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Abstract

We propose a novel scaling law for general-
purpose decoder-only language models (LMs)
trained on multilingual data, tackling the
problem of balancing languages during
multilingual pretraining. A primary challenge
in studying multilingual scaling is the difficulty
of analyzing individual language performance
due to cross-lingual transfer. To tackle this,
we shift the focus from individual languages to
language families. We introduce and validate
a hypothesis that the test cross-entropy loss
for each language family is determined solely
by its own sampling ratio, independent of
other languages in the mixture. This insight
simplifies the complexity of multilingual
scaling and make the analysis scalable to
an arbitrary number of languages. Building
on this hypothesis, we derive a power-law
relationship that links performance with dataset
size, model size and sampling ratios. This
relationship enables us to predict performance
across various combinations of the above three
quantities, and derive the optimal sampling
ratios at different model scales. To demonstrate
the effectiveness and accuracy of our proposed
scaling law, we perform a large-scale empirical
study, training more than 100 models on 23
languages spanning 5 language families. Our
experiments show that the optimal sampling
ratios derived from small models (85M
parameters) generalize effectively to models
that are several orders of magnitude larger
(1.2B parameters), offering a resource-efficient
approach for multilingual LM training at scale.

1 Introduction

Scaling has proven to be a powerful strategy for
improving the performance of language models
(LMs) across a range of tasks (Thoppilan et al.,
2022; Smith et al., 2022; Achiam et al., 2023).
Due to the enormous cost associated with training

*Work done during an internship at Microsoft. Correspon-
dence email: yifeihe3@illinois.edu.

larger models (Rae et al., 2021; Dubey et al., 2024),
neural scaling laws (Kaplan et al., 2020; Henighan
et al., 2020; Hoffmann et al., 2022; Krajewski et al.,
2024) have emerged to be an effective approach to
a priori quantify and predict the gains from scaling
up model size, dataset size, and computational
resources. Previous works on scaling laws predom-
inantly focus on monolingual LMs, neglecting the
increasingly crucial role of multilinguality for LMs
to cater to diverse linguistic populations and global
users (Conneau and Lample, 2019; Conneau et al.,
2020; Yang et al., 2024). With increasing emphasis
on inclusion and wider language support (Qin
et al., 2024), there is a pressing need to extend
these scaling laws to multilingual LMs to address
unique challenges, particularly how to balance
training across different languages effectively.

Although there exist some studies that examine
multilingual scaling laws (Gordon et al., 2021;
Ghorbani et al., 2022; Fernandes et al., 2023;
Chen et al., 2024), they often focus on the specific
problem of neural machine translation (NMT).
These studies predominantly utilize encoder-
decoder transformer architectures, which are not
widely applied to generation tasks. Furthermore,
they typically restrict their analysis to bilingual
settings without capturing the complexities of
language interactions. This omission is critical, as
cross-lingual transfer, a key benefit in multilingual
training, plays a significant role in improving
performance across languages (Arivazhagan et al.,
2019; Xian et al., 2022; Patra et al., 2023).

To tackle the aforementioned issues, we focus on
building scaling laws for general purpose decoder-
only LMs pretrained on multilingual data. Our
contributions are grounded in a realistic and novel
hypothesis that unlocks a broader understanding of
multilingual scaling, making our analysis scalable
to an arbitrary number of languages.

To substantiate our claims, we conduct a
large-scale empirical study by training more
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Figure 1: We propose a multilingual scaling law connecting the test cross-
entropy loss (L) with model size (N ), dataset size (D) and sampling ratios for
different language families (p). The plots illustrate a power-law relationship
by varying one quantity while fixing the other two for five language families.

Table 1: 5 language families with
23 languages.

Families Languages

Germanic English, German, Dutch, Danish
Romance Spanish, French, Italian,

Romanian, Catalan
Slavic Russian, Ukrainian, Slovak,

Serbian, Croatian
Indic Hindi, Bengali, Nepali, Marathi,

Tamil, Telugu, Kannada, Malayalam
Sino-Tibetan Chinese

than 100 LMs covering 23 languages spanning 5
language families. Through this study, we propose
a new multilingual scaling law that significantly
enhances the predictive power for multilingual LM
performance. This law provides a succinct power-
law relationship between the test cross-entropy
loss, model size, dataset size, and sampling ratios
of different language families (shown in Figure 1).
The scaling law enables us to derive an accurate
performance prediction across a wide range of com-
binations of the three quantities. More importantly,
with this predictive power, we can directly derive
the optimal sampling ratios for language families
in the training mixture across varied model and
dataset sizes by only training small models.

In summary, our key contributions are:

• Novel hypothesis for cross-lingual transfer:
One major challenge in analyzing multilingual
LMs is the inability to isolate performance for
each language due to cross-lingual transfer,
where the performance of one language de-
pends on other linguistically related languages
trained jointly. Our key insight in tackling this
problem is a hypothesis that the performance
of each language family is independent of
other language families in the training mixture.
We empirically verify this hypothesis, which
enables us to directly analyze the relationship
between a language family’s performance and
its sampling ratio. Specifically, we show that
the test cross-entropy loss of each language
family depends primarily on its own sampling
ratio, independent of the sampling ratios of
other language families in the training mixture.
This provides an important simplification for
analyzing multilingual scaling behavior.

• Multilingual scaling law: Based on the
validated hypothesis, we propose a scaling
law that relates the test cross-entropy loss
(Li) for each language family i to model size

(N), dataset size (D) and language family
sampling ratios (p):

Li(N,D,p) =

(
Ei +

Ai

Nαi
+

Bi

Dβi

)
p−γi
i ,

where Ei, Ai, Bi, αi, βi, γi are fixed parame-
ters for the i-th family. One key implication of
the above form is that the scaling law of each
language family only depends on its own sam-
pling ratio pi, independent of the sampling
ratios of other families pj ̸=i. Additionally, we
discover that the exponent γi, which governs
how much loss reduces as the proportion of
data from family i increases, remains invariant
to model size N and dataset size D. This find-
ing further strengthens the applicability of our
scaling law across different compute scales.

• Derivation of the optimal sampling ratios:
Leveraging the proposed scaling law, we
derive the optimal sampling ratios that
minimize the total loss for the LM, thus
providing an effective data mixing strategy
for multilingual pretraining. We validate the
optimality of these ratios by comparing them
against other baseline sampling methods.
We demonstrate that the optimal sampling
ratios obtained from small models (85M
parameters) generalize well to models that
are several orders of magnitude larger (1.2B
parameters). This insight implies that for
resource-efficient LM training, practitioners
can optimize training mixtures for large-scale
models by only training smaller and more
affordable models, drastically reducing
computational overhead while maintaining
performance consistency across model scales.

2 Experimental setup

Model. We train decoder-only Transformer
models (Vaswani, 2017) in four sizes, ranging from
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85M to 1.2B non-embedding parameters. The
model sizes are determined by adjusting the num-
ber of layers, hidden sizes, and the number of at-
tention heads with details provided in Appendix B.

Data. We focus on the pretraining stage of mul-
tilingual language models. We use the Common-
Crawl dataset (Conneau et al., 2020; Wenzek et al.,
2020). Following the approach of Lai et al. (2023),
we select 23 languages based on diversity and rep-
resentativeness among the total 100 languages. We
follow common practice (Fan et al., 2021; Costa-
jussà et al., 2022) to group the languages into
five language families based on linguistic similar-
ities: Romance, Slavic, Indic, Germanic and Sino-
Tibetan. The detailed languages within each family
are presented in Table 1. We use the cl100k_base
tokenizer1 to tokenize the corpus. For each lan-
guage in the training corpus, we apply a 90/10
random split, where the latter 10% is held-out for
test cross-entropy loss evaluation. More details
about the dataset can be found in Appendix A.

3 The multilingual scaling law

We study the relationship between performance,
model sizes, dataset sizes and sampling ratios. In
Section 3.1, we motivate the problem of multilin-
gual scaling laws. In Section 3.2, we formulate
and validate a hypothesis to tackle this problem in
a tractable manner. In Section 3.3, we propose a
power-law relationship between performance and
sampling ratios. In Section 3.4, we incorporate
model and dataset size into this relationship to es-
tablish a comprehensive scaling law. Finally in Sec-
tion 3.5, we validate the fitting of our scaling law.

3.1 Problem statement

During the pretraining stage of an LM, given n
languages in the training data mixture, we explore
the relationship between the total test cross-entropy
loss L, model size N , dataset size D (the total to-
ken count) and sampling ratios of each languages
p = [p1, · · · , pn] in the training data mixture.
Here, p is a probability vector, i.e., p ∈ ∆n, where
∆n is the (n− 1)-dimensional probability simplex.
Specifically, we want to fit the relationship

L(N,D,p) =
n∑

i=1

wiLi(N,D,p), (1)

1https://github.com/openai/tiktoken

where Li denotes the test cross-entropy loss for
language i, and wi

2 represents the user-defined
preference for each language, indicating its impor-
tance. For instance, one can emphasize a particular
language by increasing the corresponding wi. Note
that when wi = pi, this loss reflects the total
empirical loss. This relationship is informative and
predictive, as it directly leads to the following key
capabilities:

• Performance prediction: The relationship al-
lows us to predict performance of LMs trained
on unseen sampling ratios. We can plug any
combinations of N , D and p into Eq. 1 to ob-
tain the loss without conducting the training.

• Optimal sampling ratios: The framework
provides a mechanism to determine the opti-
mal sampling ratios p leading to minimal total
losses given N and D. This is achieved by
solving the following optimization problem:

p⋆
w = argmin

p∈∆n

n∑

i=1

wiLi(N,D,p).

More importantly, we will demonstrate that
the p⋆

w obtained from small models remains
near optimal on significantly larger models.

3.2 Hypothesis
For simplicity, we first consider a setting where
model size and dataset size are fixed, and we only
study the relationship between losses and sampling
ratios, i.e., Li(p). Fitting each individual Li(p)
directly is intractable as p is an n-dimensional
vector, and it is computationally infeasible to
sample sufficiently many p to effectively cover
the n-dimensional space. To tackle this challenge,
we propose and validate a realistic hypothesis to
reduce this complexity.

Despite previous attempts to study the relation-
ship between performance and sampling ratios (Fer-
nandes et al., 2023; Chen et al., 2024), a key fac-
tor often overlooked is the impact of cross-lingual
transfer. In particular, previous works directly as-
sume Li(p) = Li(pi), implying that the loss of
each language depends solely on its own sampling
ratio, regardless of the combination of other jointly
trained languages. However, this assumption is
equivalent to the statement that there exists no
knowledge transfer across languages, which does

2The weights should be non-negative. To get the optimal
sampling ratios, only the ratios between wi matter.
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not hold true in general. For instance, due to insuf-
ficient training data, low-resource languages (e.g.,
Catalan) benefit from knowledge transfer from lin-
guistically similar high-resource languages (e.g.,
Spanish) (Arivazhagan et al., 2019).

To tackle the problem, we provide a more real-
istic hypothesis. Instead of studying the sampling
ratios of each individual language, we focus on
language groups with the following properties:
i) Minimal cross-group transfer: The majority
of cross-lingual transfer occurs within a group,
with minimal transfer across groups. ii) Data
sufficiency: Each group provides a substantial
amount of data, reducing the need to model
dynamics of low-resource languages. We find
language families to be an intuitive and effective
grouping, as they are defined based on linguistic
similarities, and each language family contains
multiple languages, mitigating the low-resource
issues associated with individual languages. 3

Then, we have the following hypothesis.

Hypothesis 1 During pretraining of a multilingual
language model, the test cross-entropy loss of each
language family only depends on its own sampling
ratio, regardless of the sampling ratios of other
languages jointly trained.

Hypothesis testing. We use a controlled
experiment to test our hypothesis. We train an
LM on a data mixture containing three language
families: Romance, Germanic and Slavic. In the
training, we fix the sampling ratio of Romance
to be either 0.2 or 0.5, and vary the ratios of the
other two families. At the individual language
level, one might expect high-resource languages
like English (within the Germanic family) to
transfer knowledge to related languages in the
Romance family (e.g., Spanish, French). However,
our hypothesis focuses on cross-family transfer
instead of cross-lingual transfer among individual
languages. In Figure 2 (left), we observe that with
a fixed sampling ratio, the Romance loss does not
noticeably change regardless of the combination
ratios of Germanic and Slavic data. This stability
indicates that the primary source of performance
variation is the sampling ratio of the family itself,
rather than cross-family interactions. This finding
supports our hypothesis that cross-family transfer
is minimal, making it feasible to model each

3While language families are a natural grouping, other
groupings based on criteria such as lexical overlap can also be
considered, as long as they satisfy the two criteria.
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Figure 2: Left: The Romance loss remains stable as
the Germanic sampling ratio varies, indicating mini-
mal cross-family transfer and supporting our hypothesis
that each language family’s performance is primarily
influenced by its own sampling ratio. Right: In con-
trast, when both groups contain Indic languages, Group
1 loss decreases as Group 2 sampling ratio increases,
demonstrating significant cross-group transfer. This
underscores the importance of grouping by language
families for accurate analysis. The loss values are nor-
malized by the mean loss at p = 0.2 to align the plot
scales. Shaded areas indicate standard deviation.

language family’s loss as a function of its own
sampling ratio. To strengthen our findings, we
conduct the same experiment with three additional
family combinations, detailed in Appendix C.

To further demonstrate that grouping by lan-
guage families is an effective approach, we per-
form a similar experiment with random groupings.
In this setup, both Group 1 and Group 2 contain
languages from the Indic family. If our hypothesis
about cross-family transfer holds, we would expect
substantial transfer between these groups, since
they share linguistic characteristics. As shown in
Figure 2 (right), the performance of Group 1 im-
proves with increasing sampling ratio of Group
2, which indicates significant cross-group transfer
when languages from the same family are split into
separate groups, highlighting the importance of
proper family-based grouping. We include a com-
parison of the trajectory of losses during training
in Appendix C to further validate the claims.

These experimental results validate our hypoth-
esis, which enables a convenient simplification of
Eq. 1: For each language family fami, we have

Lfami(p) = Lfami(pfami),

where we can safely focus on the sampling ratio for
each language family, rather than accounting for
interactions across different families. Subsequently,
for the ease of presentation, we omit the subscript
“fam” and directly use Li and pi to represent the
loss and sampling ratio for the i-th language family.
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Figure 3: Fitting for Germanic and Slavic families with
50B tokens. The high R-squared values indicate an
accurate fit of the power-law relationship.

3.3 Fitting the relationship: Li(pi)

In this section, we first study the relationship be-
tween losses and sampling ratios given fixed model
size and dataset size. The loss of a language family
Li can be modeled by a power-law relationship:

Li(pi) = L⋆
i · p−γi

i , (2)

where both L⋆
i and γi are fixed parameters.

The choice of power-law formulation follows
naturally from previous studies on scaling laws,
which demonstrate that the loss exhibits a power-
law behavior with respect to dataset size (Kaplan
et al., 2020). Our proposed form extends this con-
cept to the multilingual setting, where the sam-
pling ratio pi can be viewed as analogous to rela-
tive dataset size for each family. The power-law
form captures the intuitive notion that increasing
the sampling ratio pi leads to diminishing returns
in terms of reducing the test cross-entropy loss. In
other words, as the amount of data for a language
family increases, its marginal contribution to per-
formance improvement decreases.

Interpretation of parameters. L⋆
i represents

the test loss when a language family i constitutes
the entire training dataset (pi = 1). It indicates the
baseline difficulty of modeling this family alone.
As the model size N increases, L⋆

i typically de-
creases due to higher model capacity. On the other
hand, γi indicates the decay rate of loss for the
i-th family given increasing proportion of the i-th
family in the training data mixture. In general, a
larger γi indicates that the language family benefits
more from increasing sampling ratio and should
be prioritized in the training mixture for an overall
performance improvement.

Empirical validation. To empirically validate
the power-law relationship, we train LMs with
397M non-embedding parameters across various
data mixtures to obtain losses on 5 sampling ratios
(pi ∈ {0.25, 0.375, 0.625, 0.875, 1}) for each
language family. An important implication of the
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Figure 4: Left: For a fixed token count D, there is
a linear relationship between log(Li) and log(p) for
different values of model size N . Right: For a fixed
model size N , there is a linear relationship between
log(Li) and log(p) for different values of dataset size
D. The parallel lines indicate that the decay rate γi does
not depend on either N or D. Both axes are in log-scale.

language family independence hypothesis is that
a single training run generates data points for all
involved language families. For example, training
a model with mixture such as (pRomance =
0.375, pGermanic = 0.625) provides us with 2 data
points, one for each language family. By strategi-
cally using such bilingual models, we only need to
train 15 runs instead of naively running 25 exper-
iments to gather datapoints required for fitting all
5 language families across all 5 different pi values.

Figure 3 demonstrates the results of this fitting,
and the high R-squared values indicate an accu-
rate fitting for each language family. The results
for other families with different model sizes show
similar pattern (detailed in Appendix D).

3.4 Fitting the joint relationship: Li(N,D, p)

Building on results from the previous section, we
extend the relationship to include both model size
N and dataset size D by expanding the mono-
family loss L⋆

i from Section 3.3, which depends
on both N and D. Considering that γi could also
depend on N and D, we rewrite Eq. 2 into

Li(N,D, pi) = L⋆
i (N,D) · p−γi(N,D)

i . (3)

First, we show that γi is independent of both N
and D by examining the equation in the log scale:

log(Li(N,D, pi))

= log(L⋆
i (N,D))− γi(N,D) log(pi).

Intuitively, when varying N and D, if the slope
remains constant, then γi is independent of them.
In Figure 4, we observe that given a fixed D,
γi(N,D) does not change as N varies, confirming
its independence from N . Similarly, the slope
remains constant when N is fixed and D changes,
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verifying that γi(N,D) is also independent of D.
Thus, we can simplify Eq. 3 into

Li(N,D, pi) = L⋆
i (N,D) · p−γi

i . (4)

Next, we investigate the form of L⋆
i (N,D),

which represents the mono-family performance as
a function of model size N and dataset size D. To
do this, we leverage existing monolingual scaling
results from Hoffmann et al. (2022):

L(N,D) = E +
A

Nα
+

B

Dβ
, (5)

where E,A,B, α, β are fixed parameters. The
functional form of this law is universal and ap-
plicable to any dataset, and the specific values of
these parameters are dataset dependent. Thus, we
directly apply it to Eq. 4, and arrive at the joint law:

Li(N,D,p) =

(
Ei +

Ai

Nαi
+

Bi

Dβi

)
p−γi
i , (6)

where Ei, Ai, Bi, αi, βi, γi are fixed parameters
specific to each language family, all of which are
independent of N and D. The justification of this
functional form can be found in Appendix E.

Comparison with previous works. The closest
prior work to ours (Fernandes et al., 2023) intro-
duce a multilingual scaling law in neural machine
translation (NMT). They study a bilingual setting,
translating English into Chinese or German. Their
scaling law is expressed as:

Li(N, p) = βp,iN
−ai + L(i)

∞ , (7)

where L(i)
∞ and ai are fixed parameters, βp,i is a

parameter dependent on the sampling ratio p, and
p is a scalar instead of a probability vector as in
our setting. While this approach captures the effect
of model size on bilingual translation tasks, our
formulation offers several key improvements and
broadens the scope in multiple dimensions:

• Generalized framework: Our scaling law ap-
plies to general-purpose language modeling
tasks, whereas their work is focused on a spe-
cialized NMT setting with encoder-decoder ar-
chitectures. The encoder-decoder architecture
has limited use cases outside of NMT, limiting
the applicability of their findings. In contrast,
our scaling law is relevant to a broader spec-
trum of language modeling tasks, which is cru-
cial given the prevalence of decoder only lan-
guage models in recent times (Achiam et al.,
2023; Jiang et al., 2023; Dubey et al., 2024;
Yang et al., 2024; Abdin et al., 2024)

• Multilingual scalability: We significantly
extend the scope to 23 languages across 5
language families, whereas Fernandes et al.
(2023) focus on a bilingual setting. Our pro-
posed law extends naturally to an arbitrary
number of languages by considering cross-
lingual transfer. In contrast, Eq. 7 does not
generalize for more than 2 languages, as it
lacks a mechanism for incorporating multilin-
gual interactions.

• Incorporation of Dataset Size: Our scal-
ing law explicitly incorporates the effect of
dataset size, enabling a joint analysis of how
both model size and data quantity impact per-
formance. This is not considered in Eq. 7,
limiting its ability to account for the full range
of factors affecting multilingual model perfor-
mance.

• Simpler and more predictive form: In Eq.
7, the parameter βp,i is dependent on the sam-
pling ratio p itself, making the equation not
predictive for new sampling ratios. For un-
seen values of p, additional heuristics or re-
training would be required to determine the
corresponding βp,i. In contrast, our proposed
law decouples the dependency on pi through
the power-law exponent γi, which remains
constant across different sampling ratios. This
makes our model more straightforward and
fully predictive without requiring extra infor-
mation for new values of pi.

Overall, our proposed scaling law offers a more
versatile and comprehensive framework for multi-
lingual and general language modeling.

3.5 Fitting the parametric scaling law
Subsequently, we fit parameters in Eq. 6 to
describe the multilingual scaling. To estimate
the parameters, we deploy a similar strategy as
Hoffmann et al. (2022) to use the Huber loss4

(δ = 0.001) (Huber, 1964), as it is robust to
outliers. The estimation is done by the BFGS
algorithm (Nocedal, 1980). We present the fitting
in Figure 5, where the fitted curves highlight that
our proposed power law captures the relationship
between loss, model size, dataset size and sampling
ratios well. Furthermore, the right panel shows that
our scaling law accurately predicts performance.

4Huber loss is only used in optimization of parameter
fitting, which is different from the cross-entropy loss L.
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Figure 5: Left & Middle: Fitted law on 50B and 100B training tokens. The
scaling law well captures the relationship between loss, model size, dataset size
and sampling ratios. Right: Predicted vs. actual losses with our scaling law. The
fitting uses the top 80% of the loss data (blue points) and then validated on the
lower 20% (orange points). The strong alignment between the predicted and
actual losses demonstrates the predictive accuracy of the scaling law.

Table 2: Fitted parameters
for different language fami-
lies for 397M model size and
50B tokens.

Language L⋆
i γi

Romance 2.186 0.080
Slavic 1.314 0.094
Indic 0.635 0.131

Germanic 2.829 0.068
Sino-Tibetan 1.557 0.109

These results confirm the effectiveness of our
scaling law across. Fitting results for additional
families can be found in Appendix D.2.

4 Optimal sampling ratios

With the general form of the total loss established,
we proceed to compute the optimal data mixture
defined by p by solving the optimization problem:

min
p∈∆n

L(p) =
∑

i

wiL⋆
i pi

−γi , (8)

where wi represents the user-defined preference of
language family i. This formulation allows us to
find the optimal sampling ratios p⋆

w that minimize
the total loss given the importance of each language
family as specified by the preference vector w.

Analytical (approximate) solution. The opti-
mization problem can be solved analytically using
the Lagrange multipliers method. Under the as-
sumption γi ≪ 15 we can obtain the approximate
optimal p⋆i as (details presented in Appendix F)

p⋆i ≈
wiL⋆

i γi∑n
i=1wiL⋆

i γi
.

The solution shows that the optimal sampling ratios
only depend on the products wiL⋆

i γi, meaning that
the combination of the power law exponent and
constant fully determines the ratios. Furthermore,
if we use wi = 1/L⋆

i , the optimal ratios do not
depend on N,D. In this case, the approximate solu-
tion sheds even more insight, as the optimal ratios
depend only on the relative ratio of γi/

∑n
i=1 γi.

Numerical solution. Alternatively, one can di-
rectly use off-the-shelf numerical solver such as
scipy.optimize to solve the optimization prob-
lem. We demonstrate that both methods result in
similar optimal sampling ratios in Appendix F.

5Table 2 shows that γi < 0.15, so this is not an unreason-
able assumption

4.1 Experimental setup

Preference vector w. We use two common
choices of the preference vector: i) Unweighted
sum: All wi = 1 indicating equal weight for all lan-
guages with no specific preference. ii) Normalized
sum: wi = 1/Li(N,D, 1) = 1/L⋆

i (N,D). This
is equivalent to a normalized sum of losses, where
the loss of each language family is normalized by
its mono-family performance. This approach com-
pensates for differences in loss scales due to to-
kenizer vocabulary imbalances across languages
(as seen in the varying L⋆

i values in Table 2). Nor-
malizing by this loss balances the training across
language families. This normalization technique is
often utilized in the literature of multi-task learn-
ing, where the losses for different tasks vary in
scales (Chen et al., 2018; He et al., 2024).

Baselines. We compare with three baseline
weighting strategies: i) Uniform sampling: All
families have equal sampling ratio, i.e., pi = 1/n.
ii) Proportional to token count: The sampling
ratio is proportional to the token count of each
family i.e., pi = Di/D, where Di is the token
count for the i-th family, and D is the total to-
ken count. iii) Smoothed sampling (Conneau
and Lample, 2019): An approach that balances
between uniform and token count sampling with a
parameter α to adjust the influence of token counts:
pi = qαi /

∑n
j=1 q

α
j with qi = Di/D. Here, α = 0

gives uniform sampling, and α = 1 gives token
count sampling. Intermediate values of α upweigh
smaller families and reduce bias towards larger
ones. We use the common choice of α = 0.5.

4.2 Empirical results

We demonstrate the result of using the optimal sam-
pling ratios p⋆ obtained by optimization problem
8. Here, we fix D = 50B, as we empirically find
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Table 3: Sampling ratios and the resulting test loss for
the 85M multilingual LM trained on 5 language families,
with the total loss computed by the unweighted sum.

pRo pSl pIn pGe pSi LRo LSl LIn LGe LSi Total loss

Uniform 0.200 0.200 0.200 0.200 0.200 2.802 1.747 0.886 3.468 2.071 10.974
By tokens 0.265 0.245 0.079 0.281 0.130 2.747 1.715 0.989 3.407 2.168 11.025
α = 0.5 0.236 0.227 0.129 0.243 0.165 2.776 1.732 0.933 3.444 2.127 11.012

Ours 0.246 0.180 0.124 0.231 0.218 2.765 1.762 0.932 3.443 2.067 10.969

Table 4: Sampling ratios and the resulting test cross-
entropy loss for the 85M multilingual LM. Losses are
normalized by each family’s mono-family performance
L̂i = Li(N,D,p)/L⋆

i (N,D).

pRo pSl pIn pGe pSi L̂Ro L̂Sl L̂In L̂Ge L̂Si Total loss

Uniform 0.200 0.200 0.200 0.200 0.200 1.145 1.180 1.261 1.142 1.183 5.912
By tokens 0.265 0.245 0.079 0.281 0.130 1.123 1.158 1.407 1.090 1.238 6.017
α = 0.5 0.236 0.227 0.129 0.243 0.165 1.135 1.170 1.328 1.102 1.215 5.950

Ours 0.166 0.189 0.298 0.127 0.220 1.167 1.195 1.214 1.145 1.174 5.895

that this dataset size is sufficient to ensure near
convergence across all model sizes. We first solve
Eq. 8 with N = 85M , and verify its optimality
by comparing the test losses of LMs trained on the
resulting data mixture against the baseline methods.
Next, leveraging the observed invariance of decay
rates across model sizes (as in Section 3.4), we
validate that the optimal sampling ratios derived
from the 85M model generalize effectively to larger
models, specifically to the 1.2B model.

Unweighted sum. In Table 3, we present the per-
family sampling ratios, individual family losses and
the total unweighted sum of loss. The multilingual
LM trained on the data mixture derived from our
optimal sampling ratios p⋆ achieves the lowest to-
tal loss compared with other baselines. However,
it is evident that language families with inherently
higher magnitudes of cross-entropy losses (such
as Romance and Germanic) are prioritized sim-
ply because their larger magnitudes have a greater
influence on the final total loss. In contrast, fam-
ilies with smaller inherent losses (Indic) receive
less emphasis, as a reduction in their loss does not
significantly impact the overall total loss.

This imbalance indicates that the unweighted
sum may not be the most appropriate way to evalu-
ate multilingual performance, as it skews the eval-
uation toward families with higher inherent loss
magnitudes. Consequently, while our method min-
imizes the total loss, it may undervalue improve-
ments in low-loss families. To better balance perfor-
mance across all language families, the following
normalized loss approach offers a fairer evaluation.

Normalized sum. In Table 4, we present the
result for the normalized sum of losses. Unlike the
unweighted sum, where the overall performance
is dominated by families with higher inherent loss

scales, the losses here are normalized by their
mono-family performance, i.e., L̂i(N,D, pi) =∑n

i=1 Li(N,D, pi)/L⋆
i (N,D). This normaliza-

tion ensures that each family’s loss is evaluated
relative to its performance ceiling, making the com-
parison more equitable. Note that in this setup, we
expect the sampling ratios to be larger for families
with larger decay rates γi, since the normalized loss
follows the relationship L̂i(N,D, pi) = p−γi

i . This
means that prioritizing families with higher γi val-
ues leads to steeper reductions in loss as sampling
ratios increase, resulting in a lower total normal-
ized loss. Indeed, the order of sampling ratios in
Table 4 aligns perfectly with the order of decay
rates γi in Table 2. This confirms the influence of
decay rates on the optimal sampling distribution.

Our optimal sampling strategy, p⋆ achieves the
lowest total normalized loss, outperforming all
other baselines. Notably, in contrast to the un-
weighted sum, the sampling ratios for families like
Indic are significantly higher, reflecting the fact that
Indic requires more data to reduce its normalized
loss. Similarly, the Romance and Germanic fam-
ilies, which previously dominate the unweighted
total loss due to their large inherent losses, now
receive relatively lower sampling ratios, indicating
that they need less focus in the normalized setting.
This comparison demonstrates that the normalized
loss provides a more balanced evaluation, ensuring
that language families with smaller inherent losses
are not underrepresented. Additionally, the gen-
eralization of our optimal sampling ratios across
different scenarios confirms the robustness and ef-
fectiveness of our approach.

Generalization of optimality. We apply the op-
timal sampling ratios p⋆ derived from the 85M
model to the larger 1.2B model to assess how well
they generalize. From Table 5, the sampling ra-
tios from the 85M model continue to outperform
all other baselines. Furthermore, the total loss is
comparable to the one achieved by the optimal sam-
pling ratios fitted specifically for the 1.2B model.
Both sets of sampling ratio exhibit a similar pattern,
with lower weights for Indic (which has the least
inherent loss) and higher weights for Germanic
(which has the largest inherent loss).

For the normalized sum, since L̂i are all 1
due to normalization, the difference only lies in
the decay rate γi. As shown in Section 3.3, γi
is invariant in model scales, directly leading to
the same optimal sampling ratios across model
sizes. From Table 6, we can see that the resulting
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Table 5: Sampling ratios and the resulting test cross-
entropy loss for the 1.2B multilingual LM, where the
total loss is computed by the unweighted sum.

pRo pSl pIn pGe pSi LRo LSl LIn LGe LSi Total loss

Uniform 0.200 0.200 0.200 0.200 0.200 2.349 1.437 0.728 3.008 1.714 9.236
By tokens 0.265 0.245 0.079 0.281 0.130 2.262 1.379 0.803 2.905 1.759 9.108
α = 0.5 0.236 0.227 0.129 0.243 0.165 2.309 1.414 0.761 2.963 1.743 9.190

Ours (85M) 0.246 0.180 0.124 0.231 0.218 2.289 1.424 0.751 2.953 1.687 9.104
Ours (1.2B) 0.207 0.182 0.123 0.249 0.240 2.313 1.421 0.752 2.941 1.674 9.101

Table 6: Sampling ratios and the resulting test cross-
entropy loss for the 1.2B multilingual LM. Losses are
normalized by each family’s mono-family performance
L̂i = Li(N,D, pi)/L⋆

i (N,D).

pRo pSl pIn pGe pSi L̂Ro L̂Sl L̂In L̂Ge L̂Si Total loss

Uniform 0.200 0.200 0.200 0.200 0.200 1.142 1.180 1.273 1.134 1.216 5.946
By tokens 0.265 0.245 0.079 0.281 0.130 1.100 1.133 1.405 1.095 1.248 5.982
α = 0.5 0.236 0.227 0.129 0.243 0.165 1.123 1.161 1.331 1.117 1.237 5.970

Ours 0.170 0.188 0.297 0.126 0.219 1.151 1.176 1.218 1.160 1.198 5.904

optimal sampling ratios achieve noticeably lower
total loss compared to other baselines. The results
demonstrate the robustness and transferability of
the optimal ratios derived from smaller models,
offering a more resource-efficient strategy for
large-scale multilingual LM training.

5 Conclusions

In this work, we develop a scalable scaling law
for multilingual language models, tackling the
complexities of training with multiple languages.
Through large-scale experiments involving over
100 models across 23 languages from 5 language
families, we demonstrate that the test cross-entropy
loss for each language family follows a predictable
power-law relationship with model size, dataset
size and sampling ratios. Importantly, we validate
a novel hypothesis that decouples the interaction
between language families, enabling independent
modeling of each family’s performance. This in-
sight allows us to derive the optimal sampling ratios
that minimize the overall multilingual loss, provid-
ing a practical data mixing strategy. Our results
show that the optimal sampling ratios, computed
from small models, generalize effectively to mod-
els several orders of magnitude larger, significantly
reducing the need for resource-intensive data mix-
ture selection. This offers an efficient method for
multilingual training and opens up new avenues for
future research in scaling multilingual LMs.

Limitations

One limitation of our work is that while the scaling
law predicts the performance well in most cases,
its utility may diminish when dealing with very
small N , D and p values. For instance, using
the formulation in Eq. 2, setting pi = 0 results
in an infinite loss. However, in reality, even if a
training mixture contains no data for a particular
family, its test cross-entropy loss is likely to be
non-vacuous, as some general language informa-
tion can still be transferable across families. In
such cases, the resulting loss will be entirely depen-
dent on cross-family transfer, which is challenging
to quantify. For example, intuitively, if the test
language family is Germanic, the Romance mono-
family model might perform noticeably better than
the Sino-Tibetan mono-family model, due to lin-
guistic similarities. Consequently, there may not
be a fixed value associated with Li(pi = 0) in our
formulation.

Similarly, for small D values, the risk of over-
fitting may need to be explicitly modeled, as sug-
gested in Chen et al. (2024). Note that this is-
sue is more pronounced when modeling individual
languages, as low-resource languages suffer more
from limited data. In contrast, language families
are less affected due to the abundance of data within
each family.

On the other hand, small N values are less prob-
lematic, as scaling laws are primarily intended to
predict performance for larger models. We have
demonstrated that our formulation works well even
for relatively small models, such as those with 85M
parameters.
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A Dataset details

The dataset details are introduced in Table 7. For all
languages except English, we directly use the data
from the CommonCrawl dataset (Conneau et al.,
2020; Wenzek et al., 2020). For English data, we
use a high-quality in-house dataset. For the mul-
tilingual training mixture, within each language
families, we use the same smoothed sampling ap-
proach (Conneau and Lample, 2019) as introduced
in Section 4.1 with α = 0.5. Due to the massive
size of the English data, we cap the proportion of
English within Germanic to be 0.5. This is to en-
sure that the Germanic family is not dominated by
English. After this capping, the “effective” total
token counts for the Germanic family is around
152.48B, and we use this number for the experi-
ments in Section 4.2. Otherwise, the proportion by
token baseline will assign almost all weights to the
Germanic family.

The CommonCrawl dataset is under Apache 2.0
license. The data does not contain information that
can be used to uniquely identifies individual people
or offensive content.

Table 7: List of 23 languages in our study with division
into 5 language families.

Family
Per family
token counts (B)

Language Code
Per language
token counts (B)

Germanic 1463.34

English en 1390.50
German de 52.46
Dutch nl 15.25
Danish da 5.13

Romance 137.43

Spanish es 46.82
French fr 45.98
Italian it 28.93

Romanian ro 12.41
Catalan ca 3.29

Slavic 126.77

Russian ru 95.29
Ukrainian uk 20.55

Slovak sk 5.57
Serbian sr 2.87
Croatian hr 2.49

Indic 40.86

Hindi hi 12.76
Bengali bn 9.49
Nepali ne 2.20

Marathi mr 2.02
Tamil ta 5.56
Telugu te 2.82

Kannada kn 2.37
Malayalam ml 3.65

Sino-Tibetan 67.41 Chinese zh 67.41

B Model sizes and Hyperparameters

Table 8 describes the detailed configuration of mod-
els used in our experiments.

We conduct all our experiments on NVIDIA
A100 GPUs with 80GB memory. Training a 85M
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Table 8: Model configurations.

# Layers Hidden size # Heads Head dim Total parameters

12 768 6 128 85,056,768
14 1536 12 128 396,645,248
21 1792 14 128 809,732,672
24 2048 16 128 1,208,604,160

model with 50B tokens require approximately 256
GPU hours. According to Kaplan et al. (2020), as
long as the model reaches convergence, the learn-
ing rate does not play a critical role. Thus, we do
not tune the LR. For the 85M and 397M model,
we start with the LR 2e-3. For the 810M and 1.2B
model, we start with the LR 1e-3. Then, we ap-
ply a cosine decay schedule to decay the LR to be
one-tenth of the starting LR.

C Additional experiments

We repeat the hypothesis validation experiments
as in Section 3.2 with three other language fam-
ily configurations: {Romance, Indic, Slavic},
{Germanic, Romance, Slavic}, {Sino-Tibetan,
Germanic, Slavic}, where the underlined language
family has a fixed sampling ratio of either 0.2 or
0.5, and the other two families have varying ratios.
From Figure 6, we still see that in all three cases,
the hypothesis holds well, as the loss of the fixed
family does not noticeably change when varying
sampling ratios of other families. The result further
validates Hypothesis 1.

Furthermore, we demonstrate the trajectory of
the validation loss during training in Figure 7. This
further shows that when grouping by language
families, the performance of a language family
only depends on its own sampling ratio, regardless
of the combinations of other jointly trained
families. In contrast, cross-group transfer is
evident when the languages within one family is
split into two groups.

D Full fitting results

D.1 Fitting Li(pi)

We present the full power law fitting for Li(pi)
across all model sizes in Figures 8 to 11.
For all model sizes, the fitting quality is con-
sistent with low R-squared. For each lan-
guage, the exponent is essentially invariant, fur-
ther validating our claim. All fittings are per-
formed with an off-the-shelf function fitting tool
(scipy.optimize.least_squares).

D.2 Fitting Li(N,D, pi)

Table 9: Values of the fitted coefficients for all families.
The validation value on the last column L∗

i is calculated
using N = 397M,D = 50B. Also values assume N
in Millions and D in Billions.

Language family E A B α β γ val L∗
i

Romance 1.303 2.509 2.186 0.229 0.557 0.078 2.186
Slavic 0.001 1.561 1.240 0.186 0.112 0.093 1.311
Indic 0.001 0.782 0.691 0.194 0.152 0.140 0.626

Germanic 1.696 2.708 2.045 0.192 0.512 0.065 2.829
Sino-Tibetan 0.243 2.018 1.010 0.143 0.211 0.115 1.542

We present the full list of our fitted parameters
in Table 9. The fitting is done by jointly estimating
E,A,B, α, β, γ together. Thus, the values slightly
deviate from Table 2. One can alternatively fit γ
first, as it is the only parameter that requires empir-
ical data with varying sampling ratios p. Then, for
all of E,A,B, α, β, they can be fitted purely with
mono-family losses.

We produce similar plots as Figure 5 for all lan-
guage families in Figure 12. Overall, the scaling
law captures the relationship very well.

E Justification on the form of Li(N,D, p)

From Section 3.4, we already know that the rela-
tionship between L, N,D,p follow the form

Li(N,D, pi) = L⋆
i (N,D) · p−γi

i . (9)

For simplicity, we omit the subscript i for
Ei, Ai, Bi, αi, βi, γi,Li, which are family depen-
dent.

Recall the Chinchilla scaling law

L(N,D) = E +
A

Nα
+

B

Dβ
(10)

Since we know that separate scaling laws are valid
for given p, in the general form, the parameters in
Eq. 10 can be dependent on the sampling ratio p:

L(N,D, p) = E(p) +
A(p)

Nα(p)
+

B(p)

Dβ(p)
(11)

Following the above observation that models with
given p obey Chinchilla scaling laws given by Eq.
10, the key question that arises is how the general
notion of sampling ratio p can be incorporated into
the joint scaling law. Moreover, the scaling law
formula from Eq. 11 for constant N and D has to
be representable by Eq. 9. It is anticipated to align
with the latter, consisting of distinct power laws,
each with specific parameters for different N and
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Figure 6: Further validation on three family combinations: {Romance, Indic, Slavic} (left), {Germanic, Romance,
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D values. Consequently, the objective is to identify
a function that fulfills these criteria

L(N,D, p) = L⋆(N,D)p−γ(N,D) (12)

= E(p) +
A(p)

Nα(p)
+

B(p)

Dβ(p)

With this in mind, we aim to determine which of
these parameters (on RHS) remain independent of
p and identify the functional form of the others.

Model Size N for different Sampling Ratio
p. As seen in Figure 13a, we observe the linear
relationship between logN and logL and since
the lines are parallel for any given p, the slope
α (Eq. 11) is independent of the sampling ratio p.
Therefore we can assume that α(p) = α is constant.
6

6Strictly speaking, for a fixed D, log (L(N)− cB′(p)) =
logA(p)−α(p) logN where cB′(p) is a constant dependant
on p. However, note that log (L(N)) − cB′ (p)

L(N)
≤

log (L(N)− cB′(p)) ≤ log (L(N)). Hence
−α(p) log(N) + logA(p) ≤ log (L(N)) ≤
−α(p) log(N) + logA(p) +

cB′ (p)
L(N)

. Empirically, we
found log (L(N)) = m log(N) + c to fit well, i.e for
large enough N, cB′ (p)

L(N)
behaves more or less like a con-

stant. Because of that, we assume the functional form of

Dataset size D for different Sampling Ratio
p. As seen in Figure 13b, we observe the linear
relationship between logD and logL and since
the lines are parallel for any given p, the slope
β (Eq. 11) is independent of the sampling ratio
p. Therefore we can assume that β(p) = β is
constant.

Infinite model size N and dataset size D. Con-
sider the limit of Eq. 12 where N,D → ∞, we get
the functional form of E(p):

E(p) = L⋆(∞,∞)p−γ = cEp
−γ (13)

where cE := L⋆(∞,∞) is a constant.
Infinite dataset size D. Consider the limit of

Eq. 12 where D → ∞, plugging in Eq. 13, taking
logs of both sides and moving sides:

logA(p) + γ log p = α logN + log(cA′(N)− cE)
(14)

where cA′(N) := L⋆(N,∞) only depends on N .
The LHS of Eq. 14 only depend on p, whereas

the RHS only depends on N so they should both
equal some constant,cA (this step relies on our
proof above that α, β and γ are independent of
N,D and p), resulting in the functional form of
A(p)

A(p) = cAp
−γ (15)

Infinite dataset size N . We can consider the limit
of Eq. 12 where N → ∞ and by a symmetric
argument to above (D instead of N ) we get the
functional form of B(p)

B(p) = cBp
−γ (16)

(log (L(N)) = −α(p) log(N) + c(p)) ansatz. The fact
that α(p) is independent of p follows from the fact that for
different values of p, the slope is constant.
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Figure 8: Power law fitting for 5 language families on the 85M model.

0.0 0.2 0.4 0.6 0.8 1.0
Language proportion

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Te
st

 L
M

 L
os

s

Fit of Power Law for Germanic, R2=0.9903
Data points
Fitted curve: y = 2.83x^-0.07

0.0 0.2 0.4 0.6 0.8 1.0
Language proportion

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Te
st

 L
M

 L
os

s

Fit of Power Law for Indic, R2=0.9702
Data points
Fitted curve: y = 0.64x^-0.13

0.0 0.2 0.4 0.6 0.8 1.0
Language proportion

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Te
st

 L
M

 L
os

s

Fit of Power Law for Romance, R2=0.9901
Data points
Fitted curve: y = 2.19x^-0.08

0.0 0.2 0.4 0.6 0.8 1.0
Language proportion

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Te
st

 L
M

 L
os

s

Fit of Power Law for Sino, R2=0.9809
Data points
Fitted curve: y = 1.56x^-0.11

0.0 0.2 0.4 0.6 0.8 1.0
Language proportion

1.4

1.6

1.8

2.0

2.2

Te
st

 L
M

 L
os

s

Fit of Power Law for Slavic, R2=0.9925
Data points
Fitted curve: y = 1.31x^-0.09

Figure 9: Power law fitting for 5 language families on the 397M model.

Plugging the functional forms of E(p), A(p) and
B(p) and reverting back to E,A,B instead of
cE , cA, cB and adding back the omitted subscript
i, we obtain the final functional form for the joint
scaling law:

Li(N,D, pi) =

(
Ei +

Ai

Nαi
+

Bi

Dβi

)
p−γi
i .

F Optimal sampling ratios analytic
solution

Approximate solution Under the assumption γi ≪
17 we can get the approximate optimal p⋆i as

p⋆i ≈
wiL⋆

i γi∑n
i=1wiL⋆

i γi
(17)

The exact solution shows that the optimal sampling
ratios depend only on the products wiL⋆

i γi, mean-
ing that the product of the power law exponent and

7Table 2 shows that γi < 0.15, so this is not an unreason-
able assumption
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Figure 10: Power law fitting for 5 language families on the 810M model.
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Figure 11: Power law fitting for 5 language families on the 1.2B model.
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Figure 12: Joint power law fitting for 4 language families at 50B tokens across all model sizes.

constant determines the sampling ratios fully. This
shows that if we use wi = 1/L⋆

i the optimal ra-
tios do not depend on N,D, rather in this case, the
approximate solution sheds even more insight, the

optimal ratios depend only on the relative ratio of
γi∑n
i=1 γi

.

We use Lagrange multipliers to find the point
of minimum weighted loss, p⋆. We set Λ(p, λ) =
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Figure 13: (a) For a fixed token count, there is a linear relationship between logL and log(N) for different values
of sampling ratio p. Both axes are in the log-scale. (b) For a fixed model size, there is a linear relationship between
logL and log(D) for different values of sampling ratio p. Both axes are in the log-scale. The lines are nearly
parallel, indicating that α and β do not depend on p.

L+ λg and require that

∂Λ(p, λ)

∂p
= 0

∂Λ(p, λ)

∂λ
= 0

(18)

which gives a system of n equations i = 1, . . . , n
such that:

∂

∂pi

[∑

i

wiL⋆
i p

−γi
i + λ

(∑

i

pi − 1

)]
= 0,

(19)
Carrying out the differentiation, together with the
constraint results in a system of n + 1 equations
with n + 1 variables (p1, . . . , pn, λ) that we can
solve:

−wiL⋆
i γip

−(1+γi)
i + λ = 0, for i = 1, . . . , n

(20)

p1 + · · ·+ pn = 1

Rearranging the first n equations of Eq. 20 we
get:

pi = (wiL⋆
i γi)

1
1+γi λ

− 1
1+γi (21)

and plugging it to the last equation:

n∑

i=1

(wiL⋆
i γi)

1
1+γi λ

− 1
1+γi − 1 = 0 (22)

And we are done with proving the implicit solution.
It is worth noting that the polynomial in Eq. 22
is called an exponential polynomial Ritt (1929),
however considering the solution to those is out of
the scope of this paper.

The bordered Hessian matrix in this case is:

H =




0 ∂g
∂p1

∂g
∂p2

· · · ∂g
∂pn

∂g
∂p1

∂2Λ
∂p21

∂2Λ
∂p1∂p2

· · · ∂2Λ
∂p1∂pn

∂g
∂p2

∂2Λ
∂p2∂p1

∂2Λ
∂p22

· · · ∂2Λ
∂p2∂pn

...
...

...
. . .

...
∂g
∂pn

∂2Λ
∂pn∂p1

∂2Λ
∂pn∂p2

· · · ∂2Λ
∂p2n




(23)

=




0 1 1 · · · 1

1 ∂2Λ
∂p21

0 · · · 0

1 0 ∂2Λ
∂p22

· · · 0

...
...

...
. . .

...
1 0 0 · · · ∂2Λ

∂p2n




with

∂2Λ

∂p2i
= wiL⋆

i γi(1 + γi)p
−(2+γi)
i (24)

we have

|H| = −
∑

i=1,...,n

∂2Λ

∂p21

∂2Λ

∂p22
· · · ∂2Λ

∂p2i−1

∂2Λ

∂p2i+1

· · · ∂
2Λ

∂p2n

(25)
Each of the terms on 24 is positive for all pi ∈ (0, 1]
(L⋆

i , γi > 0) so the determinant of the bordered
Hessian is a negative sum of positive products
which is always negative meaning the solution we
find on equation 20 is a always minimum as re-
quired.

Now consider the first order Taylor polynomial

for λ− 1
1+γi around γi = 0
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(
1

λ

) 1
1+γi

=
1

λ
+ γi

log λ

λ
+O(γ2i )

≈ 1

λ
+ γi

log λ

λ

(26)

Plugging this back into Eq. 22, we get

N∑

i=1

(wiL⋆
i γi)

1
1+γi

(
1

λ
+ γi

log λ

λ

)
= 1

N∑

i=1

(wiL⋆
i γi)

1
1+γi + log λ

(
N∑

i=1

γi (wiL⋆
i γi)

1
1+γi

)

= λ
(27)

Finally, taking the first order Taylor polynomial
for log λ around λ = 1, we have

log λ = (λ− 1) +O((λ− 1)2)

≈ (λ− 1)
(28)

Plugging this back into Eq. 27, we get

λ =

∑N
i=1 (wiL⋆

i γi)
1

1+γi (1− γi)

1 +
∑N

i=1 γi (wiL⋆
i γi)

1
1+γi

pi =



wiL⋆

i γi

(
1 +

∑N
i=1 γi (wiL⋆

i γi)
1

1+γi

)

∑N
i=1 (wiL⋆

i γi)
1

1+γi (1− γi)




1
1+γi

(29)
For small γi that also agrees with the zero order
approximation

pi ≈
wiL⋆

i γi∑n
i=1wiL⋆

i γi
. (30)

Table 10: Comparison of optimal sampling ratios
obtained from the numerical solver and the analytical
solution.

pRo pSl pIn pGe pSi

Numerical solver (85M) 0.246 0.180 0.124 0.231 0.218
Analytical solution (85M) 0.243 0.168 0.121 0.240 0.226

Numerical solver (1.2B) 0.207 0.182 0.123 0.249 0.240
Analytical solution (1.2B) 0.205 0.161 0.122 0.253 0.259

Here, we demonstrate that this approximate ana-
lytical solution has similar resulting optimal sam-
pling ratios as the numerical solution. As in Ta-
ble 10, the sampling ratios are indeed similar.
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