strate-
gies—Random, Recent, and Relevance—under
varying sampling sizes, as illustrated in Figure 3,
finding that while initial increases in sampling
size improve performance, oversampling eventu-
ally leads to performance deterioration. The opti-
mal sampling size varies across datasets. Specifi-
cally, for the Relevance method, the ideal size is
approximately 3, while the Recent method demon-
strates heightened sensitivity to dataset character-
istics, with the most recent single behavior often
yielding strong results. For the Random method, a
sampling size of around 5 is most effective.

5.4 Hyper-parameter Analysis (RQ3)

This section examines the impact of 7 and o on Per-
sonaX’s performance. Our emperimental results,
as illustrated in Figure 4, uncovers nuanced pat-
terns in how these hyperparameters influence the
model’s overall performance. In Appendix D, we
present more illustration alongside a visualization
analysis of the sampling process.

The empirical results indicate that: (1) incor-
porating diverse samples is beneficial for enhanc-
ing performance. Specifically, higher values of «
(e.g., 1.06-1.08) lead to significant performance im-
provements at large ratios (0.5-0.9); (2) PersonaX
requires minimal fine-tuning effort within the range
7 € [0.5,0.7],« € [1.04,1.08] and demonstrates
robust performance, with a worst-case accuracy
of 71.6, which closely approaches the best per-
formance of the relevance baseline (71.86); (3)
a higher 7 expands the behavioral scope within
clusters, making a lower « preferable to prevent
excessive diversity. Conversely, a larger « priori-

7=0.7,0=1.01
7=0.7,a=1.04

7=0.5,0=1.04
-+- 1=0.5,=1.06
-e- 1=0.5,0=1.08

10 20 30 40 50 60 70 80 %
ratio

Figure 4: Impact of 7 and « on PersonaX.

tizes more diverse samples, necessitating a smaller
T to mitigate over-dispersion. For instance, when
7 = 0.5, a higher « (1.08) is appropriate, whereas
7 = 0.7 favors a slightly lower « (1.06) to avoid
overemphasizing highly diverse samples.

6 Related Works

6.1 Large Language Model for User Modeling

User Modeling (UM) aims to extract valuable in-
sights and patterns from users’ long historical be-
havior sequences, and Large Language Models
(LLMs) excel in characterizing user personalities
and discerning preferences. Leveraging LLMs for
UM has gained increasing attention, and the gener-
ated textual personas can be applied to downstream
personalization tasks (Xu et al., 2024a; Mei and
Zhang, 2023; Xu et al., 2023, 2024b). For example,
ONCE (Liu et al., 2024) utilizes ChatGPT to in-
fer users’ preferred topics and regions, enhancing
click-through rate prediction with these generated
profiles. Kang et al. (Kang et al., 2023) enable
LLMs to comprehend user preferences from behav-
ior history to predict user ratings. LLMRec (Lyu
et al., 2024) identifies limitations in directly using
raw item descriptions, which often fail to capture
the subtle nuances of user preferences. To address
this, it employs four distinct text enrichment strate-
gies to enhance the input and improve recommenda-
tion performance. LLMRank (Hou et al., 2024) in-
troduces specialized prompting and bootstrapping
techniques that incorporate user interaction histo-
ries, effectively aligning with user intent. More-
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over, two prominent strategies—Summarization
and Reflection—have been widely adopted in lead-
ing agent recommendation frameworks, such as
Agent4Rec (Zhang et al., 2024a), RecAgent (Wang
et al., 2024b), and AgentCF (Zhang et al., 2024Db).
Summarization focuses on distilling user behaviors,
while reflection emphasizes iterative learning from
interactions.

However, no research has focused on the perfor-
mance of LLMs when handling extensive behav-
iors, nor has any LLM-UM method been proficient
at efficiently and accurately modeling user personas
from long behavior sequences. We are the first to
address this gap and introduce PersonaX.

6.2 Personalized Agents

LLM-driven agents have gained prominence for
their autonomous decision-making, tool utilization
(Yang et al., 2023; Qin et al., 2023; Xu et al.,
2025a,b; Mei et al., 2024), and adaptive intelli-
gence. Recent advances enable personalized agents
through encoded personalities (Rao et al., 2023),
backgrounds, and behavioral traits in prompts.
Such persona-driven frameworks enhance user en-
gagement through human-like interactions (Sun
et al., 2024), with applications like CharacterAgent
(Shao et al., 2023) demonstrating consistent per-
sona emulation of historical figures for immersive
simulations. The personalization of agent also en-
able the simulations of social dynamics (Park et al.,
2023), competition (Zhao et al.), and collaboration
(Tran et al., 2025).

However, recommendation agents (Zhu et al.,
2025) face distinct challenges: Unlike predefined
personas, user preferences in recommendation con-
texts are implicit and behaviorally embedded rather
than verbally expressed. This creates alignment dif-
ficulties between agent decisions and users’ latent
preferences. The primary objective of PersonaX is
to develop a highly accurate and realistic user mod-
eling method, enabling instruction-based agents to
consistently simulate and align with the decision-
making behaviors of the users they surrogate.

7 Conclusion

In this study, we present PersonaX, a LLM-UM
framework oriented for agent recommendation spe-
cially designed for processing long behavior se-
quences. PersonaX utilizes only 30%-50% of
the historical behavior data and strategically se-
lect high-quality sub-behavior sequences of short
length (often < 5) for generating broad spectrum

of persona snippets offline. When PersonaX inte-
grated into existing agent recommendation meth-
ods, such as AgentCF and Agent4Rec, PersonaX
delivers substantial performance gains—ranging
from 3% to 11% over AgentCF, and an impres-
sive 10% to 50% improvement over Agent4Rec.
Theoretical analysis indicates that integrating PER-
SONAX into downstream recommendation agents
markedly reduces online inference latency—a ben-
efit that is especially pronounced in continuously
servers. We believe that PersonaX significantly
facilitate the agent recommendation in predictive
accuracy and inference efficiency.

Limitations

While PersonaX effectively tackles the challenge
of modeling user behavior over extended sequences
in LLM-based user modeling, its performance in
real-world streaming data scenarios remains unex-
plored. This presents a promising opportunity for
future enhancements. A fundamental characteristic
of PersonaX lies in its offline generation of multiple
personas, capturing diverse aspects of user prefer-
ences. This design facilitates long-horizon mod-
eling, where personas encapsulate user interests
over extended periods and maintain their effective-
ness for prolonged use, surpassing approaches (e.g.,
AgentCF) that depend on recent-sampling strate-
gies and require frequent profile updates. However,
an exciting direction for future work involves ex-
ploring the optimal duration for which these pre-
computed personas retain their efficacy in online
deployment. Understanding the dynamics of perfor-
mance degradation over time can inform strategies
for adaptive persona updates.

Ethics

We use publicly available datasets collected under
standard ethical protocols and strictly adhere to
their intended research use. PersonaX is designed
solely for academic purposes, and by following
these safeguards, we uphold ethical standards in
data usage, privacy protection, and transparency.
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APPENDIX
A Time Complexity Analysis

In this section, we provide a rigorous analysis of the time complexity of user modeling in AgentCF and
Agent4Rec, and examine how these complexities change when each method leverages PersonaX.

A.1 Preliminary Analysis

We begin by analyzing the time complexity of two sampling approaches. Recent sampling: This approach
selects the most recent k user behaviors, which requires O(1) computational complexity. Let F be the
hardware’s floating-point throughput, hence Recent sampling’s time complexity in seconds is O(1/F).
Relevance Strategy: This strategy identifies user behaviors most pertinent to the target item Iyarger.
Encoding an item into a feature vector using a large language embedding model incurs a time complexity
of O(d), and thus encoding n items results in a complexity of O(nd). Selecting the top k£ most relevant
items requires O(nlog k/F), leading to an overall complexity of O(nd + nlogk/F).

A.2 Analysis of LLM-UM methods

Summarization: In this method, the short behavioral sequence (SBS) §* is distilled into a user represen-
tation P(S), and its complexity is independent of the sequence length k. Thus, the overall complexity
remains O(7T'). Reflection: This method iteratively updates the user persona along with S*. In the best
case, all inferences are correct on the first attempt, incurring a complexity of O(kT'). In the worst case,
all initial inferences fail, requiring a single reflection to update the persona, which enables the second
inference to be correct. This results in a complexity of O(3kT'). Taking an average across these cases
yields an approximate complexity of O(2kT"). Given that commonly k£ < 10, this constant factor remains
manageable.

A.3 Analysis for AgentCF and Agent4Rec

AgentCF (Recent + Reflection). As this method updates the user profile dynamically with new behaviors,
it is not well suited for offline profiling and be cached for long-term usage. The user profile is constructed
once with a complexity of O(1) + O(2kT'). The profile is reused for inferring N; items, each requiring
O(T). Thus the overall online complexity is O(1/F + 2kT + N;T).

AgentCF (Relevance + Reflection). Each item in the user’s behavior sequence is embedded with a
complexity of O(nd). The user profile is constructed with a complexity of O(nlog k) + O(2kT). For
each inference, the complexity is O(d + T"). Thus the overall online complexity is Ny - O(nlogk/F +
2kT +d+T).

Agentd4Rec (Relevance + Summarization). Each item is embedded with a complexity of O(nd). The
user profile is constructed once with a complexity of O(nlog k) + O(T'). Each inference has a complexity
of O(d + T'). Thus the overall online complexity is Ny - O(nlog k/F + d + 2T).

Agent4Rec (Recent + Summarization). As this method updates the user profile dynamically, it is not
suited for offline profiling. The user profile is constructed once with a complexity of O(1) + O(T'). Thus
the overall online complexity is O(1/F + T + NT).

AgentdRec+PersonaX. Item embedding incurs O(nd). The sampling process has a complexity of
O(Cluster + A.1 + A.2). Multiple persona generation requires O(CT). The overall offline complexity is
O(CT + nd + Cluster + A.1 + A.2). For online phase, retrieving the user profile incurs O(d) + O(1),
and each inference requires O(T"). Thus the overall online complexity is Ny - O(T + 1/F + d).
AgentCF+PersonaX. Item embedding incurs O(nd). The sampling process has a complexity of
O(Cluster + A.1+ A.2). Multiple persona generation requires O(C' - 2kT"). The overall offline complexity
is O(C-2kT +nd+Cluster+ A.1+ A.2). For online phase, retrieving the user profile incurs O(d)+O(1),
and each inference requires O(T"). Thus the overall online complexity is Ny - O(T + 1/F + d).
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Since the terms O(1/F) and O(n log k/F) are asymptotically negligible compared to O(T"), they can
be safely omitted. Thus we can get the results presented in Table 1.

Table 4: Summary of preprocessed subset statistics. "Avg.L" represents the average length of user behavior
sequences.

Subsets  #Users #Items #Inters Sparsity Avg.L
CDssg 100 4,899 5,000 98.97% 50.00

CDS200 1000 101,902 200,336  99.80%  200.34
Bookssge 1000 222,539 481,455 99.78% 481.46

B Datasets

In this appendix, we provide a detailed description of the dataset construction and statistics.

Building on prior studies such as AgentCF (Zhang et al., 2024b), Agent4Rec (Zhang et al., 2024a), and
EasyRec (Ren and Huang, 2024), we evaluate our proposed method using two widely adopted subsets of
the Amazon review dataset (Ni et al., 2019): CDs and Vinyl and Books. For the CDs dataset, we construct
CDssg, and CDsypp, With average user interaction sequence lengths of 50 and 200, respectively. These
settings are similar as those used in AgentCF (Zhang et al., 2024b).

For the Books dataset, departing from the approach of Agent4Rec which limits each user’s interactions
to 20 items, we follow the guidelines of (Pi et al., 2019, 2020) to construct longer interaction sequences.
Specifically, we create Booksage, with average sequence lengths of 480, respectively. Detailed statistics
for these datasets are provided in Table 4.

Due to the high computational cost and expense associated with API calls for GPT-40-mini, we conduct
each experiment only once per dataset to ensure feasibility within a reasonable budget. This approach is
common in agent recommendation studies (Zhang et al., 2024a,b; Wang et al., 2024b; Luo et al., 2023)
and large-scale recommendation system research. Moreover, the larger number of users (1000) in our
study enhances the reliability of the experimental results.

Note that we apply different LLM-UM methods to each dataset: Reflection for CDs50, and Summa-
rization for CDs200 and Books480. The reason is that Reflection becomes inefficient as sequence length
grows—a limitation also noted in the original AgentCF, and Summarization is more suitable for longer
behavior sequence.

C Backbone Methods

We provide a detailed description of the backbone methods used for validation.

AgentCF (Zhang et al., 2024b) employs a reflective mechanism to model user personas. In the original
framework, both the user profile and item profile are dynamically updated. In our implementation, the
item profile is textually represented by concatenating the item’s fields, while the user profile is initially set
to "Currently Unknown" and is iteratively refined through continuous reflection. Furthermore, for the
downstream recommendation ranking task in AgentCF, we replace the original LLM-based ranking with
the EasyRec framework (Ren and Huang, 2024). EasyRec is the first large language embedding model
specifically designed for recommendation. It aligns textual semantic spaces with collaborative behavioral
signals, enabling recommendation tasks to rely solely on textual instructions (e.g., user preference
descriptions and item profiles) while achieving performance comparable to traditional state-of-the-art
models. Leveraging EasyRec for point-wise ranking is more experimentally efficient, accurate, and robust
compared with LLMs.

Agent4Rec (Zhang et al., 2024a) maintains an agent profile comprising two key components: social
traits and unique tastes. In our implementation, we streamline the process by focusing solely on capturing
diverse user interests through the construction of unique tastes, thus simplifying experimentation. To
achieve this, we adopt the summarization method from the original work, which distills user preferences
from their behavioral sequences. Additionally, we replace the original rating prediction task in the
Agent4Rec framework with a ranking task.
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Figure 5: Sampling process for a user in Books,se with a 50% selection ratio. Points are color-coded and outlined.
Non-transparent points signify data selected, whereas transparent points delineate behaviors not sampled. A offers
a holistic perspective on the user’s comprehensive behavior distribution, capturing the full extent of engagement
patterns. BE presents parts of behaviors distributions and sampling process under varying configurations of hyper-
parameters. Triangles denote the centroids of the clusters.

D Hyper-parameter Analysis and Sampling Process Visualization

This section delves into the influence of the hyperparameters 7 and a on the performance of PersonaX, as
they play pivotal roles in shaping the hierarchical clustering and in-cluster behavior selection processes.
Specifically, 7 dictates the granularity of the hierarchical clustering. A larger 7 value yields coarser
clusters, encompassing a broader spectrum of behavioral samples with potentially greater divergence from
the cluster centroid. In contrast, a smaller 7 enforces a more stringent clustering criterion, resulting in
finer-grained clusters characterized by higher intra-cluster homogeneity. On the other hand, o modulates
the balance between prototypicality and diversity during the in-cluster behavior selection stage. A higher
o amplifies the preference for selecting behavior samples further from the cluster centroid, thereby
enhancing diversity within the cluster. Conversely, a lower « emphasizes prototypicality, favoring samples
that closely align with the cluster centroid. Our empirical analysis, as illustrated in Figure 4, uncovers
nuanced patterns in how these hyperparameters influence the model’s overall performance.

1. Performance at Low Ratios: Across 7 and « configurations, the performances at lower ratios (e.g.,
0.1, 0.3) remain similar. This is because the selected samples at low ratios primarily originate near the
cluster centroid, regardless of the diversity adjustment imposed by «. Slightly superior performance of
7 = 0.5 compared to 7 = 0.7 at these ratios is attributed to the finer clustering granularity of 7 = 0.5,
which ensures that selected samples exhibit higher prototypicality.

2. Performance at High Ratios (0.5-0.9): At higher ratios, configurations with larger « values
(e.g., a« = 1.06, 1.08) outperform their smaller-a counterparts (e.g., « = 1.01, 1.04). This highlights the
efficacy of the in-cluster selection strategy: after a core set of prototypical samples is chosen, incorporating
more diverse samples significantly enhances performance. The inclusion of diversity helps capture broader
behavioral patterns, leading to improved generalization.

3. Trade-offs in Specific Settings: A nuanced behavior is observed in the interaction between 7 and
a. For 7 = 0.5, a = 1.08 performs better than oo = 1.06, suggesting that in scenarios where the cluster
scope is relatively constrained, the diversity of samples becomes pivotal, necessitating a higher « to
effectively prioritize and capture heterogeneous behaviors. For 7 = 0.7, a = 1.06 outperforms o = 1.08,
as the broader cluster scope with o = 1.08 potentially overemphasizes highly diverse samples, leading
to a slight degradation in overall performance. This interplay underscores the importance of balancing
cluster granularity and diversity during sample selection.

4. Parameter Robustness: Our framework demonstrates robust performance across a wide range of
hyper-parameter settings. For instance, the worst best performance (71.6) achieved with7 = 0.7, = 1.04
is only marginally lower than the best performance of the relevance baseline (71.86). This indicates that
our method remains effective without being overly sensitive to hyper-parameter adjustments.
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To provide an intuitive analysis of the sampling process, we conducted a visualization study, as
illustrated in Figure 5. From Figure 5.A, it is evident that smaller clusters are preferentially allocated
an adequate sampling quota compared to larger ones. This observation underscores the efficacy of the
proposed Algorithm 1, which strategically prioritizes smaller clusters to ensure sufficient sampling. By
adopting this approach, the algorithm effectively preserves the user’s diverse interests, including long-tail
preferences, even under constrained sampling resources. The comparisons between Figure 5.B and
Figure 5.C, as well as Figure 5.D and Figure 5.E, highlight the impact of a. Specifically, smaller o
values tend to focus the sample selection closer to the cluster centroids. Furthermore, the comparisons
between Figure 5.B and Figure 5.D, and between Figure 5.C and Figure 5.E, demonstrate that a a more
granular clustering can constrain Algorithm 2 from selecting samples that deviate excessively from the
cluster centroids. This constraint mitigates potential performance degradation caused by overemphasis on
unrelated samples.

The experimental findings and visualization analysis suggest that both 7 and « require empirical tuning
to identify optimal configurations. We recommended a balance between prototypicality and diversity, for
example a larger o values combined with appropriately tuned small 7.

E Details about In-Cluter Selection

In this section, we delve into the mechanisms governing sample selection by proposing a principled
scoring system to evaluate the prototypicality and diversity of candidate samples. The scoring mechanism
is derived from two complementary perspectives: prototypicality

1

, which assesses how representative a sample is of its respective cluster, and diversity

2 Z d(eq,€p)

a; "
]anEci
a#b

, which quantifies the extent to which the selected samples span a broader spectrum of the data distribution.

E.1 Prototypicality and Diversity Scoring

From the formulation below,

1 2
(v 3 e g el X dtew)

b T
¢ jEcy I, Ip€c]

a#b

it is evident that the prototypicality score exhibits an inverse relationship with the distance between a
sample and the center of its cluster. As a sample moves further from the cluster centroid, its prototypicality
diminishes proportionally, reflecting its reduced ability to represent the typical characteristics of the cluster.
The diversity score considers the pairwise distances between the candidate sample and the samples already
selected. This ensures that the inclusion of a new sample enriches the diversity of the chosen subset by
discouraging redundancy.

To compute the diversity score, we employ the scaling factor 2/a;. We don’t choice of averaging scaling
approach 1/[a;(a; — 1)], which tends to normalize diversity growth. By adopting 2/a;, we deliberately
amplify the influence of diversity as a; increases, thereby prioritizing the inclusion of diverse samples in
scenarios where a cluster is allocated enough sampling budget. This design reflects an underlying intent:
as a; grows, the system places greater emphasis on diversity to ensure comprehensive coverage of the data
distribution. Conversely, when a; is small, prototypicality takes precedence, directing attention toward
selecting samples that are most representative of their respective clusters.
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E.2 Design Rationale

The decision to amplify diversity dynamically aligns with our broader goal of achieving a balanced and
adaptive sample selection process. By coupling prototypicality with diversity in this manner, we address
two critical challenges in data selection:

1. Representative Sampling: When the sample pool is sparse, selecting highly prototypical samples
ensures that the chosen subset faithfully captures the core characteristics of the data clusters. This is
particularly crucial in tasks where the representativeness of the selected data has a direct impact on model
performance, such as user profiling or content recommendation.

2. Comprehensive Coverage: In cases where the candidate pool is dense, diversity becomes increas-
ingly important to avoid redundancy and to capture the subtle variations within the data distribution. By
amplifying diversity when a; is large, our scoring mechanism ensures that the selected subset spans the
breadth of the distribution, enabling downstream models to generalize better across diverse scenarios.

E.3 Broader Implications

The proposed scoring framework introduces a novel perspective on balancing representativeness and
diversity in data selection. By dynamically modulating the influence of diversity based on the local sample
density, our approach strikes a principled balance between selecting typical and atypical samples. This
adaptability is particularly valuable in data-centric applications, where sample selection directly affects
the quality of downstream tasks, such as dataset pruning, user interest modeling, and few-shot learning.

E.4 Visualization Explanation

Figure 6 shows the trade-off between w),, and wg across different settings of «v. As observed in the figure,
when « is small, w, dominates the sampling process, leading to the selection of samples near the cluster
center. These samples are prototypical and reflect the representative thematic interests of the cluster. As «
increases, wy becomes more prominent, and w,, approaches 0, causing the sampling process to prioritize
diverse samples in order to enhance generalization.

Figure 7 presents a dynamic visualization of the sampling process in Algorithm 2. As illustrated, the
algorithm iteratively selects samples by jointly optimizing for both prototypicality and diversity, thereby
maximizing the combined gain. This approach stands in contrast to conventional data selection methods,
which often exhibit a unimodal bias—either favoring simple, centrally clustered, and highly representative
samples (Welling, 2009; Rebuffi et al., 2017; Sorscher et al., 2022) or prioritizing difficult, outlier samples
with strong generalization potential (Paul et al., 2021; Toneva et al., 2019).

Empirical analysis of the hyperparameter «, which governs the trade-off between prototypicality and
diversity, reveals a practical range of 1.06—1.08. Within this regime, PersonaX often firstly selects a
minimal set of prototypical samples and then shifting its focus toward maximizing sample diversity.
We believe this is because of the superior few-shot generalization capabilities of LLMs. These models
inherently require fewer prototypical instances to capture core user interests, thereby shifting their
emphasis toward diverse sample acquisition to further enhance generalization.
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Figure 7: Dynamics of In-Cluster sample selection: We set 7 = 0.7, with the samples distributed within the range

of [-2,2].

Table 5: Intuitive comparison of user personas modeled by different methods. Specifically, (A) Relevance sampling
(Iength 3), (B) Recent sampling (length 10), and (C) PersonaX (selection ratio 30%).

Method

User Persona

03-mini’s Reasoning Evaluation

A

I prefer Rock and Progressive Rock music, particularly works
by artists like Trey Anastasio. I enjoy albums that feature
new songs and live performances, as they provide a dynamic
listening experience. I appreciate behind-the-scenes content
that adds depth to the music experience. I also enjoy Con-
temporary Folk music, especially works by artists like Steve
Winwood, as they can offer a fresh take on musical composi-
tions. I dislike R&B and Soul music, particularly collections
that focus on remixes of older tracks, as I find them less en-
gaging. I prefer original compositions and fresh takes on
music rather than revisiting past favorites. Additionally, I
am not particularly interested in World Music, especially live
performances that do not align with my preferred genres.

This description is detailed and rich in information,
but it introduces multiple music genres which may
dilute the focus on the user’s core preferences.

I prefer Classic Rock and Arena Rock music, particularly
albums that showcase strong melodies and engaging perfor-
mances, such as ’Chickenfoot’ by Chickenfoot. I enjoy music
that has a fun, energetic vibe and often features collaborative
efforts from talented musicians. I appreciate emotional bal-
lads and songs that reflect depth and complexity in lyrics and
composition. I dislike Blues Rock that focuses on traditional
guitar work and may lack the innovative sounds I seek, as
exemplified by ’Smokestacks, Broom Dusters & Hoochie
Coochie Men’ by Micky Moody, which I find less appealing
due to its more conventional approach.

This description focuses on a subset of rock mu-
sic—Classic and Arena Rock—which contrasts
with the broader rock and progressive preferences
seen in the other descriptions. It is detailed but less
aligned with the core focus compared to C.

I prefer rock and progressive music, particularly works by
notable artists like Trey Anastasio. I enjoy albums that of-
fer a collection of new songs, especially those that include
additional content such as live performances and behind-the-
scenes footage. I dislike pop and dance music, particularly
generic albums that lack depth or a compelling narrative. I
appreciate immersive listening experiences that connect me
to the artist’s journey and creative process.

This description is the most concise and focused,
effectively capturing the user’s core interests—new
material, live performances, and behind-the-scenes
insights—without extraneous details, making it the
highest quality among the three.

F Theoretical Analysis for In-cluster Selection

Algorithm 2 (Prototypicality—Diversity balanced Sub-Behaviour Sequence) selection greedily builds an
SBS S; C V; of cardinality ¢ by adding at each iteration the element with the largest marginal gain with
respect to the mixed objective (1). We establish three properties: monotonicity, finite termination, and a
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Table 6: Quantitative Evaluation of User Persona Modeling Methods

Method NDCG@1 NDCG@S NDCG@10 Hit@el Hit@5 Hit@l0 MRR

A 0.00 0.42 0.54 0.00 0.67 1.00 0.39
B 0.00 0.54 0.54 0.00 1.00 1.00 0.39
C 0.33 0.71 0.71 0.33 1.00 1.00 0.61

data—dependent 94.79% approximation guarantee.

F.1 Objective Function Properties

The following is the in-cluster SBS selection objective function for a fixed cluster c}:

1 2
max f(c;) = wp Z —— twqg — Z d(eq,ep), (1)
“ Iect L+ d(ej, i) Y q ecr
a#b
(i) Jfa(ci)
(2

where d(+, -) denotes a metric in the embedding space, u; is the centroid of cluster i, a; is sampling size,
and wy, wq > 0 are fixed weights.

Definition 1. Let V be a finite ground set. A set function f: 2" — R is submodular if forall AC B C V
and forevery e € V' \ B,

f(Au{e}) = f(A) > f(BU{e}) — f(B). )
A set function is supermodular when the inequality is reversed, and modular when equality always holds.

Lemma 1. The prototypicality component fy in (1) is modular and hence submodular.
Proof. For any subset S C V,

fp(S) = Z Hdl = Z 9(L5),

I;es (e pi) I;es

where g(/;) depends solely on the singleton I;. Thus the marginal gain of adding e is always g(e),
independent of S, satisfying the equality condition in Definition 1. O

Lemma 2. The diversity component fg in (1) is supermodular.

Proof. Let A C B C Vand e € V \ B. Denote ma(e) = fq(AU{e}) — f4(4) and mp(e) =
fa(BU{e}) — f4(B). By direct expansion,

ma(e) = %Zd(e,ea), m(e) = §Zd(e, &)

" acA " beB

Because A C B, every term in the sum for m4(e) appears in mp(e) (and mp(e) contains additional
non-negative terms due to metric non-negativity). Hence m 4(e) < mp(e), which is exactly the reverse
inequality of Definition 1, establishing supermodularity. O

Proposition 1. The full objective f = wy fp + wqfq is the weighted sum of a modular (submodular)
function and a supermodular function. Consequently f itself is neither submodular nor supermodular
unless wq = 0 or wy, = 0, respectively.

Proof. Immediate from Lemmas 1 and 2 and the linearity of set functions. O

Monotonicity. Every candidate element has non-negative marginal gain, the greedy rule—selecting
at iteration ¢ the element with the largest marginal improvement—yields a sequence of objective values
f(St+1) > f(S;) until the prescribed cardinality a; is reached.

5783



Table 7: Pointwise ratios for the supermodular (¢) and submodular (f) components; lower ratios imply higher
curvature. Empirically SBS selection only has a; < 5, we highlight the values with attaining the minimum.

bomt 0o 90 @[V \{e)
CINARG) i)
1 0.0765 0.1648
2 0.0822 0.2075
3 0.0666 0.1509
4 0.0493 0.1159
5 0.0884 0.2137
6 0.0599 0.1374
7 0.0847 0.2028
8 0.0301 0.0915
9 0.0851 0.2056
10 0.0194 0.0696

Finite Termination. The procedure performs exactly a; iterations, inserting one element per step;
therefore it terminates after a finite number of steps.

F.2 Performance of the Greedy Algorithm

Bian et al. (Bai and Bilmes, 2018) study the maximisation of monotone BP functions—sums of a monotone
submodular component f and a monotone supermodular component g—under a cardinality constraint.
Let?

B . g9(v) S|V {v})
kg = 1 —min ——————, = - -7
veV g(v |V \ {v}) veV f(v)
The quantities x4 € [0, 1] and k¢ € [0, 1] are termed the curvatures of g and f, respectively, and capture

how far each component deviates from modularity. For monotone BP functions the simple greedy
algorithm that, at every step, adds the element of highest marginal gain enjoys the worst-case guarantee.

3)

F, 1
%idy > mf(l — exp(—nf(l — ng))>, 4)

where F™* is the optimal objective value.

Empirical curvatures. Using the settings 7 = 0.7 and o = 1.06, we compute the pointwise ratios

ry = % and r, = W for the ten most representative items. Table 7 reports the results
(smaller ratios—bold in the table—produce larger curvatures).
Taking the minima over all points gives x4 <0.9806 and r y <0.9304. Substituting these into (4) yields

a guaranteed approximation factor of 94.79% for our in-cluster greedy selector (Algorithm 2).

Conclusion. Despite the lack of submodularity, the curvature-aware guarantee shows that the proposed
greedy in-cluster selection is near-optimal in practice.

G Case Study

In this section, we present a case study comparing user personas modeled using Relevance, Recent,

and PersonaX methods, with the backbone LLM-UM approach fixed as Reflection. The dataset used

is CDs5(, with the User ID A2NQUGGYM@DBM1. The results are summarized in Table 5. We evaluate their

quality by OpenAI’s 03-mini, using its reasoning capabilities in an LLM-As-Judge framework. The

evaluation indicated that Model C had the highest modeling quality 3. The explanation provided was that
*We denote f(v) = f({v})and f(v | S) = f(SU{v}) — f(S) for brevity.

3Repeated inquiries occasionally resulted in A being rated higher, with the justification that A offered a more comprehensive
view. However, this comprehensiveness came at the cost of interest modeling that was more diffuse and less precise.
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C demonstrated superior descriptive quality, capturing the user’s core preferences for rock and progressive
music with concise and precise language. It also emphasized the user’s interest in new releases, live
performances, and behind-the-scenes content, while avoiding extraneous information misaligned with
primary interests. In contrast, Model A, while rich in information, introduced a broader range of music
styles that diluted focus, and Model B predominantly emphasized an alternative style of rock, leading to
inconsistencies with the other descriptions.

We conducted three rounds of quantitative evaluations on the ranking task, each comprising one positive
item alongside nigh negative items. As shown in Table 6, Method C achieved the highest performance,
followed by Method B, while Method A exhibited the poorest performance.

H Prompt Templates

We present the prompt templates used in AgentCF, as shown in Figure 8 and Figure 9, and those employed
in Agent4Rec, depicted in Figure 10.

Prompt Template for Forward Inference Process of AgentCF

Task: We provide a user’s personal profile in [User Profile], which includes the user’s preferences,
dislikes, and other relevant information. You need play the role of the user. And we also provide
two candidate items, A and B, with their features in [Item Feature]. You need to choice between
the two item candidates based on your profile and the features of the items. Furthermore, you must
articulate why you’ve chosen that particular item while rejecting the other.

User Profile: {profile}

Item Feature: Item A: {item a} Item B: {item b}

Steps to Follow:

1. Extract your preferences and dislikes from your self-introduction.

2. Evaluate the two candidate in light of your preferences and dislikes. Make your choice by
considering the correlation between your preferences/dislikes and the features of the candidates.
3. Explain why you made such choices, from the perspective of the relationship between your
preferences/dislikes and the features of these candidate items.

Important Notes:

1. Your output should strictly be in the following format: Chosen Item: Item A or Item B
Explanation: Your detailed rationale behind your choice and reasons for rejecting the other item.
2. When identifying user’s likes and dislikes, do not fabricate them! If your [User Profile] doesn’t
specify any relevant preferences or dislikes, use common knowledge to inform your decision.

3. You **must** choose one of these two candidates, and **cannot** choose both.

4. Your explanation needs to be comprehensive and specific. Your reasoning should delve into the
finer attributes of the items.

5. Base your explanation on facts. For instance, if your self-introduction doesn’t reveal any specific
preferences or dislikes, justify your decision using available or common knowledge.

6. Please ignore the effect of Item position and length, they do not affect your decision.
Response Example: Chosen Item: Item A Explanation: I chose Item A because...

Figure 8: Prompt template for the forward process of AgentCF to predict one user potentially liked item between a
positive one and a negarive one.
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Prompt Template for Backward Reflection Process of AgentCF

Background: We provide a user’s personal profile in [User Profile], which includes the user’s
preferences, dislikes, and other relevant information. You need play the role of the user. Recently,
you considered choosing one more prefered Item from two candidates. The features of these two
candidate are provided in [Item Feature]. And your choice and explanation is in [Choice and
Explanation], which reveals your previous judgment for these two candidates.

User Profile: {profile}

Item Feature: Item A: {item a} Item B: {item b}

Choice and Explanation: {response}

Task: However, The user in the real world actually prefer to choose Item B, and reject the Item
A that you initially chose. This indicates that you made an incorrect choice, the [Choice and
Explanation] was mistaken. Therefore, you need to reflect and update [User Profile].

Steps to Follow:

1. Analyze the misconceptions in your previous [Choice and Explanation] about your preferences
and dislikes, as recorded in your explanation, and correct these mistakes.

2. Explore your new preferences based on the Item B you really enjoy, and determine your dislikes
based on the Item a you truly don’t enjoy.

3. Summarize your past preferences and dislikes from your previous [User Profile]. Combine
your newfound preferences and dislikes with your past ones. Filter and remove any conflicting or
repetitive parts in your past [User Profile] that contradict your current preferences and dislikes.

4. Generate a update profile use the following format:

My updated profile: {Please write your updated profile here}

Important Notes:

1. Keep your updated profile under 180 words.

2. Any overall assessments or summarization in your profile are forbidden.

3. Your updated profile should only describe the features of items you prefer or dislike, without
mentioning your wrong choice or your thinking process in updating your profile.

4. Your profile should be specific and personalized. Any preferences and dislikes that cannot
distinguish you from others are not worth recording.

Response Example: My updated profile: I ...

Figure 9: Prompt template for the backward process of AgentCF to apply the reflect mechanism for updating user
profile.

5786



Prompt Template for Summarization Process of Agent4Rec

Task: We provide a user’s personal profile in [User Profile], which includes the user’s preferences
and other relevant information. Additionally, we provide a sequence of liked items in [Sequence
Item Profile] that the user has interacted with. Your task is to analyze these items in the context
of the user’s existing profile and produce an updated profile that reflects any new preferences, or
insights inferred from the user’s interactions with these items.

User Profile: {profile}

Sequence Item Profile: {sequence item profile}

Steps to Follow:

1. Carefully review the user’s existing profile to understand their stated preferences and dislikes.
2. Analyze the features of the items in the provided sequence, noting any common themes,
attributes, or patterns.

3. Identify any new preferences that can be inferred from the user’s interactions with these items.
4. Summarize and update the user’s profile by incorporating the new insights, adding new pref-
erences or dislikes, and highlighting any changes or developments in the user’s tastes. Important
Notes

5. Your output should strictly be in the following format: Summarization: {Your updated profile. }
6. Do not contradict the user’s existing preferences unless there is clear evidence from the sequence
items that their tastes have changed.

7. Base your summary on facts and logical inferences drawn from the items in the sequence.

8. Be comprehensive and specific in your summarization, focusing on the finer attributes and
features of the items that relate to the user’s preferences.

9. Avoid fabricating any information not supported by the user’s profile or the sequence items.
Response Example: Summarization: You’ve developed interest in ....

Figure 10: Prompt template of Agent4Rec to apply the summarization mechanism for distilling user profile.
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