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Abstract

Despite the growing development of long-
context large language models (LLMs), data-
centric approaches relying on synthetic data
have been hindered by issues related to faith-
fulness, which limit their effectiveness in en-
hancing model performance on tasks such as
long-context reasoning and question answering
(QA). These challenges are often exacerbated
by misinformation caused by lack of verifica-
tion, reasoning without attribution, and poten-
tial knowledge conflicts. We propose LONG-
FAITH, a novel pipeline for synthesizing faith-
ful long-context reasoning instruction datasets.
By integrating ground truth and citation-based
reasoning prompts, we eliminate distractions
and improve the accuracy of reasoning chains,
thus mitigating the need for costly verification
processes. We open-source two synthesized
datasets—LONGFAITH-SFT and LONGFAITH-
PO—which systematically address multiple di-
mensions of faithfulness, including verified rea-
soning, attribution, and contextual grounding.
Extensive experiments on multi-hop reasoning
datasets and LongBench demonstrate that mod-
els fine-tuned on these datasets significantly
improve performance. Our ablation studies
highlight the scalability and adaptability of the
LONGFAITH pipeline, showcasing its broad ap-
plicability in developing long-context LLMs.

1 Introduction

Long-context processing ability has emerged as
a significant challenge for large language models
(LLMs) (Shi et al., 2023; Liu et al., 2024; Wu et al.,
2024; Levy et al., 2024), especially arises when
models process extensive textual information, mak-
ing it hard to recognize relevant evidence and ad-
dress downstream tasks such as question answering
(QA), summarization, and complex reasoning (Bai
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at https://github.com/IDEA-FinAI/LongFaith.
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Figure 1: A brief introduction of LONGFAITH. Synthe-
sized long-context reasoning instruction sets and pref-
erence datasets are fed into the post-training stage of
downstream LLMs.

et al., 2023, 2024b; Zhang et al., 2024d; Hsieh et al.,
2024; Yen et al., 2024). A variety of model-centric
methods have been proposed to extend the length
of context windows in LLMs (Chen et al., 2023a,b;
Peng et al., 2023; Han et al., 2024; Ding et al.,
2024). Additionally, many data-centric methods,
such as synthesizing long-context understanding
instructions for fine-tuning, have gained attention
for enhancing models’ ability to handle and utilize
extended contexts (Xiong et al., 2023; An et al.,
2024; Fu et al., 2024; Bai et al., 2024a; Li et al.,
2024b; Gao et al., 2024; Chen et al., 2024; Zhang
et al., 2024c; Li et al., 2024a; Jiang et al., 2025).

Despite the improvements in downstream QA
performance enabled by synthetic long-context rea-
soning instructions, concerns remain regarding the
faithfulness of such generated data. Specifically:
(1) Misinformation due to lack of verification:
existing methods often generate QA pairs with-
out rigorous rule-based verification. For instance,
(Chen et al., 2024; Zhang et al., 2024c; Li et al.,
2024a) directly synthesize QA pairs using LLMs
while bypassing verification, whereas (Zhang et al.,
2024c) relies on AI-generated feedback in soft di-
mensions rather than human annotation. (2) Rea-
soning without attribution: prompting LLMs
to generate responses with citation, such as us-
ing Chain-of-Citation (CoC) prompting (Li et al.,
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When was the country containing Alanje colonized by the country housing the 

All Saints Church in the town known for the bombing by Gaddafi's Libya?

[1] Muammar Gaddafi: 

From childhood, Gaddafi 

was aware of the 

involvement of European 

colonialists in Libya……

[2] Alanje: Alanje is a 

corregimiento in Alanje

District, ChiriquíProvince, 

Panama. It is the seat of 

Alanje Distric

The All Saints Church is located in Lockerbie, Scotland, which is part of 

the United Kingdom. 

……

The formal British colonization of Panama occurred later, after the 

separation of Panama from Colombia in 1903, when the UK recognized 

Panama's independence.

The answer is 1903.

Misinformation Reason w/o Attribution Knowledge Conflicts

Alanje is a corregimiento in Panama, specifically in Chiriquí Province as 

stated in the document [10].

……

According to document [14], in 1695, the Scottish Parliament granted a 

charter to the Company of Scotland, which established a settlement on 

the isthmus of Panama in 1698. 

The answer is 1698.

Verified Reasoning w/ Correct Answer Reasoning w/ Attribution

Generate Reasoning Chain Directly

Generate Reasoning Chain with Ground Truth Guidance and Chain-of-Citation

Previous Studies

Reasoning Chains with 

Misinformation

Reasoning Chains w/o 
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Reasoning Chains with 

Knowledge Conflict
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Instructions with 

low-faithful

reasoning chains 
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Figure 2: Overview of LONGFAITH pipeline for synthesizing faithful long-context reasoning instruction and
preference datasets. Comparing generated reasoning chains with misinformation, lack of attribution, and knowledge
conflicts, LONGFAITH generates ground truth guidance prompting by chain-of-citation to build LONGFAITH-SFT.
Fine-grained faithfulness is modeled by optimization on our preference datasets LONGFAITH-PO.

2023, 2024b; Fierro et al., 2024; Huang et al., 2024;
Berchansky et al., 2024; Gao et al., 2023) can en-
hance the credibility and interpretability of model
outputs under long-context QA tasks (Gao et al.,
2023; Zhang et al., 2024b), yet most prior works
ignore to incorporate this technique during their
synthesis of training instruction pairs. (3) Potential
knowledge conflicts: some approaches (Bai et al.,
2024a; Zhang et al., 2024c; Chen et al., 2024) over-
rely on the Self-Instruct technique (Wang et al.,
2022) to generate QA pairs, encouraging models to
rely on parametric knowledge rather than ground-
ing reasoning in explicit contextual evidence (Xu
et al., 2024). Additionally, (Zhang et al., 2024c)
feeds the query and response to a short-context
reward model ignoring the long context to score,
purely relying on the parametric knowledge inside
LLM. These limitations underscore the necessity
for a more robust pipeline that ensures the faithful-
ness of long-context instructions synthesis.

We propose LONGFAITH, a novel pipeline for
synthesizing faithful long-context reasoning in-
struction datasets. We incorporate ground truth di-
rectly into the prompt for synthesizing long-context

reasoning chains, which comprise supporting facts
and the correct answer, and prompt LLMs to reason
with attributions. This method ensures the faithful-
ness of synthesized reasoning chains without requir-
ing costly verification by a curated rule-based eval-
uator, LLM-as-a-judge (Gu et al., 2024) or human
annotator. We open-source LONGFAITH-SFT,
synthesized under the guidance of ground truth
and CoC prompting. We leverage the faithful long-
context reasoning chains with attributions for train-
ing, leading to performance improvements after
fine-tuning Llama-3.1-8B-Instruct. Additionally,
we synthesize preference datasets by sampling pref-
erence pairs around fine-grained faithfulness: (1)
encouraging model to reason with attributions; (2)
encouraging model to learn on verified reasoning
chains; and (3) encouraging model to reason with
contextual documents grounded. We open-source
LONGFAITH-PO, synthesized by various LLMs
in different sizes, which integrates all three faithful-
ness dimensions for preference optimization. We
leverage these faithful preferred instruction pairs
for training Llama-3.1-8B-Instruct, achieving per-
formance improvements on the multi-hop reason-
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ing dataset and LongBench (Bai et al., 2023).
Our main contributions are as follows: (1) We

introduce LONGFAITH, a novel pipeline for synthe-
sizing faithful long-context reasoning instruction
data. (2) We open-source LONGFAITH-SFT and
LONGFAITH-PO, two synthesized datasets that are
systematically designed considering multiple di-
mensions of faithfulness. (3) We conduct extensive
experiments on two types of datasets (comprising
eight sub-tasks) to show that models trained on
LONGFAITH datasets can improve in long-context
reasoning and QA tasks. (4) Our ablation stud-
ies illustrate the scaling potential and adaptability
of LONGFAITH pipeline, underscoring its broad
applicability in the development of long-context
LLMs.

2 Related Work

Long-Context Utilization. Amounts of studies
focus on enhancing LLMs to better utilize long-
context information. Model-centric approaches,
for instance, optimizations on attention mechanism
aim to capture specific sequential features (Belt-
agy et al., 2020; Ding et al., 2023; Chen et al.,
2023b; Han et al., 2024), while positional inter-
polation techniques are utilized to scale positional
encoding while ensuring valid index ranges (Zhu
et al., 2023; Chen et al., 2023a; Ding et al., 2024;
Peng et al., 2023; Beltagy et al., 2020). In addi-
tion, data-driven approaches also gain popularity,
emphasizing high-quality data synthesis for fine-
tuning to improve LLMs’ long-context processing
capabilities. For example, (Xiong et al., 2023; Gao
et al., 2024) employ long-sequence continuous pre-
training on foundation models, while (Fu et al.,
2024) explores the impact of pre-training data com-
position and balance. Additionally, works on SFT
with synthetic instructions (An et al., 2024; Bai
et al., 2024a; Li et al., 2024b; Chen et al., 2024) not
only consider long-context understanding but also
strengthen multi-hop reasoning capabilities. Lastly,
preference optimization approaches (Zhang et al.,
2024c; Li et al., 2024a) generate fine-grained pair-
wise preference instruction sets and incorporate
training techniques (Rafailov et al., 2024; Hong
et al., 2024). From the perspective of improving
the faithfulness of synthetic data, our work effec-
tively addresses the shortcomings of prior studies
in this area.

Faithful Reasoning. Hallucination in LLMs
presents a major challenge in knowledge-intensive

tasks (Zhang et al., 2023; Huang et al., 2023). Re-
cent work has focused on enhancing faithful reason-
ing, where the goal is to trace the LLM’s generated
content back to reliable sources and ensure its fac-
tual grounding. (Berchansky et al., 2024; Li et al.,
2023, 2024b) aim to improve the identification and
verification of attributions by focusing on generat-
ing reasoning outputs that link claims to specific
sources. Benchmarks such as (Gao et al., 2023;
Yue et al., 2023) evaluate the quality of citations
and highlight the limitations of current systems
in providing citation support to ensure more re-
liable output. Additionally, integrating external
knowledge sources has gained attention, which use
retrieval-augmented generation (RAG) methods to
facilitate deep and faithful reasoning (Sun et al.,
2023; Ma et al., 2024). Our LONGFAITH is moti-
vated by previous work, towards faithful reasoning
in long-context reasoning tasks.

3 LongFaith

In this section, we present an exposition of LONG-
FAITH pipeline. Specifically, we explain how it
synthesizes LONGFAITH-SFT for supervised fine-
tuning and LONGFAITH-PO for preference opti-
mization from the perspective of faithfulness.

Synthesize Reasoning Chains with High Faith-
fulness. Previous studies (Bai et al., 2024a; Chen
et al., 2023b, 2024; Zhang et al., 2024c; Li et al.,
2024a) tend to directly distill synthesized long-
context QA and reasoning instructions for training
without filtering out incorrect information. These
low-faithfulness synthesized data limit the per-
formance improvements of the trained models.
In response to this challenge, LONGFAITH inte-
grates ground truth into the synthesized reason-
ing chains. For a sample S from the training set
S = (Q,D,A, F ), where Q is the reasoning ques-
tion, D is the full document used for querying, A
is the correct answer, and F represents the support-
ing facts where F ∈ D. We use the LLM Msyn to
synthesize the reasoning chain as follows:

Oc = Msyn(Pcoc, Q, F,A) (1)

Here, Oc represents the output of Msyn, which
is a step-by-step reasoning chain. The prompt Pcoc
utilizes a chain-of-citation (Li et al., 2024b) prompt-
ing approach, requiring the model to reason with
attribution (e.g., "Let’s reason step by step while cit-
ing the document using [1], [2], etc."). The prompt
template is shown in Figure 7.
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LONGFAITH-SFT Dataset. Towards training a
downstream LLM to reason with high faithfulness
for a long-context QA task, we construct the dataset
for supervised fine-tuning, where each instruction
pair is built as follow:

Isft = {input = (Pcoc, Q,D), output = Oc} (2)

Synthesize Reasoning Chain with Questionable
Faithfulness. To model fine-grained preferences,
we address three challenges that affect the faithful-
ness of synthesized instructions: (1) misinforma-
tion due to lack of verification, (2) reasoning with-
out attribution, and (3) potential knowledge con-
flicts. We synthesize reasoning chains with ques-
tionable faithfulness, including reasoning chains
with misinformation as follows:

Om = Msyn(Pcoc, Q,D) (3)

Since there is no ground truth to guide the syn-
thesis, the output Om may contain errors in rea-
soning, as illustrated in Figure 8, where the model
generates an incorrect answer of "1903" instead of
the correct answer "1698". This hallucination is
common in synthesized data from previous works
unless rules or human experts are involved in filter-
ing (Li et al., 2024b). Next, we synthesize reason-
ing chains without attribution:

Ocot = Msyn(Pcot, Q, F,A) (4)

Here, the CoT (Wei et al., 2022) prompting only
requires the model to provide step-level reason-
ing, but as shown in Figure 9, reasoning without
attribution not only loses interpretability and credi-
bility (Gao et al., 2023; Li et al., 2023), but our
results in Tab. 4 (Sec. 4) also demonstrate that
CoT prompting performs worse than CoC. Finally,
we synthesize reasoning chains with potential
knowledge conflicts:

Okc = Msyn(Pcot, Q,A) (5)

Since no context is provided, the model relies
solely on its parametric knowledge for reasoning,
as shown in Figure 10, where the model states,
"Panama was not colonized by the United King-
dom; Panama was colonized by Spain," based on
internal parametric knowledge rather than the con-
textual documents. Previous studies (Zhang et al.,
2024c) using short-context reward models observes
performance degradation by ignoring long-context

Synthesis of Reasoning Chains

Models Prompt w/ GT w/ Doc Output Size

Q-7B CoC ✓ ✓ 1 1-8K
Q-7B CoT ✓ ✓ 2 1-8K
Q-7B CoC ✗ ✓ 3 1-8K
Q-7B CoT ✓ ✗ 4 1-8K
L8,L70,G CoC ✓ ✓ 5 2K
L8,L70,G CoT ✓ ✓ 6 2K
L8,L70,G CoC ✗ ✓ 7 2K
L8,L70,G CoT ✓ ✗ 8 2K

Datasets for Supervised Fine-tuning

Name Models Instruction Output Size

LF-SFT Q-7B CoC 1 1-8K
w/o CoC Q-7B CoT 2 1-8K
w/o GT Q-7B CoC 3 1-8K
w/o Doc Q-7B CoC 4 1-8K

LF-SFT L8,L70,G CoC 5 2K
w/o CoC L8,L70,G CoT 6 2K
w/o GT L8,L70,G CoC 7 2K
w/o Doc L8,L70,G CoC 8 2K

Datasets for Preference Optimization

Name Models Instruction Chosen Rejected Size

w/ CoC Q-7B CoC 1 2 1-8K
w/ GT Q-7B CoC 1 3 1-8K
w/ Doc Q-7B CoC 1 4 1-8K

LF-PO Q-7B CoC 1 2,3,4 1-8K
w/ CoC L8,L70,G CoC 5 6 2K
w/ GT L8,L70,G CoC 5 7 2K
w/ Doc L8,L70,G CoC 5 8 2K

LF-PO L8,L70,G CoC 5 6,7,8 2K

Table 1: Statistics of synthesized datasets for SFT and
PO. We first synthesize large-scale reasoning chains
and then refactor them to datasets, where the second
stage does not require llm inference. Q-7B means
Qwen2.5-7B-Instruct, L8 means Llama-3.1-8B-Instruct,
L70 means Llama-3.1-70B-Instruct and G means GPT-
4o mini. GT means Ground Truth, CoC means chain-
of-citation, Doc means contextual documents, and LF
means LONGFAITH. 1-8K includes {1K, 2K, 4K, 8K}.

materials, highlighting the limitation of knowledge
conflicts in affecting LLM’s performance in long-
context QA and reasoning tasks.

LONGFAITH-PO Dataset. Towards training a
downstream LLM to address three challenges
above in long-context reasoning, we force the LLM
to learn reasoning with high faithfulness while re-
jecting outputs of questionable faithfulness:

Ipo = {input = (Pcoc, Q,D),

chosen = Oc, rejected = Or}
(6)

where Or is a combination of (Om, Ocot, Okc),
or a subset of them.
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LLAMA-3.1-8B-INSTRUCT
MuSiQue 2Wiki HotpotQA Qasper(S) MFQA-En(S) MuSiQue(M) 2Wiki(M) HotpotQA(M)

F1 SubEM F1 SubEM F1 SubEM F1 SubEM F1 SubEM F1 SubEM F1 SubEM F1 SubEM

Zero-Shot Prompting

+ CoT 15.9 56.8 34.0 83.8 20.8 78.6 3.2 22.0 5.7 29.3 14.1 43.5 30.1 77.0 13.4 60.5
+ CoC 25.8 64.2 43.6 86.2 32.7 76.6 4.6 26.0 7.0 32.7 11.8 41.0 28.1 79.5 19.9 58.0

Superivised Fine-tuning

+ LongAlpaca 21.6 50.2 47.8 80.4 32.7 76.6 5.7 25.0 5.8 30.7 8.5 48.5 25.4 77.0 12.5 61.0
+ LongAlign 24.8 48.4 55.6 84.2 51.0 79.2 6.5 24.0 10.7 38.7 15.0 40.0 33.4 76.5 35.8 61.0
+ MuSiQue-Attribute 13.9 19.2 23.9 49.6 20.2 37.2 10.0 11.5 8.3 12.0 15.2 26.5 21.2 55.0 25.6 41.0
+ LongMIT 4.9 33.0 3.3 58.0 10.1 63.6 9.5 18.5 5.6 30.0 7.5 29.0 3.6 55.5 23.7 50.0
+ LongReward-SFT 6.2 48.4 23.3 80.0 15.6 74.2 2.6 22.5 0.5 34.0 1.1 43.0 6.6 71.5 8.9 54.0
+ SEALONG-SFT 31.3 64.6 55.8 89.2 59.4 83.0 14.5 26.0 18.6 31.3 24.1 59.5 34.1 84.5 37.3 69.0
+ LONGFAITH-SFT 56.8 62.8 73.8 85.6 70.5 80.8 36.9 29.5 47.0 32.0 50.1 56.5 63.9 82.0 53.1 68.0

Preference Optimization

+ LONGREWARD-PO 3.3 46.0 14.3 76.6 8.9 71.2 1.6 21.0 0.1 32.7 0.0 37.5 4.4 67.0 3.3 53.0
+ SEALONG-PO 30.2 60.4 50.1 89.4 58.3 83.4 17.1 28.0 20.1 32.0 18.1 53.3 34.0 86.0 40.2 69.5
+ LONGFAITH-PO 60.5 66.4 68.0 85.0 65.4 81.2 38.1 30.5 46.7 32.0 50.2 52.0 73.7 83.5 55.6 67.5

Table 2: Main experiment results on three multi-hop reasoning test sets and five long-context QA test sets from
LongBench. The best results are in bold and second-best are underlined. (S) means single-doc QA task and (M)
means multiple-docs QA task in LongBench. LONGFAITH-SFT and LONGFAITH-PO are synthesized by GPT-4o
mini both in 2K size. To ensure fairness, we sample first 2K examples from baseline datasets.

4 Experiments

4.1 Implementation Details
Following previous studies, we leverage the train-
ing set of MuSiQue (Trivedi et al., 2022b), which
is build on Wikipedia documents with supporting
documents and correct answers. The officially re-
trieved 20 documents are provided and read only
once in the input context in distractor setting. The
statistics of training set is given in Tab. 6, covering
1K, 2K, 4K and 8K, where the balance of questions
with different hops are considered. Following the
pipeline we describe in Sec. 3, reasoning chains
are samples to build LONGFAITH-SFT and LONG-
FAITH-PO. The statistics are presented in Tab. 1.

We conduct our experiments on a Linux server
equipped with 4 A100-SXM4-40GB GPUs. For
data synthesis of long-context reasoning instruc-
tions, we take Llama-3.1-8B-Instruct (Dubey et al.,
2024), Qwen2.5-7B-Instruct (Yang et al., 2024),
Llama-3.1-70B-Instruct and GPT-4o mini (Hurst
et al., 2024) as generators and prompt LLMs to syn-
thesize reasoning chains with vLLM (Kwon et al.,
2023). We adopt the LoRA technique (Hu et al.,
2021) for fine-tuning and ORPO technique (Hong
et al., 2024) for preference optimization using the
LLaMA-Factory framework (Zheng et al., 2024) to
train Llama-3.1-8B-Instruct. Hyperparameters of
post-training are given in App. F.

4.2 Evaluation Setup
Following prior work (Li et al., 2024b), we uti-
lize three multi-hop reasoning datasets, includ-

Figure 3: Performance of Llama-3.1-8B-Instruct trained
on different size of instructions synthesized by Qwen2.5-
7B-Instruct from 1K to 8K, evaluated by EM and F1
metrics on multi-hop reasoning sets and LongBench.

ing MuSiQue (Trivedi et al., 2022b), 2WikiMul-
tiHopQA (Ho et al., 2020), and HotpotQA (Yang
et al., 2018), evaluating in distractor-setting, where
the officially retrieved 10 or 20 documents are
provided and read only once in the input context.
We adopt the test sets sampled by (Trivedi et al.,
2022a), with 500 examples in each set. Further-
more, in line with previous studies (Chen et al.,
2024; Zhang et al., 2024c; Li et al., 2024a), we as-
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LLAMA-3.1-8B-INSTRUCT
MuSiQue 2WikiMultiHopQA HotpotQA

Overall 2-Hop 3-Hop 4-Hop Overall 2-Hop 4-Hop Overall Bridge Comparison

Zero-Shot Prompting

+ CoT 11.0 7.5 16.2 12.0 29.0 22.3 54.3 17.4 17.5 17.0
+ CoC 19.0 16.1 22.7 20.7 39.2 31.4 68.6 30.4 28.6 38.6

Superivised Fine-tuning

+ LONGFAITH-SFT 40.6 44.1 37.7 35.9 55.4 51.1 71.4 53.6 57.0 37.5
w/o CoC 40.2 41.7 39.6 37.0 51.8 48.9 62.9 52.0 56.6 30.7
w/o GT 30.4 31.9 28.6 29.3 55.8 49.6 79.0 56.6 54.9 64.8
w/o Doc 20.0 23.6 18.2 13.0 55.8 47.1 88.6 47.4 45.9 54.5

Preference Optimization

w/ GT-PO 44.0 45.7 42.9 41.3 56.0 50.4 77.1 54.4 58.3 36.4
w/ CoC-PO 43.6 44.5 44.8 39.1 53.2 48.6 70.5 56.2 59.2 42.0
w/ Doc-PO 41.4 42.5 40.3 40.2 56.0 52.7 68.6 56.4 59.5 42.0

+ LONGFAITH-PO 46.6 47.2 48.1 42.4 59.0 55.9 70.5 58.6 59.7 53.4

Table 3: Main experiment results on three long-context multi-hop reasoning datasets using the Exact-Match(EM)
metric. The best results are in bold. The training set has 2K samples for both SFT and PO, synthesized by
Qwen2.5-7B-Instruct. Detail statistics of synthetics datasets are presented in Tab. 1.

sess the performance on LongBench (Bai et al.,
2023), which includes two test sets for single-
doc QA including Qasper (Dasigi et al., 2021)
and MultiFieldQA-EN (Bai et al., 2023), as well
as three test sets for multi-docs QA tasks includ-
ing HotpotQA, 2WikiMultiHopQA, and MuSiQue.
Notably, although there is an overlap in multi-hop
reasoning tasks, the LongBench version further
extends the lengths of document text. To ap-
ply CoC prompting, single document is split into
20 even paragraphs with order. The statistics of
datasets are listed in Tab. 7.

To ensure fairness, we use Substring Exact-
Match (SubEM) (Yen et al., 2024; Li et al., 2024a)
metric in main experiments, in case that models
trained on baseline datasets are not good at instruc-
tions following to summarize the answer with "The
answer is", and SubEM goes through the whole
response to check whether the answer is in. Fur-
thermore, following previous work (Choi et al.,
2018; Zhang et al., 2024a; Li et al., 2024b), we use
EM metric and F1 scores for the trimmed part after
"The answer is" for evaluation in main experiments
and ablation studies. Comparing with LLM-as-a-
Judge (Bai et al., 2024a; Chen et al., 2024; Zhang
et al., 2024c) using strong API models like GPT-4o,
the rule-based metrics cost much lower.

4.3 Baselines

We compete LONGFAITH-SFT and LONGFAITH-
PO with datasets proposed in previous studies,
including LONGALPACA (Chen et al., 2023b),

LONGALIGN (Bai et al., 2024a), MUSIQUE-
ATTRIBUTE (Li et al., 2024b), LONGMIT (Chen
et al., 2024), LONGREWARD-SFT (Zhang et al.,
2024c), SEALONG-SFT (Li et al., 2024a) for su-
pervised fine-tuning, and LONGREWARD-PO and
SEALONG-PO for preference optimization. All of
them aim at enhancing the performance of LLMs
on long-context understanding, reasoning, and QA
tasks. To ensure fairness, we keep the training set-
ting consistent with App. F and truncate the size of
training samples to a maximum of 2K.

4.4 Main Results

LONGFAITH Outperforms Previous Datasets.
Following previous work and to ensure a fair com-
parison, we evaluate the performance of LONG-
FAITH on multi-hop reasoning test sets (Trivedi
et al., 2022b; Ho et al., 2020; Yang et al., 2018)
and LongBench (Bai et al., 2023), comparing
it against baseline methods, including zero-shot
prompting with Llama-3.1-8B-Instructand models
trained on synthetic datasets from previous works.
As shown in Tab. 2, LONGFAITH outperforms base-
line datasets on most test sets. The performance
of the model trained on LONGFAITH-PO surpasses
that trained on LONGFAITH-SFT. This aligns with
our expectations: compared to directly using posi-
tive samples for supervised fine-tuning, incorporat-
ing rejected samples to provide more fine-grained
faithfulness preferences for optimization leads to
better improvements in long-context reasoning and
QA capabilities. We observe that some synthetic
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Figure 4: Scatter plot with a linear regression line fitting the relationship between QA - EM and Attribution - F1
metrics on three long-context multi-hop reasoning test sets. A point refers to the performance of a model trained
with a specific size between 1K to 8K by SFT or PO.

instruction sets degrade performance compared to
native Llama-3.1-8B-Instruct. This proves that
datasets with questionable faithfulness are even
harmful to long-context reasoning ability of LLMs.

LONGFAITH Arrives at the Correct Answer
without Redundant Exploration. We find that
on 2WikiMultiHopQA, HotpotQA, and part of
tasks in LongBench, SEALONG achieves a slight
advantage in the SubEM metric against LONG-
FAITH, but fails in F1 scores. We investigate the
length of response and present in Tab. 9. It turns
out that the LLM trained on SEALONG conducts
redundant exploration in response, producing more
noisy content related to the answer, but actually
arrives at a wrong answer, which means SubEM
metric is easily to be "hacked". In contradiction, F1
scores requires to truncate the part after "The an-
swer is", which demonstrates that a model trained
on LONGFAITH datasets can arrive at the correct
answer without redundant exploration and achieve
a high score in a more strict metric. A case study
is shown in Fig. 11 in Appendix.

Generalization. Based on statistics from Tab. 8,
the main experiment demonstrates that LONG-
FAITH uses instructions with shorter context as
input compared to baseline methods, reducing train-
ing costs while generalizing to LongBench tasks
that require processing an average of 24K-70K to-
kens as input. This further highlights the general-
ization ability of our pipeline.

4.5 Analysis
Exploration on Different Perspective of Faithful-
ness. To validate the specific impact of different
dimensions of faithfulness, we fine-tune models
using negative samples as output and optimize us-
ing preference datasets that reject only a subset of
negative samples. The statistics of the constructed

Figure 5: Visualization of F1 scores in Tab. 2.

datasets are shown in Tab. 1. Since each task in
LongBench contains no more than 200 questions,
performance evaluations can be prone to errors, so
we chose to test on multi-hop reasoning datasets.
Experimental results are shown in 3. The models
trained with LONGFAITH-SFT and LONGFAITH-
PO achieved high performance respectively in SFT
and PO especially in F1 scores, as expected.

However, we note that in 4-Hop part of 2Wiki
and comparison part of HotpotQA, LONGFAITH-
SFT w/o CoC and w/o GT demonstrated better
performance. Analysis reveals that for the question
"Do both films, Cuban Colony and Prathyartha,
have directors from the same country?", as the train-
ing set MuSiQue used specific entities as answers,
the model responds "Both directors are from the
same country, which is India. The answer is In-
dia.". Actually, the correct answer is "yes." Model
trained on LONGFAITH w/o GT and LONGFAITH

w/o Doc performed better with more exploration,
but also lost overall performance due to hallucina-
tions. Models trained on all PO datasets outper-
formed those trained using only positive samples
for SFT, demonstrating the performance improve-
ment brought by each fine-grained, credible prefer-
ence. Finally, models trained on LONGFAITH-PO,
which integrates three dimensions of faithfulness,
achieved the best overall performance.
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LLAMA-3.1-8B-INSTRUCT MuSiQue 2WikiMHQA HotpotQA LongBench(S) LongBench(M)

+ LONGFAITH EM F1 EM F1 EM F1 EM F1 EM F1

Superivised Fine-tuning

w/ Llama-3.1-8B-Instruct 35.4 48.4 59.4 69.5 54.6 67.7 9.9 29.0 42.2 48.4
w/ Qwen2.5-7B-Instruct 40.6 54.0 55.4 65.0 53.6 69.5 14.1 38.4 43.0 53.8
w/ Llama-3.1-70B-Instruct 44.8 58.1 54.0 64.4 54.4 69.5 16.0 41.0 44.8 56.7
w/ GPT-4o mini 41.6 56.8 64.6 73.8 55.4 70.5 16.9 42.0 47.2 55.7

Preference Optimization

w/ Llama-3.1-8B-Instruct 41.2 53.2 57.4 67.0 55.6 68.5 14.7 36.9 44.0 55.3
w/ Qwen2.5-7B-Instruct 46.6 59.2 59.0 67.4 58.6 72.8 15.4 35.3 44.8 55.6
w/ Llama-3.1-70B-Instruct 50.4 63.2 52.8 62.7 57.2 71.0 16.4 40.0 48.3 59.4
w/ GPT-4o mini 48.4 60.5 59.8 68.0 49.8 65.4 15.9 42.4 45.0 59.8

Table 4: Ablation study on various LLMs for synthesizing LONGFAITH-SFT and LONGFAITH-PO in the size of
2K. The base model for training and testing is Llama-3.1-8B-Instruct. (S) and (M) refer to Single-doc QA and
Multi-docs QA in LongBench.

Scalability and Performance Gains. We ex-
plore the scaling-up potential of LONGFAITH

on multi-hop reasoning test sets and LongBench.
As presented in Tab. 7, we train Llama-3.1-8B-
Instruct using LONGFAITH-SFT and LONGFAITH-
PO synthesized by Qwen2.5-7B-Instruct across
four dataset sizes, ranging from 1K to 8K. Ac-
cording to the performance trend in Fig. 3, LONG-
FAITH generally exhibits scaling-up potential, in-
dicating that expanding the training dataset can
further enhance performance. Moreover, LONG-
FAITH-PO, which incorporates fine-grained pref-
erence optimization, demonstrates a more stable
upward trend compared to LONGFAITH-SFT, par-
ticularly in LongBench tasks. This result validates
the robustness of the LONGFAITH pipeline.

Attribution-Based Reasoning Leads to Higher
Performance. Utilizing CoC prompting for rea-
soning with attributions not only outperforms CoT
in performance, as it presents in Tab. 3, but also
provides greater interpretability and faithfulness as
shown in Fig. 2. We use Attribution F1 as a metric
to quantify the model’s attribution capability using
annotated supporting facts. Under CoC prompting,
we analyze the references within reasoning chains,
matching them against supporting facts like [1],
[2], etc., and compute F1 scores based on recall
and precision. We evaluate the attribution capa-
bility and overall performance of Llama-3.1-8B-
Instructtrained on LONGFAITH-SFT and LONG-
FAITH-PO across four sizes and visualize the re-
sults in a scatter plot. The findings in 4 demonstrate
a strong positive correlation between attribution ca-
pability and model performance, further validating
the effectiveness of the LONGFAITH pipeline.

LLAMA-3.1-8B LongBench(S) LongBench(M)

EM F1 EM F1

w/ 10 docs 11.2 31.7 39.7 52.2
w/ 20 docs 15.4 35.3 44.8 55.6
w/ 30 docs 16.0 36.0 46.1 56.7
w/ 40 docs 16.9 37.8 47.2 58.1

Table 5: Effectiveness of LONGFAITH on LongBench
as context length increases.

Impact of LLM Selection for Synthesis. We ex-
perimented with different LLMs for synthesis, in-
cluding smaller open-source LLMs such as Llama-
3.1-8B-Instruct, Qwen2.5-7B-Instruct, and larger
open-source models like Llama-3.1-70B-Instruct,
as well as a closed-source API model, GPT-4o mini,
to synthesize LONGFAITH-SFT and LONGFAITH-
PO for training Llama-3.1-8B-Instruct. The perfor-
mance test results are presented in Tab.4. Using
stronger closed-source API models to synthesize
LONGFAITH-SFT led to a stronger performance
boost, which aligns with intuition and previous
work (Chen et al., 2024). However, an interest-
ing finding is that the LONGFAITH-PO synthesized
with different base LLMs did not show significant
performance differences in preference optimization.
Even smaller model like Qwen2.5-7B-Instruct, are
able to synthesize high-quality reasoning chains,
with performance on some datasets matching or
even surpassing GPT-4o mini. This highlights the
robustness of the LONGFAITH pipeline, which is
capable of modeling fine-grained preferences to
synthesize high-quality instructions.

Effectiveness of LONGFAITH as Context Length
Increases. We further investigate the impact of
increasing context length on the performance of
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models trained with the LONGFAITH pipeline.
Specifically, we manipulate the number of doc-
uments included in the training set MuSiQue to
simulate varying context lengths during training.
By incrementally increasing the number of docu-
ments from 10 to 40, we assess how the model’s
reasoning ability scales when exposed to longer
input contexts. The results, as reported in Tab. 5,
show a consistent improvement in both EM and
F1 scores across both LongBench(S) and Long-
Bench(M) as the context length increases. This
indicates that LONGFAITH effectively leverages
additional contextual information, enhancing the
model’s comprehension and reasoning capabilities.
These findings validate the scalability of the LONG-
FAITH framework in handling long-context scenar-
ios, highlighting its potential for applications that
require deep reasoning over extensive inputs.

5 Conclusion

This paper addresses the challenge of questionable
faithfulness in data synthesis approaches for long-
context LLMs. We propose LONGFAITH, a novel
pipeline synthesizing faithful long-context reason-
ing datasets through ground truth integration and
citation-based reasoning prompts. Experiments
demonstrate its effectiveness, with ablation studies
confirming the adaptability of the LONGFAITH-
SFT and LONGFAITH-PO datasets across diverse
long-context scenarios.

Limitations

While LONGFAITH demonstrates significant im-
provements in long-context reasoning tasks, its
scalability and generalization to other LLMs re-
main an open question. Our experiments focused
on a single model, and thus, the performance of
LONGFAITH on other general-purpose LLMs still
needs further validation. Additionally, while the
synthesized instruction sets with lengths of approx-
imately 10,000 tokens successfully generalized to
long-context reasoning tasks, future work will ex-
plore the extension of LONGFAITH to generate
instructions with even longer contexts and evaluate
the impact on model performance. Finally, LONG-
FAITH currently concentrates on reasoning tasks,
and we plan to explore its generalization to other
tasks such as summarization, dialogue generation,
and others, to assess its broader applicability.
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A An Example of Synthesized LONGFAITH-SFT and LONGFAITH-PO Datasets

Instruction
You are provided with documents, a complex logical reasoning question, and the correct answer.

You must refer to the documents to perform step-by-step logical reasoning and reach the correct answer.

Each reasoning step must be on a separate line, ending with a newline character.

Cite the document properly during reasoning, e.g., `[1]`, `[2]`, etc.

End your reasoning with `The answer is` followed by the correct answer.

DOCUMENTS:

[1] Muammar Gaddafi: From childhood, Gaddafi was aware of the involvement of European colonialists in Libya……

[2] Muammar Gaddafi: On 16 April 1973, Gaddafi proclaimed the start of a "Popular Revolution" in a Zuwarah speech……

……

[9] Bogotá: Bogotá (/ ˈboʊɡətɑː /, / ˌbɒɡəˈtɑː /, / ˌboʊ - /; Spanish pronunciation: (boɣoˈta) (listen))……

[10] Alanje: Alanje is a corregimiento in Alanje District, Chiriquí Province, Panama. It is the seat of Alanje District……

……

[20] All Saints Church, Lockerbie: All Saints Church is in Ashgrove Terrace, Lockerbie, Dumfries and Galloway, Scotland……

QUESTION:

When was the country containing Alanje colonized by the country housing the All Saints Church in the town known for the bombing 

by Gaddafi's Libya?

Chosen Output (Sample: Highest Faithfulness)
Step 1: Identify the country where Alanje is located.  

From Document [10], Alanje is in the Alanje District, Chiriquí Province, Panama. Thus, Alanje is located in Panama. 

Step 2: Identify the country where All Saints Church is located.  

……

The answer is 1698.

Rejected Output (Sample: Misinformation due to Lack of Verification)
The All Saints Church is located in Lockerbie, Scotland, which is part of the United Kingdom. 

The UK was involved in colonizing various territories, including Panama, where Alanje is located. [10]

……

The answer is 1903.

Rejected Output (Sample: Reasoning without Attribution)
Step 1: Identify the country containing Alanje.  

From the document on Alanje, it is stated that Alanje is located in Panama.  

Step 2: Identify the country housing the All Saints Church in Lockerbie.  

……

The answer is 1698.

Rejected Output (Sample: Potential Knowledge Conflicts)
Alanje is a location, so we need to determine which country contains Alanje. Alanje is located in Panama.

……

However, Panama was not colonized by the United Kingdom; Panama was colonized by Spain.

So, we need to determine the connection between the United Kingdom and Spain regarding the colonization of Panama.

……

The answer is 1698.

Construction of LongFaith-SFT and LongFaith-PO using Chosen Sample and Rejected Samples

LongFaith

-SFT

LongFaith

-PO

Figure 6: An Example of synthesized LONGFAITH-SFT and LONGFAITH-PO datasets.
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B Prompt Templates

We present the prompt templates that are used to synthesize the datasets. The core prompt template that
generates long-context reasoning chains guided by ground truth using chain-of-citation is shown in Fig. 7.
The samples are used in LONGFAITH-SFT dataset and are chosen as positive in LONGFAITH-PO dataset,
since they are of the highest faithfulness. The other three prompt templates synthesize rejected samples
for LONGFAITH-PO dataset, corresponding to (1) Misinformation due to lack of verification ( Fig. 8), (2)
Reasoning without attribution (Fig. 9), and (3) Potential knowledge conflicts (Fig. 10).

Prompt for Synthesis
You are provided with documents, a complex logical reasoning question, and the correct answer.

You must refer to the documents to perform step-by-step logical reasoning and reach the correct answer.

Each reasoning step must be on a separate line, ending with a newline character.

Cite the document properly during reasoning, e.g., `[1]`, `[2]`, etc.

End your reasoning with `The answer is` followed by the correct answer.

DOCUMENTS:

[10] Alanje: Alanje is a corregimiento in Alanje District, Chiriquí Province, Panama……..

[14] British Empire: In 1695, the Scottish Parliament granted a charter to the Company of Scotland……

[16] Muammar Gaddafi: In 1977, Gaddafi dissolved the Republic and created a new socialist state, ……

[20] All Saints Church, Lockerbie: All Saints Church is in Ashgrove Terrace, Lockerbie, ……

QUESTION:

When was the country containing Alanje colonized by the country housing the All Saints Church in the town known for the bombing 

by Gaddafi's Libya?

ANSWER:

1698

Synthesized Reasoning Chains
Step 1: Identify the country where Alanje is located.  

From Document [10], Alanje is in the Alanje District, Chiriquí Province, Panama. Thus, Alanje is located in Panama.  

Step 2: Identify the country where All Saints Church is located.  

From Document [20], All Saints Church is in Lockerbie, Dumfries and Galloway, Scotland. Thus, All Saints Church is in Scotland. 

Step 3: Determine the historical event that connects Panama and Scotland.  

From Document [14], in 1698, the Company of Scotland established a settlement on the isthmus of Panama. This settlement was part

of the Darien scheme, a Scottish colonial venture.  

Step 4: Confirm the timeline of the colonization.  

From Document [14], the Scottish settlement on the isthmus of Panama occurred in 1698.  

Step 5: Verify the connection to Gaddafi’s Libya and Lockerbie.  

From Document [16], Gaddafi's Libya was responsible for the Lockerbie bombing. This connects the country housing All Saints 

Church (Scotland) to the logical context of the question.  

Step 6: Synthesize the information.  

The country containing Alanje (Panama) was colonized by the country housing All Saints Church (Scotland) in 1698.  

The answer is 1698.

Chosen as Positive Sample: Highest Faithfulness

Synthesis of Long-Context Reasoning Chains Guided by Ground Truth Using Chain-of-Citation

Figure 7: An example of synthesized chosen reasoning chain. The current reasoning chain must arrive at a correct
answer, and reasoning with proper citation proposes more faithfulness and interpretability. Therefore, LONGFAITH
will choose it in supervised fine-tuning and preference optimization as positive sample.
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Prompt for Synthesis
You are provided with documents, a complex logical reasoning question, and the correct answer.

You must refer to the documents to perform step-by-step logical reasoning and reach the correct answer.

Each reasoning step must be on a separate line, ending with a newline character.

Cite the document properly during reasoning, e.g., `[1]`, `[2]`, etc.

End your reasoning with `The answer is` followed by the correct answer.

DOCUMENTS:

[1] Muammar Gaddafi: From childhood, Gaddafi was aware of the involvement of European colonialists in Libya……

[2] Muammar Gaddafi: On 16 April 1973, Gaddafi proclaimed the start of a "Popular Revolution" in a Zuwarah speech……

……

[9] Bogotá: Bogotá (/ ˈboʊɡətɑː /, / ˌbɒɡəˈtɑː /, / ˌboʊ - /; Spanish pronunciation: (boɣoˈta) (listen))……

[10] Alanje: Alanje is a corregimiento in Alanje District, Chiriquí Province, Panama. It is the seat of Alanje District……

……

[20] All Saints Church, Lockerbie: All Saints Church is in Ashgrove Terrace, Lockerbie, Dumfries and Galloway, Scotland……

QUESTION:

When was the country containing Alanje colonized by the country housing the All Saints Church in the town known for the bombing 

by Gaddafi's Libya?

Synthesized Reasoning Chains
The All Saints Church is located in Lockerbie, Scotland, which is part of the United Kingdom. 

The UK was involved in colonizing various territories, including Panama, where Alanje is located. [10]

The British Empire's colonization of Panama through the Darien scheme began in 1698, although this attempt was unsuccessful. [14]

The formal British colonization of Panama occurred later, after the separation of Panama from Colombia in 1903, when the UK 

recognized Panama's independence.

The answer is 1903.

Chosen as Rejected Sample: Misinformation due to Lack of Verification

Synthesis of Long-Context Reasoning Chains Using Chain-of-Citation

Figure 8: An example of synthesized rejected reasoning chain. Misinformation due to lack of verification will cause
more hallucination if we use current reasoning chain to fine-tune a LLM. Therefore, LONGFAITH will reject it in
preference optimization.
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Prompt for Synthesis
You are provided with documents, a complex logical reasoning question, and the correct answer.

You must refer to the documents to perform step-by-step logical reasoning and reach the correct answer.

Each reasoning step must be on a separate line, ending with a newline character.

End your reasoning with `The answer is` followed by the correct answer.

DOCUMENTS:

Alanje: Alanje is a corregimiento in Alanje District, Chiriquí Province, Panama……..

British Empire: In 1695, the Scottish Parliament granted a charter to the Company of Scotland……

Muammar Gaddafi: In 1977, Gaddafi dissolved the Republic and created a new socialist state, ……

All Saints Church, Lockerbie: All Saints Church is in Ashgrove Terrace, Lockerbie, ……

QUESTION:

When was the country containing Alanje colonized by the country housing the All Saints Church in the town known for the bombing 

by Gaddafi's Libya?

ANSWER:

1698

Synthesized Reasoning Chains
Step 1: Identify the country containing Alanje.  

From the document on Alanje, it is stated that Alanje is located in Panama.  

Step 2: Identify the country housing the All Saints Church in Lockerbie.  

The document on All Saints Church specifies that it is in Lockerbie, Scotland.  

Step 3: Determine the relationship between Panama and Scotland.  

The document on the British Empire mentions that in 1698, the Scottish Parliament established a settlement on the isthmus of 

Panama.  

Step 4: Verify if the settlement was during a colonization attempt.  

The British Empire document states that the Scottish settlement on the isthmus of Panama was part of the Darien scheme, an effort 

by Scotland to establish its own overseas empire, which qualifies as a colonization attempt.  

Step 5: Confirm the year of colonization.  

The British Empire document explicitly states that the settlement in Panama by Scotland occurred in 1698.  

The answer is 1698.

Chosen as Rejected Sample: Reasoning without Attribution

Synthesis of Long-Context Reasoning Chains Guided by Ground Truth Using Chain-of-Thought

Figure 9: An example of synthesized rejected reasoning chain. As it mentioned in previous work, lack of attribution
will lead to much more interpretability and faithfulness, and response with citation is encouraged. Therefore,
LONGFAITH will reject it in preference optimization.
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Prompt for Synthesis
You are provided with a complex logical reasoning question and the correct answer.

You must perform step-by-step logical reasoning and reach the correct answer.

Each reasoning step must be on a separate line, ending with a newline character.

End your reasoning with `The answer is` followed by the correct answer.

QUESTION:

When was the country containing Alanje colonized by the country housing the All Saints Church in the town known for the bombing 

by Gaddafi's Libya?

ANSWER:

1698

Synthesized Reasoning Chains
Let's break this down step by step:

Alanje is a location, so we need to determine which country contains Alanje. Alanje is located in Panama.

Next, we need to identify the country housing the All Saints Church in the town known for the bombing by Gaddafi's Libya.

The bombing by Gaddafi's Libya refers to an event in 1986 in Loughborough, England.

Loughborough, England, is in the United Kingdom, and it indeed has an All Saints Church.

Now we know we are looking for when Panama (containing Alanje) was colonized by the United Kingdom (housing the All Saints 

Church in Loughborough).

However, Panama was not colonized by the United Kingdom; Panama was colonized by Spain.

So, we need to determine the connection between the United Kingdom and Spain regarding the colonization of Panama.

The United Kingdom is not directly related to the colonization of Panama, so the question appears to involve a broader historical 

context.

Spain colonized Panama in 1501, but colonization efforts and territorial control fluctuated.

The specific colonization of Alanje, a town in Panama, is tied to the Spanish colonization of the region.

The date 1698 aligns with significant historical colonization activities in the Americas.

Thus, the colonization being referred to in the question likely took place in 1698.

The answer is 1698.

Chosen as Rejected Sample: Potential Knowledge Conflicts

Synthesis of Long-Context Reasoning Chains Guided by Ground Truth Without Documents Using CoT

Figure 10: An example of synthesized rejected reasoning chain. Information related to "Panama was colonized by
Spain" is not mentioned in documents provided, which will cause knowledge conflicts if using current reasoning
chain for fine-tuning. Therefore, LONGFAITH will reject it in preference optimization.
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C Case Study of Metric "Hack" on SubEM comparing previous study with LONGFAITH

Who was the first elected president of the country where, along with the nation 

where Ágnes Konkoly is from, many expelled French Jews relocated to?

[1] Middle Ages: Jewish 

communities were 

expelled from England in 

1290 and from France in 

1306. Although some……

[2] Konkoly: Ágnes

Konkoly (born 23 July 

1987) is a Hungarian 

model, wedding planner 

and beauty pageant……

To find the answer, we need to identify the country where Ágnes Konkoly is from and the country where many 

expelled French Jews relocated to.

Step 1: Identify the country where Ágnes Konkoly is from.

Ágnes Konkoly is a Hungarian model, wedding planner, and beauty pageant titleholder, so she is from Hungary.

Step 2: Identify the country where many expelled French Jews relocated to.

From the given documents, we can see that many expelled French Jews relocated to Poland and Hungary.

Step 3: Find the first elected president of the country where Ágnes Konkoly is from (Hungary).

The first president of Hungary was Lajos Kossuth, but he was not elected president. The first freely elected president 

of Hungary was János Áder.

However, the problem asks for the first elected president of the country where Ágnes Konkoly is from, which is 

Hungary. The first freely elected president of Hungary was János Áder, but the first president of the country was Lajos 

Kossuth, who was not elected.

Step 4: Determine the first elected president of the country where many expelled French Jews relocated to (Poland).

The first president of Poland was Gabriel Narutowicz, who was elected in 1922.

However, the problem asks for the first elected president of the country where Ágnes Konkoly is from, which is 

Hungary. We already found that the first freely elected president of Hungary was János Áder.

The answer is János Áder.

Correct Answer:

Gabriel 

Narutowicz

To determine the first elected president of the country where many expelled French Jews relocated to, we need to 

analyze the information provided in the documents.

First, we identify the country where Ágnes Konkoly is from. Ágnes Konkoly is a Hungarian model, and Hungary is 

her country of origin [18].

Next, we look for information regarding the relocation of French Jews. Document [19] states that after France 

expelled its original Jewish population in the Middle Ages, many of these Jews settled in areas that are now part of 

Germany, specifically in Alsace, which was formerly part of Germany.

Now, we need to find the first elected president of Poland, as Poland is the country where many of these French Jews 

relocated. According to document [9], the first president of Poland was Gabriel Narutowicz, who was sworn in on 11 

December 1922.

Thus, the first elected president of Poland, where many expelled French Jews relocated, is indeed Gabriel Narutowicz.

The answer is Gabriel Narutowicz.

LongFaith

SeaLong

Figure 11: A case study that SubEM metric is "hacked" by previous study, which conduct more exploration with
redundancy in response. LONGFAITH can arrive at the final correct answer with shorter response.
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D Post-Training

In this section, we present two post-training algorithms—Supervised Fine-Tuning (SFT) and Preference
Optimization (PO)—to better leverage synthetic data for efficiently enhancing model performance.
Specifically, the model performs supervised fine-tuning on high-quality faithful outputs or is trained
through reinforcement learning using synthetic preference pairs.

Supervised Fine-tuning on Faithful Outputs We minimize the negative log-likelihood of the output as
follows:

LSFT = − 1

|y| log πθ(y | x)

= − 1

|y|

|y|∑

i=1

log πθ(yi | x, y<i)

(7)

where y denotes the high-quality faithful outputs, which are synthesized in Section 3.

Reinforcement Learning from Synthetic Preference Additionally, we can leverage synthetic prefer-
ence pairs for reinforcement learning (RL) to fine-tune the model toward generating faithful outputs while
reducing the likelihood of low-scoring outputs. Standard RL algorithms for optimizing LLMs include
Proximal Policy Optimization (PPO) (Schulman et al., 2017), RLOO (Ahmadian et al., 2024). However,
these methods incur high computational costs. Recent approaches such as Direct Preference Optimization
(DPO) (Rafailov et al., 2024), Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024), and
Odds Ratio Preference Optimization (ORPO) (Hong et al., 2024) have been proposed to mitigate both
computational and data requirements. In this work, we adopt the ORPO algorithm, which achieves an
optimal balance between computational efficiency and model performance.

ORPO introduces an odds ratio loss LOR that minimizes the negative log odds ratio between preferred
("win" yw) and dispreferred ("lose" yl) outputs:

LOR = − log σ

(
log

oddsθ(yw|x)
oddsθ(yl|x)

)
(8)

where σ denotes the sigmoid function and oddsθ(y|x) = πθ(y|x)
1−πθ(y|x) measures how much more likely y is

to be generated. The final objective of ORPO is to combine the SFT loss and the OR loss while controlling
their relative importance through a hyperparameter β:

LORPO = LSFT + β · LOR (9)

In this paper, the chosen output yw is synthesized by LongFaith through comprehensive consideration
of Supporting Docs, Chain-of-Citation (CoC), and Ground Truth (GT), and is consequently assigned a
high score. Conversely, the rejected output yl refers to synthesized outputs that lack at least one of these
three critical elements (Supporting Docs, CoC, or GT), which are deemed low-scoring due to insufficient
design considerations.

E Statistics of Main Experiments

MuSiQue #2-Hop #3-Hop #4-Hop

1K 0 512 512
2K 512 512 1024
4K 1024 2048 1024
8K 3072 4096 1024

Table 6: Statistics of train set for synthesis in different size sampled from MuSiQue (Trivedi et al., 2022b).
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Datasets #Count Avg. L. Max L.

Multi-Hop Reasoning

MuSiQue 500
2-Hop 254 10843.3 17560
3-Hop 154 11456.5 19225
4-Hop 92 11224.3 16756

2WikiMultiHopQA 500
2-Hop 395 4449.5 10631
4-Hop 105 4041.4 9365

HotpotQA 500
Bridge 412 6301.0 15702
Comparison 88 5777.6 11939

LongBench

Qasper (S) 200 24262.3 101636
MultiFieldQA-En (S) 150 29583.7 64751
MuSiQue (M) 200 69876.8 82338
2WikiMHQA (M) 200 30076.5 72971
HotpotQA (M) 200 57041.4 81815

Table 7: Statistics of test sets including three long-context multi-hop reasoning datasets sampled by (Trivedi et al.,
2022a) and five long-context QA datasets from LongBench (Bai et al., 2023). Avg. L. and Max L. refer to the
average length and max length of input prompts for test samples. (S) and (M) refer to Single-doc QA and Multi-doc
QA in LongBench.

Datasets Instruction Output(Chosen) Rejected

LongAlpaca 52043.2 620.7 0
LongAlign 36307.2 1412.6 0

MuSiQue-Attribute 11395.0 343.7 0
LongMIT 280808.9 825.2 0

LongReward 72892.2 913.4 960.6
SEALONG 82248.6 1156.5 1139.1

LONGFAITH 11542.1 1029.6 896.7

Table 8: Average text length of baseline datasets and LONGFAITH in main experiments in Tab. 2. All of them has
2K examples.

Datasets MuSiQue 2WikiMultiHopQA HotpotQA Qasper MultiFieldQA Avg.L

LongAlpaca 365.62 372.97 319.60 657.34 511.25 445.36
LongAlign 493.56 349.65 371.77 651.76 623.15 497.98

MuSiQue-Attribute 99.61 168.74 164.24 317.75 252.95 200.66
LongMIT 138.03 159.16 116.40 194.41 196.43 160.89

LongReward-SFT 285.20 241.47 178.26 750.83 537.95 398.74
SeaLong-SFT 1091.54 776.01 926.29 1035.77 822.82 930.49

LongFaith-SFT 820.04 619.18 771.68 1056.55 941.13 841.72
LongReward-PO 219.90 253.41 179.44 616.11 460.40 345.85

SeaLong-PO 961.51 740.14 891.75 946.68 826.77 873.37
LongFaith-PO 831.17 669.76 786.77 1034.71 917.11 847.90

Table 9: Average length of model output in test sets trained on different synthesized instruction.
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F Hyperparameters

Hyperparameters Value

# GPUs used 4
Learning rate 5e-5

Per-device batch size 1
Gradient accumulation steps 8

LoRA rank 32
LoRA alpha 64

LoRA dropout 0.1
ORPO beta 0.1

Warm-up ratio 0.1
Epochs 1

Precision bfloat16
Optimizer AdamW

Table 10: Hyperparameter settings of fine-tuning and preference optimization.

3256


