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Abstract

Memory plays a key role in enhancing LLMs’
performance when deployed to real-world ap-
plications. Existing solutions face trade-offs:
explicit memory designs based on external stor-
age require complex management and incur
storage overhead, while implicit memory de-
signs that store information via parameters
struggle with reliable retrieval. In this pa-
per, we propose R3Mem, a memory network
that optimizes both information Retention and
Retrieval through Reversible context compres-
sion. Specifically, R3Mem employs virtual mem-
ory tokens to compress and encode infinitely
long histories, further enhanced by a hierar-
chical compression strategy that refines infor-
mation from document- to entity-level for im-
proved assimilation across granularities. For re-
trieval, R3Mem employs a reversible architecture,
reconstructing raw data by invoking the model
backward with compressed information. Imple-
mented via parameter-efficient fine-tuning, it
can integrate seamlessly with any Transformer-
based model. Experiments demonstrate that
our memory design achieves state-of-the-art
performance in long-context language model-
ing and retrieval-augmented generation tasks.
It also significantly outperforms conventional
memory modules in long-horizon interaction
tasks like conversational agents, showcasing its
potential for next-generation retrieval systems.

1 Introduction

Large language models (LLMs) (Ouyang et al.,
2022; Team et al., 2023; Dubey et al., 2024) have
demonstrated remarkable capabilities in natural lan-
guage understanding and generation (Liang et al.,
2022; Srivastava et al., 2023; Wang et al., 2024a),
achieving human-comparable performance on com-
plex reasoning tasks (Guo et al., 2023; Suzgun
and Kalai, 2024). Deploying LLMs as controllers
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Figure 1: Comparison between explicit memory, im-
plicit memory, and our proposed R3Mem memory design.

to interact with dynamic environments and solve
real-world tasks, i.e. , as autonomous agents (Liu
et al., 2025), has shown promising success across
diverse applications, including conversational assis-
tants (OpenAI, 2022; Achiam et al., 2023), work-
flow automation (Hong et al., 2023; Wu et al., 2024;
Wang and Liu, 2024; Qin et al., 2025), and embod-
ied navigation (Wang et al., 2023a; Zheng et al.,
2024; Sun et al., 2024b).

However, LLMs have inherent limitations: their
stateless nature (Sumers et al., 2023) makes them
struggle with leveraging past experiences for multi-
turn interactions and cross-task generalization. Fur-
thermore, their reliance on fixed context windows
and static parameterized knowledge constrains
their ability to handle complex tasks requiring dy-
namic, up-to-date information (Tao et al., 2024).

To address these challenges, existing approaches
introduce external storage (i.e. , explicit memory),
such as knowledge repositories (Kagaya et al.,
2024; Zhu et al., 2024b) and vector databases (Liu
et al., 2024; Jing et al., 2024), to enhance long-term
retention and enable cross-task generalization (Ma-
harana et al., 2024; Wang et al., 2023a,b) and cross-
model sharing (Gao and Zhang, 2024). In parallel,
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implicit memory encodes contextual information
directly into model parameters, enabling contin-
uous knowledge updates while providing a more
compact representation of information, reducing
redundancy compared to external storage. Model-
editing methods modify neurons to update (Huang
et al., 2023; Gangadhar and Stratos, 2024) or for-
get knowledge (Wang et al., 2024d), while context
integration (Choi et al., 2022; Wang et al., 2024c)
adjusts internal parameters via model distillation.
Memory-augmented Transformers (e.g. , RMT (Bu-
latov et al., 2022), Associate Memory (He et al.,
2024; Wang et al., 2024b; Tack et al., 2024), and
Titans (Behrouz et al., 2024)) enhance retention by
integrating dedicated memory components.

However, as illustrated in Figure 1, both explicit
and implicit memory involve trade-offs between
storage overhead and recall effectiveness. Explicit
memory grows indefinitely, requiring complex
memory management techniques such as merg-
ing (Yin et al., 2024; Hu et al., 2024) and for-
getting (Zhong et al., 2024). In contrast, implicit
memory suffers from unreliable retrieval due to the
black-box nature of LLMs, leading to confabula-
tion and hallucination issues (Li et al., 2024a). As
analyzed by Padmanabhan et al. (2024), injected
atomic facts can propagate and influence broader
inferences, further complicating retrieval accuracy.
More recently, adaptive retrieval (Mallen et al.,
2023; Farahani and Johansson, 2024) and Mem-
oRAG (Qian et al., 2024) combine explicit and
implicit memory in a hybrid retrieval paradigm but
remain dependent on large-scale external storage.

In this paper, we propose R3Mem, a novel
memory-augmented model that optimizes both
memory retention and retrieval while minimizing
external storage dependency. R3Mem leverages a
reversible architecture that integrates context com-
pression and expansion, enabling assimilation and
reconstruction of input data.

Specifically, we design a context compression
task that learns to generate compressed representa-
tions (‘query’) from raw input (‘context’). R3Mem
utilizes virtual memory tokens to encode and retain
text that is indefinitely long. To improve compres-
sion quality, we introduce a hierarchical compres-
sion strategy, progressively refining information at
the document, paragraph, and entity levels.

For retrieval, R3Mem adopts a reversible archi-
tecture, reconstructing raw input by inverting the
model invocation on compressed representations.
This is achieved through adapter tuning, allowing

seamless integration with pre-trained Transformer
model while maintaining parameter efficiency.

To optimize both memory retention and retrieval,
we employ bidirectional training with cycle con-
sistency. The forward process encodes context
into compressed memory representations, while
the backward process reconstructs the raw content
from memory tokens, enforcing consistency be-
tween the original and reconstructed information.

We evaluate R3Mem on memory-intensive
tasks, achieving state-of-the-art performance in
long-context language modeling and retrieval-
augmented generation. We also integrate R3Mem
into a real-world conversational agent that requires
long-horizon interactions and the ability to recall
distant historical context. R3Mem consistently out-
performs existing memory modules, demonstrating
superior scalability, retrieval accuracy, and poten-
tial for next-generation retrieval systems.

2 Methodology

In this section, we introduce R3Mem, a memory net-
work that optimizes both memory retention and
retrieval. As illustrated in Figure 2, the core com-
ponent of R3Mem is context compression, which en-
codes raw text into model parameters using vir-
tual memory tokens. These trainable tokens are
appended to the raw text, summarizing the current
context window and propagating information to
subsequent windows. This enables the model to
absorb and retain indefinitely long input sequences.
Furthermore, to facilitate more flexible memory
usage, i.e. , enabling retrieval of documents for
queries with varying semantic granularities, we
employ hierarchical compression. This approach
chunks documents into multiple levels of semantic
representation, including document-, paragraph-,
sentence-, and entity-level abstractions. By struc-
turing information hierarchically, our method op-
timizes retention and retrieval efficiency across
different levels of granularity. Lastly, we use a
pre-trained Transformer backbone with an adapter-
based reversible architecture, allowing the memory
network to operate bidirectionally. This allows the
model to be invoked in reverse, which reconstructs
raw information from compressed memory akin to
a “zip” and “unzip” process, unifying information
retention and retrieval within a duplex network.
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Figure 2: Overview of R3Mem’s architecture: The model employs a reversible framework that integrates context
compression and expansion mechanisms. For the forward model, raw textual data is hierarchically encoded into
compact representations at various levels—document, paragraph, and entity—using virtual memory tokens. In the
backward model, the model reconstructs the original information by reversing the compression process.

2.1 Memory Retention

Inspired by context-supervised pretraining (Gao
and Callan, 2022; W et al., 2023), which trains
models to generate one passage conditioned on an-
other from the same document, we employ a similar
mechanism to bridge the information gap between
condensed memory and raw content. Specifically,
we formulate memory retention as a context com-
pression problem, where the model learns to gener-
ate a compressed representation (‘query’ q) given
a raw text input (‘context’ c).

To facilitate more flexible memory usage, we em-
ploy hierarchical compression to enhance multi-
granularity assimilation, constructing ⟨c, q⟩ pairs at
multiple levels, including document-to-paragraph,
paragraph-to-sentence, and sentence-to-entity map-
pings. This structured approach segments doc-
uments into different semantic granularities, en-
suring optimized retention and adaptive retrieval
across varying levels of abstraction.

Furthermore, we introduce virtual memory to-
kens to efficiently encode long contexts by splitting
them into manageable segments and processing
them sequentially while preserving previous infor-
mation. These tokens cache and propagate mem-
ory across context windows, ensuring continuity in
long-context retention and enabling the model to
maintain coherence over extended sequences.

Formally, given a context-query pair ⟨c, q⟩ from
the context-query set Dc, the memory network Mθ

learns to model the conditional probability Mθ(q |

c) using an autoregressive decoder:

Mθ(q | c) =
T∏

t=1

Mθ(qt | q<t, c) (1)

where T is the length of generated query comprised
of a sequence of tokens q = ⟨q1, · · · , qt, · · · , qT ⟩,
and θ denotes the virtual memory token.
Hierarchical compression. To construct a struc-
tured hierarchy of text chunks, we borrow pipeline
from Xu et al. (2023) and Yoon et al. (2024a) to em-
ploy a superior LLM to decompose each document
d into paragraphs p, sentences s, and key entities e
(detailed in Section 3). At each level, the preceding
granularity (e.g. , entire document) serves as the
context and the subsequent (e.g. , paragraphs) as
the query, forming structured ⟨c, q⟩ pairs:

Dc = Dd ∪Dp ∪Ds (2)

= {⟨d, p⟩}N1 ∪ {⟨p, s⟩}M1 ∪ {⟨s, e⟩}K1 (3)

Virtual memory tokens. Encoding lengthy con-
texts, such as long-term interaction histories with
LLMs, often exceeds the model’s effective con-
text window. As analyzed by An et al. (2024),
even with a theoretically large context length, a
model’s ability to retain and effectively utilize rel-
evant information remains limited in practice. A
naive approach would be to split long documents
into smaller segments and process them individ-
ually. However, this disrupts semantic continuity
and results in suboptimal training, as segmentation
fragments contextual dependencies.

4543



𝑥1 𝑥2

𝑦1 𝑦2

+

+

ℱ

𝒢

ℱ :

Adapter

Self-attention

Linear

Linear

𝒢 :

LayerNorm

+

Adapter
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Left: The general reversible neural architecture. Right:
The components of the reversible Transformer.

To address this, we introduce virtual memory
tokens to bridge representations across context
windows. These tokens act as summary vectors,
caching compressed representations and transfer-
ring them across context windows. Formally, as
shown in Figure 2, given a long input sequence c
and segmented as c = c1 ⊕ c2 · · · ⊕ cs · · · ⊕ cS .
we prepend and append memory tokens to each
segment as: cs = θr ⊕ cs ⊕ θw , where ⊕ de-
notes concatenation, θr represents the memory
token outputs from the previous segment (with the
c1 having no such input), serving as memory read
tokens for the current segment, and θw represents
the memory tokens of the current segment, acting
as memory write tokens to summarize the current
segment and store information for future segments.
By leveraging virtual memory tokens, the model
can scale beyond context length limitations while
maintaining continuity across segments.

Although token-based compression techniques
have been widely explored in global attention (Za-
heer et al., 2020; Beltagy et al., 2020), our vir-
tual memory tokens differ in that these tokens are
trainable, enabling adaptive context compression
and efficient optimization within a prompt-tuning
paradigm (Lester et al., 2021; Liu et al., 2021).
Moreover, they can further enhance memory capa-
bility by inserting memory tokens as hidden states
within each Transformer layer (Li and Liang, 2021),
as detailed in Section 3.4.

2.2 Memory Retrieval

Considering the dual nature of memory retention
and retrieval, where retention integrates raw text
into a compressed representation (i.e. , compress-
ing context into memory) and retrieval reverses this
process by reconstructing the compressed represen-
tation into raw content (i.e. , expanding memory
to context), we propose building R3Mem with a re-
versible architecture. By simply flipping the input

and output ends, this approach enables a duplex
transformation between context and its memory,
allowing simultaneous optimization of memory re-
tention and retrieval to improve retrieval accuracy.

As shown in Figure 3, reversible architectures
are a class of neural networks based on NICE (Dinh
et al., 2014, 2022), which construct nonlinear bijec-
tive transformations by partitioning input at each
layer into two groups that cache information for
one another, thereby allowing exact reconstruc-
tion of inputs. Since the standard Transformer ar-
chitecture is not inherently reversible, Liao et al.
(2024) introduced adapter-based modifications to
pre-trained Transformers to make them reversible.
The key idea is to treat the original Transformer
layer as one input group and the inserted adapter
module as another, forming a reversible Trans-
former where the adapters are optimized using
adapter tuning (Houlsby et al., 2019; Hu et al.,
2021). We provide a more detailed introduction of
reversible Transformer in Appendix C.

We use the pre-trained Transformer-based
LLaMA 3.1-8B as the base model and integrate
adapter modules to enable a reversible architecture.
This allows us to reconstruct the input by feed-
ing the compressed content backward. Formally,
we denote the flipped model as M−1, where the
backward generation models a similar conditional
probability as the forward process in Eq. 1:

M−1
[θ;ϕ](c | q) =

L∏

l=1

M−1
[θ;ϕ](cl | c<l, q) (4)

where L is the length of the generated con-
text, encompassing a sequence of tokens c =
⟨c1, · · · , cl, · · · , cL⟩, and ϕ is the adapter matrix.

2.3 Training Objective

Following the standard training setup of reversible
architectures (He et al., 2016; Zheng et al., 2021;
Wu, 2023), we optimize R3Mem through bidirec-
tional training with cycle consistency, incorporat-
ing forward compression loss, backward expansion
loss, and a cycle consistency loss.

L = Lforward + Lbackward + λLcycle (5)

where λ is the coefficient to balance the contribu-
tion of cycle consistency loss.

Given a context-query pair ⟨c, q⟩ ∈ Dc, forward
training optimizes the memory network to model
the probabilities of forward generation, as defined
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in Eq. 1, by minimizing the conditional negative
log-likelihood (NLL) loss:

Lforward = −
T∑

t=1

log M̂[θ;ϕ] (qt | q<t, c) (6)

where M̂[θ;ϕ] (qt | q<t, c) represents the predicted
probability for token qt in the reference query.

Similarly, backward training models the proba-
bilities of backward generation as defined in Eq. 4:

Lbackward = −
L∑

l=1

log M̂−1
[θ;ϕ] (cl | c<l, q) (7)

where M̂−1
[θ;ϕ] (cl | c<l, q) denotes the predicted

probability for cl in the reconstructed context.
To ensure cycle consistency, given an input c, we

generate its reconstruction c̄ by passing it through
the reversible model as the forward mapping fM
and backward mapping fM−1 :

fM : c 7−→ q (8)

fM−1 : q 7−→ c̄ (9)

The cycle consistency loss maximizes the similarity
between the original input c and its reconstruction
c̄ using cross-entropy:

Lcycle = −
L∑

l=1

log M̂−1
[θ;ϕ] (cl | c<l, fM(c)) (10)

3 Experiments

Dataset. We follow the training protocol of Qian
et al. (2024) using UltraDomain (Qian et al., 2024),
which includes documents from the training set of
diverse long-context question-answering and sum-
marization tasks, including NarrativeQA (Kočiský
et al., 2018), Qasper (Dasigi et al., 2021), GovRe-
port (Huang et al., 2021), and MultiNews (Fabbri
et al., 2019). Following Xu et al. (2023); Yoon
et al. (2024a), we employ a more capable LLM
as an oracle to generate hierarchical context-query
pairs. While certain lightweight doc2query mod-
els (Nogueira et al., 2019; W et al., 2023) demon-
strate strong performance in constructing context-
query pairs, they often struggle with longer inputs.
In Section 3.4, we present an experimental com-
parison between context-query pairs generated by
doc2query models and the oracle model.

Specifically, we prompt a high-capacity ora-
cle model (i.e. , GPT-4o) to progressively decom-
pose each document into paragraphs, sentences,

and entities. This process draws inspiration from
event-centric hierarchical summarization meth-
ods (Zhong et al., 2022; Zhu et al., 2024a). Firstly,
given a document d, the oracle generates a set
of query-worthy events and selects the most rel-
evant entities. We then prompt the oracle to re-
trieve sentence-level contexts, i.e. , s, surrounding
these entities and condense them into sentence-
entity pairs ⟨s, e⟩. Building on these pairs, we
instruct the oracle to extend and summarize the
retrieved context into paragraph-level chunks, i.e. ,
p, to create document-paragraph pairs ⟨d, p⟩ and
paragraph-sentence pairs ⟨p, s⟩. Finally, we apply a
length-based criterion to filter out short paragraphs
and sentences. Paragraphs shorter than 20% of the
corresponding original document length and sen-
tences shorter than 4% are removed. The statistics
of these constructed pairs are presented in Table 4
and the used prompts are provided in Appendix B.
Baselines. We compare R3Mem with five memory-
augmented Transformer architectures, categorized
into recurrent architectures and associative mem-
ory architectures. The former include RMT (Bu-
latov et al., 2022), MemoRAG (Qian et al., 2024),
and MELODI (Chen et al., 2024), while the latter
comprise MemoryLLM (Wang et al., 2024b) and
CAMELoT (He et al., 2024). For RMT, Memo-
ryLLM, and MemoRAG, we utilize their official
implementations to report results. Since MELODI
and CAMELoT have not publicly released their
code, we report their results as presented in their
respective papers and ensure that our evaluation
settings align with theirs for a fair comparison. Im-
plementation details are provided in Appendix A.

3.1 Retention Performance
We firstly demonstrate whether R3Mem can effec-
tively compress and encode context. Following the
setting of MELODI (Chen et al., 2024), we assess
retention performance by measuring perplexity in
long-context language modeling across three pub-
licly available datasets: PG19 (Rae et al., 2019) ,
Pile arXiv (Gao et al., 2020), and C4 (4K+) (Raffel
et al., 2020). The detailed experimental setup is
provided in Appendix B. The average perplexity
on the testing set is summarized in Table 1.
R3Mem achieves state-of-the-art performance in
long-context modeling. R3Mem attains the lowest
perplexity across all three datasets, effectively com-
pressing long contexts into memory vectors. No-
tably, on the challenging C4 (4K+) dataset, R3Mem
reduces the perplexity by approximately 13% com-
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Model PG19 arXiv C4 (4K+)

MemoryLLM 7.65 4.00 18.14
CAMELoT 7.10 3.60 -

RMT 7.04 3.56 17.67
MELODI 6.21 - 15.25

MemoRAG 5.92 3.35 15.37
R3Mem 5.21 2.39 13.38

Table 1: Long-context language modeling performance
in terms of perplexity among three benchmarks. The
dash “-” indicates that the code is not publicly available
and corresponding results are not reported in their paper.

pared to the next-best baseline, MemoRAG.
Recurrent architectures outperform associative
memory. For example, associative memory-based
methods, such as MemoryLLM and CAMELoT,
exhibit inferior performance compared to the oth-
ers. This disparity may stem from the reliance of
associative memory approaches on discrete read
and write operations, as seen in CAMELoT, and
drop operations, as in MemoryLLM, which may
struggle to maintain smoothly evolving contextual
representations over long sequences.

3.2 Retrieval Performance

We further validate that the encoded information
can be faithfully retrieved, establishing a reliable
foundation for retrieval tasks. To assess this, we
follow the experimental setup of MemoRAG (Qian
et al., 2024) and integrate R3Mem into a retrieval-
augmented generation (RAG) question-answering
(QA) task on UltraDomain, using the same in-
domain and out-of-domain evaluation settings.

During evaluation, the model receives only the
query as input, without direct access to the origi-
nal test set context. This setup allows us to assess
whether the model can effectively recall and utilize
encoded context to generate accurate responses.
The average F1 Scores are shown in Figure 4.
The results indicate that retrieval performance is
closely aligned with compression performance,
i.e. , better compression leads to improved retrieval.
This demonstrates the dual nature of context com-
pression and expansion, highlighting the rationale
behind R3Mem optimizing both to enhance retrieval
accuracy. Notably, R3Mem achieves the best results
in both retrieval and retention performance, while
MemoryLLM underperforms in both aspects.

Out-of-domain performance is significantly
lower than in-domain performance, but remains
consistent across models. The out-of-domain per-
formance is notably lower than in-domain perfor-

Pre-trained Base
MemoryLLM RMT

MemoRAG R3Mem
30

35

40

45

50

55

F 1
 S

co
re

In-domain
Out-of-domain

Figure 4: RAG performance on the UltraDomain dataset
in terms of in-domain and out-of-domain settings.

mance, as observed in R3Mem’s results (in-domain:
53 vs. out-of-domain: 36). In contrast, the base pre-
trained model exhibits a smaller gap (in-domain:
38 vs. out-of-domain: 37), suggesting that fine-
tuning on domain-specific data has minimal im-
pact on out-of-domain generalization. This indi-
cates that integrating new context does not degrade
the model’s original knowledge. Additionally, the
performance differences across models in the out-
of-domain evaluation are relatively small. R3Mem
achieves only a marginal 1% improvement over the
weakest-performing MemoryLLM, and all base-
lines exhibit out-of-domain performance similar
to the base model. To further investigate this phe-
nomenon, we scale training iterations and analyze
its effects in Section 3.4.

3.3 Agent Performance

We assess R3Mem in a real-world agent data using
SiliconFriend (Zhong et al., 2024), an AI chatbot
companion. Specifically, we replace its external
memory module, i.e. , MemoryBank (Zhong et al.,
2024) with R3Mem. We use the publicly available
SiliconFriend dataset, which consists of interac-
tions among 15 distinct virtual users over a 10-day
period. Following the setup of Zhong et al. (2024),
where the external memory bank is initialized with
given dialogue history, we initialize the implicit
memory module by training R3Mem on this dialogue
history for two epochs. For comparison, we employ
MemoRAG (i.e. , the most competitive baseline in
Table 1) as the baseline implicit memory module
and fine-tune it under the same settings.

We use 194 memory-probing questions. First,
the models retrieve context from the memory bank
or generate context using MemoRAG and R3Mem.
The retrieved or generated context is then fed into
SiliconFriend to generate final responses. The
evaluation includes four key metrics: (1) Mem-
ory Retrieval Accuracy, measuring alignment with
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Figure 5: Evaluation of memory retrieval and response
generation when integrating R3Mem into the Silicon-
Friend conversational agent. The overall score rep-
resents the average across all four evaluation metrics.
Scores are re-scaled using min-max normalization for
each metric to enhance clarity.

the reference memory using the F1 Score; (2) Re-
sponse Correctness, assessing whether the response
contains the correct answer via exact substring
matching; (3) Contextual Coherence, evaluating
response fluency and relevance using BARTScore-
Faithfulness (Yuan et al., 2021); and (4) Ranking
Score, ranking memory modules based on response
correctness, with scores computed as s = 1/r,
where r ∈ {1, 2, 3} denotes ranking position.

The results, summarized in Figure 5, reveal two
key findings. Firstly, implicit memory modules
outperform explicit memory. For instance, both
R3Mem and MemoRAG surpass the original Mem-
oryBank across all four metrics. Beyond Rank-
ing Scores and Response Correctness, Memory
Retrieval Accuracy exhibits the most significant
difference between implicit memory modules and
explicit memory. Notably, R3Mem achieves the best
overall performance, primarily due to its superior
Memory Retrieval Accuracy. However, Contex-
tual Coherence shows no significant differences
across memory modules. This could be due to
the fact that SiliconFriend has been fine-tuned on
psychological dialogues, enabling it to generate flu-
ent and natural responses even when the retrieved
memory is not entirely accurate.

3.4 In-depth Analysis

Hierarchical compression and high-quality
context-query pairs improve performance. We
construct two baseline models that exclude hier-
archical context-query pairs: (1) R3Mem-context-
only, which retains only document-paragraph pairs
(i.e. , ⟨d, p⟩ in Eq. 3), and (2) R3Mem-short-context,
which generates short context-query pairs using a
lightweight doc2query model (W et al., 2023). The

Model PG19 arXiv C4 (4K+)

Fine-tuned Base 8.10 4.31 19.04
R3Mem-context-only 7.15 3.69 17.16
R3Mem-short-context 7.44 3.83 17.60
R3Mem-w/o-backward 6.41 3.21 15.83
R3Mem-w/o-cycle 5.91 2.87 14.80

R3Mem 5.21 2.39 13.38

Table 2: Ablation analysis of R3Mem on long-context
language modeling task.
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Figure 6: Long-context language modeling performance
on the PG19 (left) and C4 (4K+) (right) dataset when
scaling virtual memory tokens with increasing number
and injection of hidden states.

latter feeds document chunks of fewer than 512
tokens as input and generates queries.

We train both baselines using same setting as
R3Mem. As shown in Table 2, removing hierarchical
compression or restricting context-query length sig-
nificantly increases perplexity. The short-context
variant leads to an even larger performance drop,
reducing retention effectiveness by approximately
28% on C4 (4K+). These results highlight the ne-
cessity of hierarchical compression for effectively
encoding context of R3Mem.
Injecting virtual tokens into hidden states im-
proves performance, but increasing token length
does not. We assess the impact of scaling virtual
memory tokens: (1) increasing the number of input
virtual tokens from 16 to 32, 64, and 128, and (2)
injecting virtual tokens into the hidden states of
each Transformer layer, following Li and Liang
(2021), with scaling from 16 to 32, 64, and 128.

The results, illustrated in Figure 6, reveal two
key observations. First, adding virtual tokens to
hidden states improves final performance, suggest-
ing that similar to hierarchical compression, hi-
erarchical memory across Transformer layers en-
hances memory retention. However, this approach
drastically increases the number of trainable pa-
rameters by a factor of 32 in the LLaMA 3.1-8B
base model, making it impractical for large-scale
deployment. As a result, R3Mem defaults to using
virtual tokens only in the input sequence. Second,
increasing token length (i.e. , memory size) does
not significantly improve performance, which is
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Figure 7: RAG performance when strengthening mem-
ory through training extra epochs on the training set.

inconsistent with prompt-tuning. A possible ex-
planation is that memory tokens serve a different
function from prompt tuning. While prompt tuning
enhances task-level generalization by stimulating
pre-trained knowledge, memory tokens summarize
and store sample-level context, making them easier
to fit than multi-task learning.
Backward optimization and cycle consistency
loss are essential. We investigate the effect of
training objectives by testing two ablated variants:
(1) R3Mem-w/o-backward, which removes the back-
ward loss, and (2) R3Mem-w/o-cycle, which omits
cycle consistency loss. As shown in Table 2, both
variants exhibit degraded performance, demonstrat-
ing that all three loss components contribute to
optimal training by ensuring alignment between
context compression and expansion. This align-
ment is key to R3Mem, enabling memory retention
and retrieval in a duplex framework.
Extra training improves in-domain retrieval at
the cost of out-of-domain generalization. We
analyze whether overfitting to the training set
strengthens memorization of training contexts. We
extend training from 2 epochs to 4, 8, 16 and 32
epochs and evaluate in-domain and out-of-domain
retrieval performance. Results in Figure 7 indi-
cate that while in-domain retrieval consistently im-
proves with prolonged training, it comes at the cost
of out-of-domain generalization, observed in both
R3Mem and MemoRAG. This suggests that although
implicit memory avoids the management and stor-
age overhead of explicit memory, integrating new
memory through fine-tuning may be unstable, as
newly encoded memory may interfere with or even
overwrite pre-trained parametric knowledge, mak-
ing it harder for effective lifelong integration.
R3Mem demonstrates efficient memory retrieval,
particularly under large memory volumes. To
better assess practical usability, we further ana-
lyze the inference-time efficiency of each memory

Module Write (ms) Read (ms) Performance

1K history
MemoryBank 795 183 72.8
MemoRAG 1476 986 75.9
R3Mem (short) 876 367 83.9
R3Mem 1539 366 86.1

2K history
MemoryBank 794 514 72.3
MemoRAG 1469 1137 75.5
R3Mem (short) 869 376 83.5
R3Mem 1538 378 86.4

5K history
MemoryBank 792 1453 69.5
MemoRAG 1466 1358 75.6
R3Mem (short) 864 379 83.6
R3Mem 1538 360 85.9

Table 3: Comparison of memory latency and perfor-
mance across different history sizes. Performance is
the overall score defined in Section 3.3. R3Mem (short)
denotes the variant that generates short context-query
pairs using a lightweight doc2query model.

module by decomposing latency into memory con-
struction (write) and retrieval (read) stages under
increasing conversation history sizes (1K, 2K, and
5K turns). The evaluation follows the setting intro-
duced in Section 3.3, and all results are measured
using wall-clock time on the same hardware setup
to ensure a fair comparison.

Explicit memory modules such as MemoryBank
rely on dense retrieval over Faiss-indexed embed-
dings, resulting in low write latency (around 790 ms
per record), but their read latency increases signifi-
cantly with longer conversation histories, i.e. from
183 ms at 1K history to 1453 ms at 5K. In con-
trast, implicit memory modules like R3Mem main-
tain stable read latency around 360–380 ms across
all history sizes, as their decoding-based retrieval
mechanism is independent of memory volume.

Although R3Mem incurs higher write latency (ap-
proximately 1538 ms) due to LLM-based context
compression, we also evaluate a variant, R3Mem
(short), where memory is constructed using a
lightweight doc2query model. This variant reduces
write latency to around 870 ms per record, while
retaining most of the performance benefits.

With the full 5K-turn conversation history,
R3Mem achieves an average write and read time
of 1536 ms and 360 ms respectively (totaling
1896 ms), which is notably lower than the 2245 ms
required by MemoryBank (792 ms write + 1453 ms
read). Moreover, R3Mem attains a significantly
higher overall performance score of 85.9 compared
to MemoryBank’s 69.5, demonstrating its clear ad-
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vantage in both efficiency and effectiveness.

4 Related Works

Memory-augmented neural networks. Designing
architectures capable of memorization and general-
ization through knowledge abstraction (Sukhbaatar
et al., 2019) and data-dependent information reten-
tion (Zancato et al., 2024) has been a longstanding
research focus. Early approaches introduced ar-
chitectures with external memory modules, such
as neural turing machines (NTM) (Graves, 2014)
and modern Hopfield Networks (Ramsauer et al.,
2020), which utilize pre-defined update rules to
manage memory. With the advent of Transform-
ers, some methods employ recurrent Transformer
architectures (Dai, 2019; Bulatov et al., 2022) to
cache key-value pairs as memory, enabling the
reuse of cached information to extend context win-
dow sizes. Additionally, recent studies have ex-
plored encoding training data into model param-
eters, effectively using them as memory to store
world knowledge (Wang et al., 2024c; Padmanab-
han et al., 2024; Gangadhar and Stratos, 2024; He,
2024). This approach has also been extended to
large databases (Qian et al., 2024), test-time data
points (Sun et al., 2024a), and broader language
modeling tasks (Yang et al., 2024). Titans (Behrouz
et al., 2024) integrates long-term, short-term, and
persistent memory into a unified neural architecture.
While optimizing memory retention, they overlook
retrieval reliability from model parameters, which
is a core design motivation of R3Mem.
Context compression. Compressing lengthy con-
texts into concise representations that retains es-
sential information can make LLM inference more
efficient (Choi et al., 2022; Li et al., 2024b). Ap-
proaches like Selective Context (Li et al., 2023),
LLMLingua (Jiang et al., 2023, 2024) and RE-
COMP (Xu et al., 2023) use context selection to im-
prove inference efficiency, and methods such as Au-
toCompressor (Chevalier et al., 2023), in-context
autoencoder (ICAE) (Ge et al., 2023), Gist (Mu
et al., 2024) and CompAct (Yoon et al., 2024b)
employ training-based techniques to generate sum-
mary representations. Besides, Delétang et al.
(2023) proposes new general-purpose language
modeling perspectives by leveraging compression
through arithmetic coding from information the-
ory (Rissanen, 1976; Pasco, 1976). In contrast,
R3Mem uses context compression as a surrogate task
to optimize memory retention while ensuring align-

ment through backward context expansion.

5 Conclusion

We propose R3Mem, a memory network built on a
reversible architecture that optimizes both infor-
mation retention and retrieval. R3Mem employs hi-
erarchical compression to adaptively process in-
put and utilizes virtual memory tokens to encode
long-context information. Empirical results demon-
strate state-of-the-art performance in long-context
modeling and retrieval, with strong scalability and
accuracy in real-world conversational agents.

Limitations

R3Mem is a duplex network that unifies memory re-
tention and retrieval, which learns to encode docu-
ments into model parameters through context com-
pression. The limitations of this framework fall
into two main aspects: (1) the trade-off between
high-quality memory retention and the complexity
and cost of the context-query construction pipeline,
and (2) the instability of implicit memory in life-
long integration.

On the one hand, ensuring effective document
assimilation requires hierarchical compression opti-
mized through hierarchical context-query pairs. As
analyzed in Section 3.4, the quality of these pairs
significantly impacts memory retention effective-
ness. For example, while a lightweight doc2query
model produces reasonably good results, they are
still less effective than those generated by more
capable LLMs, which, in turn, come with signifi-
cantly higher computational costs. Balancing high-
quality memory retention with the complexity and
cost of the context-query construction pipeline is
crucial. Depending on the frequency of new con-
text integration into the model parameters, incorpo-
rating an adaptive data construction pipeline within
R3Mem could enhance its efficiency, making this an
important direction for future work.

On the other hand, strengthening memory reten-
tion through additional training may impact pre-
trained parametric knowledge or overwrite exist-
ing memory (as analyzed in Section 3.4). While
this behavior may be desirable in narrow-domain
applications or when maintaining a small-scale
memory history, excessive training could under-
mine the model’s inherent contextual understand-
ing and commonsense reasoning. Further evalua-
tion is needed to comprehensively understand these
relationships. Additionally, developing a more con-
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trollable memory architecture that better balances
historical context retention with new knowledge
integration, such as incorporating expert network
routing mechanisms, remains an important avenue
for future work on R3Mem.

Ethics Statement

R3Mem, as a memory network, can be integrated
into memory-intensive applications (Zhang et al.,
2024) such as social simulation, conversational as-
sistants, and personalized recommendations. While
the model can encode personal information from in-
teraction history of applications into its parameters,
its training-based nature allows for the filtering of
harmful or sensitive content during memory con-
struction. This ensures a personalized experience
and optimal retrieval performance while safeguard-
ing users from potential harm.
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Geir Kjetil Sandve, et al. 2020. Hopfield networks is
all you need. arXiv preprint arXiv:2008.02217.

Jorma J Rissanen. 1976. Generalized kraft inequality
and arithmetic coding. IBM Journal of research and
development, 20(3):198–203.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lam-
ple, Herve Jegou, and Armand Joulin. 2019. Aug-
menting self-attention with persistent memory. arXiv
preprint arXiv:1907.01470.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L Griffiths. 2023. Cognitive ar-
chitectures for language agents. arXiv preprint
arXiv:2309.02427.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun
Vikram, Genghan Zhang, Yann Dubois, Xinlei Chen,
Xiaolong Wang, Sanmi Koyejo, et al. 2024a. Learn-
ing to (learn at test time): Rnns with expressive hid-
den states. arXiv preprint arXiv:2407.04620.

Zhiyuan Sun, Haochen Shi, Marc-Alexandre Côté, Glen
Berseth, Xingdi Yuan, and Bang Liu. 2024b. Enhanc-
ing agent learning through world dynamics modeling.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 3534–3568, Mi-
ami, Florida, USA. Association for Computational
Linguistics.

Mirac Suzgun and Adam Tauman Kalai. 2024.
Meta-prompting: Enhancing language models
with task-agnostic scaffolding. arXiv preprint
arXiv:2401.12954.

Jihoon Tack, Jaehyung Kim, Eric Mitchell, Jinwoo Shin,
Yee Whye Teh, and Jonathan Richard Schwarz. 2024.
Online adaptation of language models with a memory
of amortized contexts. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey
on self-evolution of large language models. arXiv
preprint arXiv:2404.14387.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Xing W, Guangyuan Ma, Wanhui Qian, Zijia Lin, and
Songlin Hu. 2023. Query-as-context pre-training
for dense passage retrieval. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 1906–1916, Singapore.
Association for Computational Linguistics.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Xiaoqiang Wang and Bang Liu. 2024. Oscar: Oper-
ating system control via state-aware reasoning and
re-planning. arXiv preprint arXiv:2410.18963.

Xiaoqiang Wang, Lingfei Wu, Tengfei Ma, and Bang
Liu. 2024a. FAC2E: Better understanding large lan-
guage model capabilities by dissociating language
and cognition. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13228–13243, Miami, Florida, USA.
Association for Computational Linguistics.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang,
Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
Li, Xian Li, Bing Yin, Jingbo Shang, and Ju-
lian McAuley. 2024b. Memoryllm: towards self-
updatable large language models. In Proceedings of
the 41st International Conference on Machine Learn-
ing, ICML’24. JMLR.org.

Yu Wang, Xinshuang Liu, Xiusi Chen, Sean O’Brien,
Junda Wu, and Julian McAuley. 2024c. Self-
updatable large language models with parameter in-
tegration. arXiv preprint arXiv:2410.00487.

Yu Wang, Ruihan Wu, Zexue He, Xiusi Chen, and Julian
McAuley. 2024d. Large scale knowledge washing.
arXiv preprint arXiv:2405.16720.

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, et al. 2023b.
Jarvis-1: Open-world multi-task agents with memory-
augmented multimodal language models. arXiv
preprint arXiv:2311.05997.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

4553

https://doi.org/10.18653/v1/2024.findings-emnlp.202
https://doi.org/10.18653/v1/2024.findings-emnlp.202
https://openreview.net/forum?id=RIfgKCknTu
https://openreview.net/forum?id=RIfgKCknTu
https://doi.org/10.18653/v1/2023.emnlp-main.118
https://doi.org/10.18653/v1/2023.emnlp-main.118
https://doi.org/10.18653/v1/2024.emnlp-main.734
https://doi.org/10.18653/v1/2024.emnlp-main.734
https://doi.org/10.18653/v1/2024.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Xianchao Wu. 2023. Duplex diffusion models improve
speech-to-speech translation. In Findings of the As-
sociation for Computational Linguistics: ACL 2023,
pages 8035–8047, Toronto, Canada. Association for
Computational Linguistics.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards gener-
alist computer agents with self-improvement. arXiv
preprint arXiv:2402.07456.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2023. Re-
comp: Improving retrieval-augmented lms with com-
pression and selective augmentation. arXiv preprint
arXiv:2310.04408.

Hongkang Yang, Zehao Lin, Wenjin Wang, Hao Wu,
Zhiyu Li, Bo Tang, Wenqiang Wei, Jinbo Wang,
Zeyun Tang, Shichao Song, et al. 2024. Memory3:
Language modeling with explicit memory. arXiv
preprint arXiv:2407.01178.

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Zhiyuan Zeng,
Qinyuan Cheng, Xipeng Qiu, and Xuanjing Huang.
2024. Explicit memory learning with expectation
maximization. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 16618–16635, Miami, Florida, USA.
Association for Computational Linguistics.

Chanwoong Yoon, Taewhoo Lee, Hyeon Hwang, Min-
byul Jeong, and Jaewoo Kang. 2024a. Compact:
Compressing retrieved documents actively for ques-
tion answering. arXiv preprint arXiv:2407.09014.

Chanwoong Yoon, Taewhoo Lee, Hyeon Hwang, Min-
byul Jeong, and Jaewoo Kang. 2024b. CompAct:
Compressing retrieved documents actively for ques-
tion answering. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 21424–21439, Miami, Florida, USA.
Association for Computational Linguistics.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems, 34.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297.

Luca Zancato, Arjun Seshadri, Yonatan Dukler, Aditya
Golatkar, Yantao Shen, Benjamin Bowman, Matthew
Trager, Alessandro Achille, and Stefano Soatto. 2024.
B’mojo: Hybrid state space realizations of founda-
tion models with eidetic and fading memory. arXiv
preprint arXiv:2407.06324.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen,
Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-
Rong Wen. 2024. A survey on the memory mecha-
nism of large language model based agents. arXiv
preprint arXiv:2404.13501.

Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and
Liwei Wang. 2024. Towards learning a generalist
model for embodied navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13624–13634.

Zaixiang Zheng, Hao Zhou, Shujian Huang, Jiajun
Chen, Jingjing Xu, and Lei Li. 2021. Duplex
sequence-to-sequence learning for reversible ma-
chine translation. Advances in Neural Information
Processing Systems, 34:21070–21084.

Ming Zhong, Yang Liu, Suyu Ge, Yuning Mao, Yizhu
Jiao, Xingxing Zhang, Yichong Xu, Chenguang Zhu,
Michael Zeng, and Jiawei Han. 2022. Unsupervised
multi-granularity summarization. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 4980–4995, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and
Yanlin Wang. 2024. Memorybank: Enhancing large
language models with long-term memory. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 19724–19731.

Mengna Zhu, Kaisheng Zeng, Mao Wang, Kaiming
Xiao, Lei Hou, Hongbin Huang, and Juanzi Li. 2024a.
Eventsum: A large-scale event-centric summariza-
tion dataset for chinese multi-news documents. arXiv
preprint arXiv:2412.11814.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng,
Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. 2024b. Knowa-
gent: Knowledge-augmented planning for llm-based
agents. arXiv preprint arXiv:2403.03101.

4554

https://doi.org/10.18653/v1/2023.findings-acl.509
https://doi.org/10.18653/v1/2023.findings-acl.509
https://doi.org/10.18653/v1/2024.emnlp-main.927
https://doi.org/10.18653/v1/2024.emnlp-main.927
https://doi.org/10.18653/v1/2024.emnlp-main.1194
https://doi.org/10.18653/v1/2024.emnlp-main.1194
https://doi.org/10.18653/v1/2024.emnlp-main.1194
https://doi.org/10.18653/v1/2022.findings-emnlp.366
https://doi.org/10.18653/v1/2022.findings-emnlp.366


A Implementation Details

We developed our method using PyTorch (Paszke
et al., 2019). We initialize the base model, LLaMA
3.1-8B, with checkpoints from the Hugging Face
Transformers package (Wolf et al., 2020). We im-
plemented the adapter module using LoRA (Hu
et al., 2021), setting the scaling factor α = 32
and the rank r = 8, with a dropout of 0.1 applied.
The default setting for the number of virtual mem-
ory tokens is 8, unless scaled to 16, 32, 64, or
128, as discussed in Section 3.4. These tokens are
randomly initialized by sampling from N (0, 0.02).
We set the coefficient of the cycle consistency loss
λ in Eq. 5 to 0.5. Fine-tuning is performed for 2
epochs using the AdamW optimizer (Loshchilov
and Hutter, 2018) with a maximum learning rate of
2× 10−5, β1 = 0.9, β2 = 0.99, and a learning rate
warmup period covering 6% of the total training
steps. In Section 3.4, we scale the training epochs
to 4, 8, 16, and 32. The batch size is 2, and training
is conducted on a single NVIDIA RTX A5000 24
GB GPU, taking approximately 13 hours for a 2-
epoch run. Experiments were conducted over four
independent runs with different random seeds, and
the best evaluation results were selected for report-
ing. For RMT, MemoryLLM, and MemoRAG, we
utilize their official implementations to report re-
sults. For MELODI and CAMELoT, as their code
is not publicly available, we report their results as
stated in their respective papers and ensure that
our evaluation settings align with theirs for a fair
comparison.

B Experiment Setup

Context-query pairs. The prompt used to con-
struct the hierarchical context-query pairs is pre-
sented in Figure 8. We use a low temperature of
0.3 and greedy decoding to preserve accurate event-
related details. The statistics of the constructed
context-query pairs are summarized in Table 4.
Long context language modeling. We firstly
demonstrate whether R3Mem can effectively com-
press and encode context. Specifically, following
the setting of MELODI (Chen et al., 2024), we
assess compression performance by measuring per-
plexity in long-context language modeling across
three publicly available datasets: PG19 (Rae et al.,
2019) , arXiv from the Pile (Gao et al., 2020), and
C4 (4K+) (Raffel et al., 2020).

While MELODI also evaluates on a custom-
collected dataset from arXiv Bulk Data Access,

Document Paragraph Sentence Entity

#Samples 2,178 10,198 50,989 152,968
Max. Length 9,528 1,803 42 12
Min. Length 1,356 207 364 1
Avg. Length 7,470 1,537 319 3

Table 4: Breakdown of statistics for the constructed
context-query pairs. Length indicates the length of each
text chunk, measured in tokens.

details about their data pipeline and cleaned data
are not publicly available. Instead, we utilize the
arXiv subset from the Pile dataset (Gao et al., 2020),
which comprises technical papers in mathematics,
computer science, and physics, totaling 1,264 doc-
uments in the test split.

The PG19 test set includes 100 English books,
each containing 68,972 tokens on average. For the
C4 dataset, a web-crawled corpus of internet doc-
uments, we employ the “c4/en” subset, which has
undergone cleaning and deduplication. To focus
on long-context scenarios, we filter out samples
with fewer than 4,096 tokens, resulting in 155,007
testing samples.
Retrieval-augmented generation. We further
validate whether the encoded memory can be faith-
fully retrieved, establishing a reliable foundation
for retrieval tasks. To assess this, we follow the ex-
perimental setup of MemoRAG (Qian et al., 2024)
and integrate R3Mem into a retrieval-augmented gen-
eration (RAG) question-answering (QA) task on
UltraDomain, using the same in-domain and out-
of-domain evaluation settings.

For in-domain evaluation, we use a subset of
the UltraDomain test set, where both the training
and test samples are based on the same underly-
ing world knowledge. This knowledge is sourced
from Wikipedia, research papers in S2ORC (Lo
et al., 2020), ebooks from Project Gutenberg1, and
domain-specific financial and legal documents. For
out-of-domain evaluation, we use another subset of
the UltraDomain test set, where queries and con-
texts are drawn from textbooks spanning 18 diverse
domains, including biology, religion, art, etc. This
evaluation measures the model’s ability to retrieve
and apply knowledge that was not explicitly present
in the training data, testing its generalization be-
yond the training distribution.
Conversational agent. We use 194 memory-
probing questions. First, the models retrieve con-
text from the memory bank or generate context
using MemoRAG and R3Mem. The retrieved or gen-

1https://www.gutenberg.org/
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erated context is then fed into SiliconFriend to gen-
erate final responses.

The evaluation covers four key metrics: (1)
Memory retrieval accuracy: It measures the align-
ment of retrieved memory with reference memory
using the F1-score. (2) Response correctness: It
evaluates whether the response contains the correct
answer. Since the gold answer may be embedded
within a longer dialogue response, correctness is
determined using exact substring matching. (3)
Contextual coherence: It assesses whether the
response is natural and coherent within the given
context and dialogue history. This is evaluated us-
ing BARTScore-Faithfulness (Yuan et al., 2021), a
widely used automatic metric for natural language
generation that measures the relevance of the candi-
date response to the reference dialogue history. (4)
Model ranking score: For each test question, the
three memory modules—original memory bank,
R3Mem, and MemoRAG—are ranked based on re-
sponse correctness. The models’ scores are calcu-
lated as s = 1/r, r ∈ {1, 2, 3}, which indicates
their ranking position.

C More Details About Reversible
Transformers

In this section, we provide a more detailed expla-
nation of reversible Transformers.

Reversible neural networks (Dinh et al., 2014,
2022) are constructed so that each layer’s outputs
suffice to exactly reconstruct its inputs. As shown
in Figure 3, a common paradigm is to split the input
of layer l into two groups, x1l and x2l . Let the layer
apply functions Fl and Gl, producing outputs:

y1
l = x1

l + Fl

(
x2
l

)
(11)

y2
l = x2

l + Gl

(
y1
l

)
(12)

Because y1
l and y2

l can be inverted as

x1
l = y1

l −Fl

(
x2
l

)
(13)

x2
l = y2

l − Gl

(
y1
l

)
(14)

the forward transformation is bijective. Con-
sequently, no intermediate activations beyond y1

l

and y2
l need be stored in memory since intermedi-

ate states x1
l ,x

2
l are fully recoverable in backward

passes.
However, standard Transformers (Vaswani et al.,

2017) use residual connections and sub-layer stacks
that do not conform to these precise invertibility
requirements. To address this, Liao et al. (2024)

propose making Transformer layers reversible with
lightweight modifications. Each Transformer block
is divided into two functional “streams”: (1) the
original sub-layer (attention or feed-forward), aug-
mented with an adapter module (Houlsby et al.,
2019), and (2) a second stream that is an adapter-
only module. The two streams act on two sep-
arate inputs x1

l ,x
2
l , arranged in a reversible pat-

tern (analylogous to Fl and Gl above). One input
passes through the original (frozen) Transformer
sub-layer plus an adapter, while the other goes
through a purely adapter-based function. The origi-
nal Transformer parameters remain fixed, and only
the adapters are trained. Because each stream can
invert the other’s output, the entire layer is fully
reversible without re-training from scratch.

In our work, R3Mem uses the reversible Trans-
former structure to simultaneously learn context
compression in the forward pass and context ex-
pansion in the backward pass. By design, each
layer allows exact reconstruction of its input. Thus,
when we pass compressed representations “back-
ward” through the network, we can recover the orig-
inal text context. This bijective mechanism directly
enforces consistency between memory retention
(compression) and memory retrieval (expansion),
enabling us to optimize both objectives together.
Furthermore, exact invertibility minimizes activa-
tion storage and avoids the large overhead typically
required to handle forward and backward passes in
a standard Transformer.
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Role: You are an advanced language model specializing in hierarchical summarization.
Task Overview: Given a document, your goal is to decompose the content step by step into events,
entities, sentences, and paragraphs. This process involves:
1. Identifying key events and the most relevant entities.
2. Gathering sentence-level contexts around those entities.
3. Constructing paragraph-level summaries from those sentence-level contexts.
4. Produce the final output as nested JSON that follows the structure.

1. Identify Events & Select Entities

• Scan the document to produce a set of query-worthy events.

• For each event, choose the key entities (people, places, organizations, and concepts)
most relevant to that event.

2. Gather Sentence-Level Context & Form Sentence-Entity Pairs

• For each entity, locate the sentences in which the entity appears or is crucially
described.

• Create Sentence-Entity pairs: each pair references a sentence and the corresponding
entity.

3. Summarize into Paragraphs & Link Document-to-Paragraph / Paragraph-to-Sentences

• Group thematically related sentences together into paragraph-level summaries.

• Produce document-paragraph pairs and paragraph-sentence pairs.

4. Final Output as Pure-String Hierarchical JSON

• Maintain a strictly nested structure:

• Entities must be a single string (e.g., “EntityA,EntityB”).

• Ensure valid JSON syntax (quoted keys, values, and commas in the correct places).

Example of Final JSON Structure (All Values as Strings):

{
"document_id": "d1",
"paragraphs": [
{

"paragraph_id": "p1",
"sentences": [
{
"sentence_id": "s1",
"text": "Full text or condensed version of the first sentence.",
"entities": "EntityA,EntityB"

},
{
"sentence_id": "s2",
"text": "Full text or condensed version of the second sentence.",
"entities": "EntityA"

}
]

},
{

"paragraph_id": "p2",
"sentences": [
{
"sentence_id": "s3",
"text": "Full text or condensed version of the third sentence.",
"entities": "EntityC,EntityD"

}
]

}
]

}

Figure 8: The prompt used to instruct GPT-4o to construct hierarchical context-query pairs in Section 3.
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