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Abstract

Foundation models for single-cell RNA se-
quencing (scRNA-seq) have shown promising
capabilities in capturing gene expression pat-
terns. However, current approaches face crit-
ical limitations: they ignore biological prior
knowledge encoded in gene regulatory relation-
ships and fail to leverage multi-omics signals
that could provide complementary regulatory
insights. In this paper, we propose GRNFormer,
a new framework that systematically integrates
multi-scale Gene Regulatory Networks (GRNs)
inferred from multi-omics data into RNA foun-
dation model training. Our framework intro-
duces two key innovations. First, we intro-
duce a pipeline for constructing hierarchical
GRNs that capture regulatory relationships at
both cell-type-specific and cell-specific resolu-
tions. Second, we design a structure-aware
integration framework that addresses the in-
formation asymmetry in GRNs through two
technical advances: @ A graph topological
adapter using multi-head cross-attention to
weight regulatory relationships dynamically,
and @ a novel edge perturbation strategy that
perturb GRNs with biologically-informed co-
expression links to augment graph neural net-
work training. Comprehensive experiments
have been conducted on three representative
downstream tasks across multiple model ar-
chitectures to demonstrate the effectiveness of
GRNFormer. It achieves consistent improve-
ments over state-of-the-art (SOTA) baselines:
3.6% increase in drug response prediction cor-
relation, 9.6% improvement in single-cell drug
classification AUC, and 1.1% average gain in
gene perturbation prediction accuracy.

1 Introduction

Recent advances in foundation models (FMs) for
single-cell RNA sequencing (scRNA-seq) analysis
has revolutionized our ability to decipher cellular
states and gene expression patterns. Models like
scGPT (Cui et al., 2024), Geneformer (Theodoris
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Figure 1: Gene regulatory process in scATAC-seq and
scRNA-seq modalities. Image credit to Bonev et al. (2024).

et al., 2023), and scFoundation (Hao et al., 2024)
demonstrate remarkable capabilities in capturing
transcriptomic relationships through large-scale
pretraining on millions of cells. These models
achieve state-of-the-art performance in critical
tasks, including cell type annotation, perturbation
prediction, and multi-omic integration. Particu-
larly noteworthy is scPaLM (Chen et al., 2024),
which introduces biological pathway-aware repre-
sentations to address computational challenges in
transformer-based approaches.

However, despite their successes, current RNA
FMs face fundamental limitations rooted in their
reliance on expression data alone. Three key chal-
lenges persist in existing approaches. First, as
shown in Fig. 1, while current models learn gene-
gene correlations implicitly, they lack explicit inte-
gration of regulatory causality derived from chro-
matin accessibility data — a crucial determinant of
cellular identity (Bravo Gonzélez-Blas et al., 2023).
Second, existing methods struggle to capture the
multi-scale nature of gene regulation, where re-
lationships operate at both cell-type-specific and
cell-specific (Kamimoto et al., 2020). Third, se-
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vere information asymmetry plagues regulatory net-
works: for some cell types, transcription factors
(TFs) exhibit dense connectivity while ~ 40% of
genes lack reliable regulatory links (Aibar et al.,
2017; Bravo Gonzélez-Blas et al., 2023), creating
a topological imbalance that standard architectures
cannot effectively handle (Chen et al., 2021).

To handle these challenges, we present
GRNFormer, a novel architecture that integrates
multi-scale Gene Regulatory Networks (GRNs)
into current RNA FMs through three key innova-
tions. First, we introduce a systematic pipeline
for constructing cell-specific and cell-type-specific
GRNs capturing regulatory causality derived from
chromatin accessibility data by integrating single-
cell ATAC-seq (scATAC-seq) and scRNA-seq data
utilizing SCENIC+ (Bravo Gonzélez-Blas et al.,
2023). As shown in Fig. 2A and Appendix A,
our method leverages chromatin accessibility to
identify enhancer-driven regulatory units (eRegu-
lons) through motif enrichment analysis and multi-
modal linkage (Bravo Gonzélez-Blas et al., 2023),
enabling discovery of context-specific regulatory
relationships across biological scales.

Then, we introduce a universal structure-aware
integration framework that utilizes the multi-scale
gene regulation information and addresses GRNs
topological challenges through: ¢) an adaptive
cross-attention layer that dynamically weights reg-
ulatory signals based on node centrality and i¢)
a biologically informed edge perturbation strat-
egy that supplements sparse connections with co-
expression relationships as shown in Fig. 2C. This
design enables effective knowledge transfer from
GRNs while mitigating information asymmetry — a
critical advancement over naive fusion approaches
such as addition or concatenation.

Lastly, we establish comprehensive benchmarks
across three clinically-relevant tasks: gene per-
turbation prediction, drug response classification,
and single-cell sensitivity analysis. Our experi-
ments demonstrate that GRNFormer achieves con-
sistent improvements over base models (scGPT
+3.6% Pearson Correlation Coefficient (PCC) on
the drug response prediction task, scFoundation
+4.1% Area Under the ROC Curve (AUC) on the
single cell drug response classification task). No-
tably, the model reveals interpretable attention pat-
terns aligning with known biological regulations.
Our key contributions are three folds:

@ Multi-scale GRN Construction Pipeline:

The first systematic framework integrating
scATAC-seq and scRNA-seq data to build cell-
type-specific and single-cell-resolution regula-
tory networks through enhancer-driven eReg-
ulons analysis pipelines.

O Structure-aware Model Architecture: An in-
tegration strategy combining adaptive cross-
attention with novel biological guided edge
perturbation strategy, effectively resolving
GRNss topological imbalance while maintain-
ing computational efficiency.

® Extensive Biological Validation: State-of-the-
art performance across three therapeutic de-
velopment tasks, with demonstrated improve-
ments in drug response prediction (e.g., 3.6%
of PCCye1ta gain against baselines) and single
cell drug sensitivity classification (e.g., 0.122
of AUC gain against baselines)

The success of GRNFormer underscores the
transformative potential of integrating regulatory
prior knowledge from different modalities into
foundation models. Our work establishes a new
paradigm for developing biologically grounded Al
systems in computational genomics, with immedi-
ate applications in the discovery of drug targets and
the improvement of existing gene therapies.

2 Related Works

Single-cell Data Analysis. Single-cell RNA
sequencing (scRNA-seq) has revolutionized ge-
nomics by enabling profiling of cell-level gene ex-
pressions (Saliba et al., 2014; Kolodziejczyk et al.,
2015). Providing hints on cellular heterogeneity,
scRNA-seq transforms how to understand complex
biological systems such as neural tissues, immune
responses, and tumor micro-environments. Ad-
vances in perturbation sequencing techniques, such
as Perturb-seq, have further allowed researchers to
discover the causal relations between gene perturba-
tions and cellular phenotypes by utilizing CRISPR-
based editing alongside scRNA-seq (Dixit et al.,
2016; Adamson et al., 2016; Norman et al., 2019).
However, integrating information from other omics
modalities, such as scATAC-seq or spatial omics,
remains a significant challenge despite the remark-
able progress in scRNA-seq technologies (Cui et al.,
2023; Xiong et al., 2023).

Foundation Models in Single-cell Omics. FMs,
first developed for natural language processing,
have become powerful tools for learning hidden
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Figure 2: Overview of GRNFormer framework: (A) Multi-scale GRN construction from scATAC/scRNA-seq data
utilizing additional Motif databases; (B) Our framework employs single-cell RNA foundation models (scRNA
FMs) to encode gene expression profiles into expression embeddings, supporting three model architectures as
backbones: scGPT, scFoundation, and scPaLM; (C) The multi-scale GRNs are perturbed using co-expression graphs
and subsequently processed through GNN modules, with the resulting embeddings aggregated via summation
to generate the structure embedding; (D) The expression embedding and structure embedding obtained from the
previous two stages are fused through a cross-attention layer. The resulting hybrid embedding can be fed into the
decoder for pretraining via masked language modeling objectives, or directly utilized for diverse downstream tasks.

embeddings of large-scale biological data. These
models, typically pretrained on vast datasets, can
be fine-tuned for downstream tasks such as classifi-
cations and translations, offering extensive flex-
ibility and scalability (Bommasani et al., 2021;
Moor, 2023). In single-cell biology, foundation
models are pre-trained on large single-cell datasets,
and then applied to downstream tasks like cell
type annotation, perturbation prediction, and multi-
omic integration (Cui et al., 2023; Theodoris et al.,
2023). During the fine-tuning process, model pa-
rameters are further optimized using task-specific
datasets typically of much smaller size than the
training data, resulting in much lower computa-
tional cost(Gururangan, 2020; Qiu, 2020). Ad-
ditionally, foundation models can recognize var-
ious data types , such as transcriptomics and epige-
nomics, providing a more generalized view of cell
biology (Brown et al., 2020; OpenAl, 2023).

Modern scRNA-seq generates gene expression
profiles as a cell-by-gene matrix X € RNVN*G,
where each element X;; represents the expres-
sion count of gene j in cell . RNA founda-
tion models typically employ masked language
modeling objectives adapted to transcriptomic

data. Given an input expression vector x € R®,
these models randomly mask a subset of genes
M C {1,...,G} and optimize reconstruction via
L= By 3 pm 1 fo(z™*9); — | [*], where fy
denotes the foundation model. Key architectural
variants include: (1) scGPT(Cui et al., 2024) em-
ploys generative pretraining with specialized atten-
tion masking for non-sequential omics data; (2)
scFoundation (Hao et al., 2024) introduces a read-
depth-aware (RDA) pretraining task using an asym-
metric transformer architecture. scPalLM (Chen
et al., 2024) also tries extending current architec-
ture through pathway-aware architectures. Despite
these architectural explorations, current foundation
models remain predominantly focused on scRNA-
seq data, lacking systematic integration of multi-
omics signals such as chromatin accessibility pro-
files from scATAC-seq data.

3 Methodology — GRNFormer

Overview of GRNFormer. Our approach addresses
the challenge of integrating biological prior knowl-
edge of RNA foundation models through a two-
stage framework as shown in Fig. 2. First, we
leverage multi-omics data to construct reliable gene
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regulatory networks (GRNs) at multiple scales -
cell-specific and cell-type-specific levels. These
networks capture the complex regulatory relation-
ships between transcription factors and their target
genes. Second, we develop a structure-aware in-
tegration mechanism that uses cross-attention to
incorporate GRNs information into RNA founda-
tion model training while handling the inherent
sparsity and topological imbalance of regulations.

3.1 Construction of Multi-scale GRNs

Gene regulatory networks (GRNs) from the com-
putational blueprint of cellular identity, encoding
how transcription factors (TFs) — proteins that bind
DNA to control gene expression — orchestrate tran-
scriptional programs through cis-regulatory ele-
ments. Traditional GRN inference methods face
two critical limitations: (1) reliance on expression
correlations alone, missing causal chromatin ac-
cessibility signals; (2) inability to resolve regula-
tory relationships at both population (cell type) and
single-cell levels (Aibar et al., 2017). Our frame-
work addresses these through multi-modal integra-
tion and multi-scale analysis as shown in Fig. 2 A.
We first begin with cell-type-specific GRNs genera-
tion, which we mainly followed SCENIC+ (Bravo
Gonzélez-Blas et al., 2023) pipeline and the details
can be found at Appendix A.

Single-cell GRNSs via Activity Thresholding. To
resolve regulatory heterogeneity within cell types,
we quantify eRegulon activity at single-cell res-
olution using AUCell (Aibar et al., 2017). This
algorithm calculates an Area Under the recovery
Curve (AUC) score by ranking genes or regions
and measuring target set enrichment. Critically,
the AUC distribution across cells reveals funda-
mental biological patterns: (1) Bimodal distribu-
tions indicate two distinct cell subpopulations (ac-
tive/inactive), while (2) Skewed Gaussian distri-
butions reflect graded activation across a contin-
uum (Van de Sande et al., 2020). We model these
patterns using a two-component Gaussian mixture:

p(z) = mN (zlp1,07) + mN (2luz, 03) (1)

where 7; are mixing coefficients. For bimodal
cases, the threshold is set at the Gaussians’ inter-
section, cleanly separating active and inactive cells.
For skewed distributions with a single dominant
component, we label cells in the right tail (¢ + 20)
as active, capturing cells with exceptionally strong
regulon activity. This biologically-grounded thresh-
olding ensures each cell’s GRN comprises only

context-relevant regulatory interactions. Exam-
ples of the activity distribution of transcription
factors and the corresponding thresholds in our
pre-training data are illustrated in Appendix E.
Cross-modality Integration. Recognizing that
most downstream tasks involve single-modality
scRNA-seq datasets, we enable GRN integration
through reference mapping. For single omics down-
stream datasets, we leverage embeddings from
pre-trained single multi-omics foundation models
(scGPT (Cui et al., 2024), scFoundation (Hao et al.,
2024)) to map query cells to their nearest neighbors
in the reference space. This method establishes
connections between downstream cells and precom-
puted multi-scale GRNs from paired scATAC-seq
and scRNA-seq data, ensuring broad applicability
across diverse biological contexts.

3.2 Structure Adapter to Incorporate Gene
Regulation

Our structure-aware integration framework focuses
on addressing three fundamental challenges in in-
corporating multi-scale GRNSs: (1) topological im-
balance where TFs dominate connectivity while ~
40% of genes lack reliable regulations (Aibar et al.,
2017); (2) information asymmetry between TF-rich
and isolated gene representations; (3) multi-scale
regulatory dynamics requiring simultaneous mod-
eling of cell-type and single-cell contexts (Bravo
Gonzalez-Blas et al., 2023).

Architecture Adaptation for Different Back-
bones. As shown in Fig. 2B, our framework uti-
lizes existing RNA FMs to encode gene expressions
and demonstrates universal applicability across ma-
jor variants: (1) For decoder-only models (i.e.,
scGPT (Cui et al., 2024)), we utilize the embedding
before the last transformer layer as our expression
embedding; (2) For encoder-decoder models (i.e.,
scFoundation (Hao et al., 2024), scPaLM (Chen
et al., 2024)), we fuse structural embeddings with
encoder outputs before feeding them to the decoder.
Multi-scale GRN Processing. Following the
pipeline in Section 3.1, we process cell-specific and
cell-type-specific GRNs using GraphSAGE (Hamil-
ton et al., 2017), chosen for its ability to handle
degree imbalance through fixed-size neighborhood
sampling as shown in Fig. 2C. Traditional GNNs
that aggregate all neighbors would amplify magni-
tude differences between high-degree TFs (average
degree 81.3 in our data) and remaining genes (av-
erage degree 1.3 in our data). For each node v at
layer k, the aggregation follows:
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h}r() = AGGREGATE} <{hﬁ*1,Vu € J\/(v)})

W =o (W’C - CONCAT (hﬁ‘l, hf\/(v))) :

where A (v) denotes a fixed-size uniform sample
of neighbors, addressing degree imbalance through
neighbor sampling as in Hamilton et al. (2017).
The final structural embedding hgiruct = hcell @ hiype
combines regulation information at both scales
through element-wise summation.

Cross-modal Fusion. Direct concatenation of
GRN embeddings (hgruet) With expression fea-
tures (hexpr) amplifies information asymmetry. In-
stead, our multi-head cross-attention dynamically
reweights features. The query-key mechanism pri-
oritizes TF-gene interactions with high topologi-
cal centrality while attenuating noise from uncon-
nected genes. This mechanism produces context-
aware fusion embedding hyysion that complements
expression patterns with regulatory constraints.
Edge Perturbation for Topological Balance. Con-
ventional graph augmentations (Zhao et al., 2022)
risk involving biologically meaningless connec-
tions. Our biologically-informed perturbation re-
places a|E| edges (o« = 0.2) with co-expression
links from G¢,, constructed per cell as:

Geo = {(w,v)|zy > 0Nz >0}, Vu,v € G (3)

where x denotes normalized gene expression, G
denotes the gene vocabulary. This perturbation
strategy preserves connectivity for genes lacking
regulatory annotations while maintaining biologi-
cal plausibility — co-expressed genes in the same
cell are more likely to share functional relation-
ships (Van de Sande et al., 2020; Roohani et al.,
2022). Compared to random edge perturbation,
our approach ensures that node embeddings for all
non-zero-expressed genes receive sufficient train-
ing through the sampling of co-expression graph.

3.3 Pretraining and Inference Pipeline

The training and inference pipeline of our model is
illustrated in Fig. 2D. For each backbone architec-
ture, the pretraining objectives and data processing
pipelines remain consistent with their original im-
plementations, which primarily involve variants of
masked language modeling tasks.

We implemented downstream task pipelines
based on scGPT and scFoundation frameworks,
with additional integration of scPalLM. Detailed

descriptions of these downstream task workflows
are provided in the Experiments Section.

4 Experiments

We conducted extensive experiments to evaluate
GRNFormer across three biologically significant
tasks: @ Gene perturbation prediction examines
the model’s ability to capture regulatory mecha-
nisms by predicting gene expression changes fol-
lowing gene perturbations. This task is particularly
relevant for therapeutic development and under-
standing disease mechanisms. ® Drug response
prediction evaluates the model’s clinical utility by
predicting cellular responses to therapeutic com-
pounds. The model integrates gene expression pro-
files with drug structural information to predict
IC50 values (half-maximal inhibitory concentra-
tions). ® Single-cell drug response classifica-
tion tests the model’s ability to transfer knowledge
from bulk cell line to single-cell resolution, a criti-
cal capability for personalized medicine. The task
involves predicting drug sensitivity for individual
cells. Across all these tasks, we will compare our
approach against SOTA baselines and conduct com-
prehensive ablation studies to evaluate our GRN
integration strategy’s effectiveness systematically.
This multi-faceted evaluation framework ensures a
thorough assessment of our approach’s biological
accuracy and practical utility.

4.1 Implementation Details.

Pretraining Data. We pre-trained our model using
the Seattle Alzheimer’s Disease Brain Cell Atlas
(SEA-AD) dataset (Hawrylycz et al., 2024), which
provides paired scRNA-seq and scATAC-seq mea-
surements for 113, 209 cells from 28 donors. The
scRNA-seq data captures expression profiles for
18, 984 protein-coding genes, while the scATAC-
seq data provides chromatin accessibility informa-
tion across the genome. Detailed statistics about
the dataset can be found in Appendix C.
Architectures. Our framework comprises three
core components: A transformer-based RNA foun-
dation model backbone processing gene expression
embeddings; A GraphSAGE encoder (Hamilton
et al., 2017) generating gene structural embeddings
from multi-scale GRNs; and A cross-attention fu-
sion layer replacing the final transformer layer to
integrate structural and expression features. The
architecture preserves the original backbone dimen-
sions (e.g., 768 hidden units for scFoundation).
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Training Settings. For scGPT (Cui et al., 2024)
and scPaLM (Chen et al., 2024) backbone, we
conducted full pretraining on SEA-AD multiome
data (Hawrylycz et al., 2024). For scFounda-
tion (Hao et al., 2024) backbone, we performed
continued pretraining from their public checkpoint,
validating our method’s plug-and-play capability.
All models used backbone-specific hyperparame-
ters from original implementations, including op-
timizer type, learning rate, and batch size. Train-
ing completed on 8x A100 GPUs with full repro-
ducibility. Details of the pretraining algorithm with
multi-scale GRNs can be found in Appendix B.
Benchmarks Data. We established three evalua-
tion paradigms: (1) Gene perturbation prediction
using Adamson (Adamson et al., 2016)(87 single
gene perturbations in protein response pathway),
Dixit (Dixit et al., 2016) (single and combinato-
rial LPS response gene perturbations), and Nor-
man (Norman et al., 2019) (131 gene pairs and 105
single genes in K562 cells) datasets; (2) Bulk drug
response prediction via CCLE (Barretina et al.,
2012) (24 drugs, 947 cell lines) and GDSC (Iorio
et al., 2016) (297 compounds, 969 cell lines); (3)
Single-cell drug classification following scFoun-
dation’s (Hao et al., 2024) protocol for four com-
monly cancer targeted therapies (Sorafenib, NVP-
TAEG684, PLX4720, Etoposide). Detailed statistics
about these datasets can be found in Appendix C.
Baselines. We established three fundamental base-
lines: Our implementations of scGPT (Cui et al.,
2024) and scPalLM (Chen et al., 2024) pre-trained
on SEA-AD multiome data, and the officially pre-
trained scFoundation (Hao et al., 2024) checkpoint.
For drug response prediction, we additionally com-
pared against DeepCDR (Liu et al., 2020) as a spe-
cialized baseline. For single-cell sensitivity classifi-
cation, we included SCAD (Roohani et al., 2022) to
benchmark cell resolution capabilities. All scFoun-
dation results report the maximum performance
between its original pre-trained version and our
continued pretraining variant for fair comparison.

4.2 Gene Perturbation Prediction

Gene perturbation prediction represents a critical
task in computational biology with direct implica-
tions for therapeutic development and disease un-
derstanding. The task involves predicting genome-
wide transcriptional changes following genetic in-
terventions, which is essential for understanding
gene function and identifying potential drug tar-
gets. A key challenge in this task is capturing the

complex, non-linear effects of gene perturbations
on cellular transcriptional programs.

Table 1: Gene perturbation prediction evaluation.

Model Adamson Dixit Norman ‘ Avg. PCCyelta T
scGPT 0.609 0.130  0.405 0.381+0.240
+ GRN (ours) 0.622 0.138  0.418 0.393+0.243
scFoundation 0.483 0.239  0.255 0.326+0.137
+ GRN (ours) 0.487 0.241  0.283 0.337+0.132

Our evaluation utilized three widely-used bench-
mark datasets (Adamson (Adamson et al., 2016),
Norman (Norman et al., 2019), and Dixit (Dixit
et al., 2016)). The input comprises unperturbed
gene expression profiles and perturbation gene tar-
gets, while the output comprises predicted post-
perturbation expression levels. We focused on the
Pearson correlation coefficient on differential ex-
pression (PCCgyeita), which measures how well the
model predicts expression changes directions.

As shown in Table 1, GRNFormer achieves con-
sistent improvements across all datasets. The GRN-
enhanced scGPT variant attains a 1.1% average
PCC increase (0.393 vs. 0.381 baseline), with
particularly robust gains on the Norman dataset
(+3.1%). We adapted each model’s native pipeline
for gene perturbation prediction, with critical diver-
gence in fine-tuning strategies: scFoundation em-
ployed parameter freezing for most layers due to
GPU memory constraints, while scGPT permitted
full parameter updates. This architectural distinc-
tion likely contributes to scFoundation’s relatively
lower performance, as partial fine-tuning may limit
its adaptability to perturbation patterns.

4.3 Cancer Drug Response Prediction

Accurate prediction of cancer drug responses en-
ables personalized treatment strategies and accel-
erates therapeutic development (Barretina et al.,
2012; Iorio et al., 2016). We evaluate our model on
CCLE and GDSC datasets using IC50 values (half-
maximal inhibitory concentration) as ground truth.
All experiments were repeated four times with iden-
tical settings except for random seed variations,
with means and standard deviations calculated. We
integrate gene expression profiles with drug struc-
tural information through DeepCDR-style architec-
ture (Liu et al., 2020; Hao et al., 2023).

Our evaluation utilized data from the Cancer
Cell Line Encyclopedia (CCLE) and Genomics of
Cancer Drug Sensitivity (GDSC) databases (Iorio
et al., 2016; Barretina et al., 2012). The model inte-
grates gene expression profiles with drug structural
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information to predict drug sensitivity. As shown
in Fig. 3, our GRN-enhanced approach achieves
superior performance across different experimental
settings. Our model achieves a correlation coeffi-
cient of 0.906 £ 0.0.002, significantly outperform-
ing both DeepCDR (0.838 £ 0.001) and the base-
line scGPT model (0.875 4 0.010). Furthermore,
as shown in Fig. 4, our GRN-integrated model
demonstrates superior performance over the base-
line across all cancer types. The enhanced model
exhibits consistently better predictive capability
than baseline approaches under most cell lines and
drug conditions, achieving robust performance im-
provements across different experimental settings.

4.4 Single-Cell Drug Response Classification

Single-cell drug response classification presents
a unique challenge in cancer research, requiring
drug sensitivity prediction at the individual cell
resolution. This task is particularly challenging
due to the limited availability of single-cell drug
response data and the need to transfer knowledge
from bulk-level pharmacogenomic data to single
cells (Zheng et al., 2023; Hao et al., 2023).

Table 2: Single-cell drug response classification. Supe-
rior model between backbone and GRN (ours) is bolded,
while the best performance for each drug is underlined.

Model Etoposide NVP-TAE684 PLX4720 Sorafenib Avg. AUC 1
SCAD 0.696 0.613 0.380 0.572 0.565:+0.134
scGPT 0.511 0.415 0.563 0.346 0.4590.097
+ GRN (ours) 0.510 0.663 0.678 0.474 0.581-0.104
scFoundation 0.596 0.750 0.694 0.807 0.712:x0.090
+ GRN (ours) 0.663 0.760 0.598 0.953 0.743+0.155
scPaLM 0.471 0.730 0.502 0.299 0.500+0.177
+ GRN (ours) 0.483 0.468 0.689 0.602 0.561+0.105

We evaluated our model on four drugs (So-
rafenib, NVP-TAE684, PLX4720, and Etoposide).
Performance was assessed using the Area Under
the ROC Curve (AUC) for classification accu-
racy. Table 2 demonstrates GRNFormer’s superi-
ority across most settings. Benefiting from the inte-
gration of GRN information, our model achieved
a 4.4% performance improvement on scFounda-

tion, surpassing the previous SOTA. For each drug,
we report average performance metrics computed
through five-fold cross-validation.

4.5 Ablation Studies

Effectiveness of GRN Types. We first investi-
gate how different GRN construction strategies
influence model performance. We evaluate four
variants: (1) Random GRN: Randomly generated
networks with matched edge counts; (2) Cell-type
Specific: GRNs constructed using SCENIC+ at cell
population level; (3) Cell-specific: Single-cell reso-
lution GRNs via AUCell thresholding; (4) Hybrid:
Our proposed combination of cell-type and cell-
specific GRNs. Experiments are conducted on the
scGPT backbone with identical hyperparameters
across all variants.

Table 3: Variants of GRN types (Backbone: scGPT)

GRN Type Drug Response PCC +
No GRN 0.875 +o0.010
Random 0.892 +0.006
Cell-type Specific 0.901 +o.003
Cell-specific 0.902 +0.002
Hybrid (Ours) 0.906 +0.002

Table 3 demonstrates that our hybrid approach
achieves superior performance, with relative im-
provements of 0.5% in drug response prediction
compared to single-scale GRNs. The cell-specific
and cell-type-specific variants show better perfor-
mance than random networks, suggesting the im-
portance of capturing regulatory information.
Impact of Edge Perturbation Strategies. We
next analyze the effectiveness of our biologically in-
formed edge perturbation strategy. Two variants are
compared: (1) Random Perturbation: 20% edges
randomly replaced; (2) Co-expression Guided: Our
proposed strategy using gene co-expression pat-
terns. Experiments are conducted on scPalLM using
identical training protocols.

Table 4: Edge perturbations (Backbone: scPalLM)

Drug Response PCC 1T Response Classification AUC 1

0.870 +0.006 0.555 +0.113
0.867 +0.002 0.548 +0.108

0.884 +0.004 0.561 +0.105

Edge perturbation strategies

No Augmentation
Random Perturbation

Co-expression Guided (Ours)

As shown in Table 4, our co-expression guided
perturbation achieves 1.6% relative improvements
over the baseline in the drug response predic-
tion tasks. It is noteworthy that simple random
perturbation-based data augmentation may degrade
model performance, highlighting the necessity of
our co-expression guided perturbation strategy.
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Figure 4: Pairwise visualization of the Pearson correlation coefficient of scGPT and scGPT + GRN based on
different grouping strategies. Left: grouping with respect to the cell lines; Middle: grouping with respect to the
cancer type; Right: grouping with respect to the drug type. The red lines indicate the relationship of y = .

Analysis of GNN Architectures. We further exam-
ine how different GNN architectures affect model
performance when integrated with scFoundation.
We compare three popular GNN variants: (1) GCN:
Standard graph convolutional networks (Kipf and
Welling, 2016); (2) GIN: Graph isomorphism net-
works (Xu et al., 2018); (3) GraphSAGE: Our
choice with the neighbor sampling approach.

Table 5: Variants of GNN types (Backbone: scFoundation)

GNN Type Drug Response PCC 1 Response Classification AUC 1
GCN 0.881 +0.007 0.675 +o.014
GIN 0.876 +0.006 0.623 +o0.138
GraphSAGE (Ours) 0.888--0.002 0.743 +0.155

Table 5 reveals that GraphSAGE performs best
while maintaining computational efficiency. The
1.4% improvement in response prediction over
GIN demonstrates the effectiveness of neighbor
sampling for handling GRN sparsity.

4.6 Analysis of Attention Patterns

To investigate how our model leverages gene reg-
ulatory relationships, we analyze the attention
patterns in the cross-attention fusion layer. Let
A ¢ RN*N denote the attention matrix for
head A in the multi-head cross-attention mecha-
nism, where N is the number of genes. Each en-
try aZ(?) represents the attention weight between
query gene ¢ (from the RNA FM) and key gene j
(from the GNN encoder). We compute the gene-
wise attention importance score ¢; for each gene
J by averaging across all heads and query genes
as ¢; = 7w SISy az(»?), where H is the
number of attention heads. This score quantifies
how frequently a gene’s regulatory embedding in-
fluences other genes’ expression representations.
To identify biologically meaningful patterns, we
calculate the transcription factor (TF) enrichment
ratio p:
El¢;lj € T]

= 4
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Figure 5: (A) Distribution of average attention scores
for transcription factor (TF) and non-transcription factor
(non-TF) nodes; (B) Node degree distributions for these
two types of nodes. TF nodes appear to connect to more
genes and also exhibit higher attention weights.

where T denotes the set of transcription factors in
our GRNs. p > 1 indicates preferential attention to
TFs. Our analysis reveals p = 2.011 across all cell
types on the drug response prediction task, indi-
cating the model attends disproportionately to TFs.
The distributions of node degrees for TF and non-
TF nodes, as well as the cross attention weights in
the fusion layer, are shown in Figure 5.

5 Conclusion

In this paper, we propose GRNFormer, a frame-
work that systematically integrates multi-scale gene
regulatory networks into RNA foundation mod-
els through two key innovations: (1) hierarchi-
cal GRN construction via multi-omics fusion, and
(2) a structure-aware adapter combining adaptive
cross-attention with biologically informed edge
perturbation to resolve the topological imbalance.
GRNFormer achieves consistent performance im-
provement across therapeutic development tasks.
Attention analysis reveals biologically meaningful
patterns of our edge perturbation strategy. The
framework’s universal applicability is validated
through the integration with major RNA foundation
architectures, establishing a new paradigm for bio-
logically grounded Al in computational genomics.
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Limitations

Dependency on Regulatory Databases. The qual-
ity of our constructed GRN relies heavily on ex-
isting motif databases and chromatin accessibility
data. Similar to SCENIC+ (Bravo Gonzalez-Blas
et al., 2023), our approach cannot fully resolve am-
biguous TF binding patterns within shared motif
families. Future integration of emerging techniques
like GET-style pseudobulk chromatin profiles (Fu
et al., 2025) probably could further improve the
reliability of gene regulatory information.
Multi-modal Data Requirement. While our
framework theoretically supports single-modality
data through reference mapping, optimal GRN con-
struction requires paired sSCRNA-seq/scATAC-seq
data. Future work could try integrate lifelong learn-
ing strategies to reduce multi-modal dependency
through atlas-scale data integration (Yuan and
Duren, 2024). Additionally, inspired by GET (Fu
et al., 2025), constructing pseudo-paired multi-
omics data from existing resources may better lever-
age heterogeneous datasets.

Ethics Statement

Our work on integrating multi-scale gene regula-
tory networks into RNA foundation models demon-
strates a commitment to advancing biomedical Al
while adhering to ethical research practices. All
datasets used in this study listed in Table 6 are
publicly available and fully anonymized, with all
donor identities and sensitive metadata removed
in compliance with privacy regulations. While our
model shows promise in accelerating drug discov-
ery and improving gene therapies, any clinical ap-
plication must undergo rigorous ethical review to
ensure compliance with genomic data protection
standards. We emphasize that biological founda-
tion models built upon our methodology should
incorporate safeguards against misuse, such as re-
stricting access to potentially harmful gene-editing
predictions. Furthermore, our implementation pri-
oritizes transparency—all code and preprocessing
workflows are designed for public auditability, re-
producibility, and explainability.
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A Cell-type-specific GRNs via eRegulon Inference.

We construct hierarchical GRNs using SCENIC+ (Bravo Gonzdlez-Blas et al., 2023), which integrates
scATAC-seq and scRNA-seq through three phases:

@ Candidate Enhancer Identification: Chromatin accessibility profiles from scATAC-seq reveal
genomic regions where DNA is unwound, indicating potential regulatory elements. Co-accessible
regions are detected using pycisTopic (Bravo Gonzdlez-Blas et al., 2019), which employs topic modeling
— a probabilistic method that groups genomic loci with similar accessibility patterns across cells. These
regions, enriched near genes with correlated expression, serve as candidate enhancers — non-coding DNA
elements that promote gene transcription.

® TF-Motif Enrichment Analysis: Transcription factors bind DNA through specific sequence patterns
called motifs (e.g., the E-box "CANNTG" for basic helix-loop-helix TFs (Wright, 1992; Malik et al.,
1995)). Enhancer candidates are scanned against a curated database of 32,765 TF-binding motifs
(aggregated from 29 collections (Bravo Gonzalez-Blas et al., 2023)) using pycisTarget. Two algorithms
identify statistically overrepresented motifs: ¢) The cisTarget algorithm ranks motifs by how early their
target regions appear in accessibility-based rankings; 2) The DEM algorithm identifies motifs differentially
enriched between cell types. These algorithms establish TF-to-enhancer links (NES > 3.0, FDR < 0.1)
while mitigating false positives through motif clustering.

® eRegulon Construction: For each TF, we link its target enhancers to genes using three criteria: (1)
genomic proximity (+150kb from gene), (2) expression correlation (Pearson |r| > 0.03), and (3) gradient-
boosted regression importance scores (GRNBoost2 (Moerman et al., 2019)). This forms enhancer-driven
regulons (eRegulons) — triplets connecting TFs, enhancers, and target genes that function as regulatory
units. Cell-type specificity is determined by joint accessibility of enhancers and expression of target
genes (Bravo Gonzélez-Blas et al., 2023).

B Algorithm

Algorithm 1 formalizes our structure-aware pretraining process, implementing the key components
described in §3.2 and §3.3. The pseudocode explicitly shows the edge perturbation strategy (Lines 3 — 12)
that addresses topological imbalance through co-expression guided augmentation, and the multi-scale
fusion mechanism (Lines 14 — 20) combining cell-specific and cell-type-specific GRN embeddings. This
algorithm complements Fig. 2 in the main text by detailing how biological priors are injected during
training while maintaining compatibility with various backbone architectures.

Algorithm 1 Structure-Aware (Continue) pretraining with Multi-scale GRN

1: Input: Masked gene expression vector x, cell-specific GRN G, cell-type-specific GRN Giype, GNN encoder F', Trans-
former backbone H, cross-attention module P, perturbation ratio «, fusion weight
: Output: Reconstructed expression
: function PERTURBGRN(G, G, @)
V < nodes(G)
Eiginal < edges(G)
Edmp — Sample(Eoriginah Q‘Eoriginall)
Eeo < Sample(edges(Geo), | Eoriginal])
. return (‘/7 Eoriginal \ Edrop U Eco)
: // Stage 1: Graph Augmentation
: Geo < ConstructCoExpressionGraph(z)

2

3

4

5

6

7

8

9

10

11: Geen ¢ PERTURBGRN(Geent, Geo, )

12: Giype ¢ PERTURBGRN(Gype, Geo, ¢¢)

13: // Stage 2: Structural Encoding

14: heen +— F (écell) > Cell-specific encoding
15: hupe < F(Giype) > cell-type-specific encoding
16: hstruct <= Peent D htype > Element-wise sum
17: // Stage 3: Cross-modal Fusion

18: hexpr < H(z) > Gene expression embedding
19: htusion <= P (Rexpr, Pstruct) > Cross-attention fusion
20: hcombined — hexpr + 5hfusi0n > Weighted combination
21: & <+ Decoder(hcombined )

22: return T
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C Datasets

Table 6 summarizes key statistics for all experimental datasets. The SEA-AD multiome dataset provides
paired scRNA-seq/scATAC-seq profiles for pretraining, while the perturbation benchmarks (Adamson,
Dixit, Norman) and drug response datasets (CCLE, GDSC) enable comprehensive downstream evaluation
across different biological contexts.

Table 6: Summary of datasets used in different tasks.

Task ‘ Dataset ‘ # of cells/# of cell lines ‘ # of genes
Training: Mask Language Modeling ‘ SEA-AD (multiome part)(Hawrylycz et al., 2024) ‘ 113,209 ‘ 18,984
Adamson(Adamson et al., 2016) 68,603 5,060
Gene Perturbation Prediction Dixit(Dixit et al., 2016) 447,35 5,012
Norman(Norman et al., 2019) 91,205 5,045

Drug Response Prediction/

Single Cell Drug Response Classification GDSC(lorio et al., 2016) 969 ~ 22,000

CCLE(Barretina et al., 2012) ‘ 947 ‘ 1651

D Additional Experiment Results

Unsupervised Cell-type Clustering. To further validate our work’s effectiveness, we supplemented our
evaluation with clustering tasks. We conducted unsupervised cell-type clustering experiments on several
datasets, obtaining cell embeddings from our model followed by k-means clustering, and calculating the
Adjusted Rand Index (ARI) using cell type labels. We compared our approach with two classic machine
learning clustering methods, scDeepCluster (Tian et al., 2019) and scGNN (Wang et al., 2021). Our
method achieved good results on most datasets, as shown in Table 7. This addition ensures our work
covers all downstream tasks addressed in the scFoundation paper.

Table 7: Supplementary Table: Unsupervised cell-type clustering results (ARI). Performance of our method
(scFoundation + GRN) compared to other methods across various datasets. Average ARI indicates overall clustering
performance. The + values indicate standard deviation.

Method Baron Chen Endothelium Muto Pancreas Average ARI 1
scDeepCluster (Tian et al., 2019)  0.502 £ 0.000 0.287 £ 0.005 0.637 £0.000 0.625 4+ 0.031 0.414 £ 0.000 0.493
scGNN (Wang et al., 2021) 0.556 £0.027 0.322+£0.010 0.581+£0.007 0.576 & 0.023 0.457 & 0.057 0.4984
scFoundation 0.453 £0.051 0.322+£0.014 0.5124+0.003 0.38540.005 0.358 & 0.026 0.406
scFoundation + GRN (Ours) 0.490 + 0.042 0.447 = 0.015 0.649 £ 0.033  0.549 £ 0.032 0.436 + 0.064 0.5142

Comparison of Different Regulatory Knowledge Integration Methods. We investigated various
methods for integrating Gene Regulatory Network information with gene expression embeddings. In
the early stages of our project, we experimented with simple concatenation and addition methods but
found they did not yield optimal performance. Analysis of embedding magnitude distributions for
each gene revealed significant differences, likely due to information imbalance between nodes. This
observation motivated our adoption of cross-attention for fusion. We conducted ablation experiments on
the scFoundation backbone for Drug Response Prediction and Single Cell Drug Sensitivity Classification
tasks. As shown in Supplementary Table 8, the cross-attention method demonstrated significant superiority.

Table 8: Supplementary Table 1: Comparison of different fusion methods for integrating GRN information with
gene expression embeddings on the scFoundation backbone. Performance is evaluated on Drug Response Prediction
(PCC) and Single Cell Drug Sensitivity Classification (AUC). The =+ values indicate standard deviation.

Fusion Method Drug Response PCC 1+ Response Classification AUC 1
Baseline (scFoundation) 0.875+0.010 0.712 £ 0.090
+ GRN (Addition) 0.884 £ 0.002 0.621 £0.133
+ GRN (Concatenation) 0.881 £ 0.003 0.538 £0.075
+ GRN (Cross-Attention) (Ours) 0.906 + 0.004 0.743 £+ 0.155
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E Transcription Factor Activity Distribution

Fig. 6 visualizes the bimodal and skewed AUC distributions underlying the single-cell GRN construction,
supporting the thresholding methodology from §3.1. The clear separation of active/inactive states for
TFs like PURA empirically validates the gaussian mixture modeling approach. These distributions
directly inform the cell-specific regulatory networks that drive our model’s performance improvements in
downstream tasks (§4.5).
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Figure 6: The distribution of activity levels for nine randomly selected transcription factors (TFs) within a single
cell type. The threshold distinguishing active versus inactive states are demarcated by red vertical lines.
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F Potential Risks

While GRNFormer advances computational genomics, three key risks warrant consideration: (1) Data
Bias Propagation: Reliance on existing motif databases may propagate biases in TF-gene interactions,
particularly for understudied cell types or minor populations, potentially leading to skewed therapeutic
predictions. (2) Privacy Vulnerabilities: Although using anonymized data, integration of multi-omics
profiles could theoretically enable cell identity re-identification through rare regulatory signatures. (3)
Dual-Use Concerns: Enhanced prediction of gene regulatory outcomes might be misused to design
targeted biological agents, though our current implementation focuses only on therapeutic contexts. We
mitigate these risks through (1) transparent documentation of data sources, and (2) controlled access to
regulatory network components. Responsible deployment requires ongoing collaboration with bioethicists
and clinical reviewers.
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