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Abstract

Several studies have explored the mechanisms
of large language models (LLMs) in coding
tasks, but most have focused on programming
languages (PLs) in a monolingual setting. In
this paper, we investigate the relationship be-
tween multiple PLs and English in the concept
space of LLMs. We perform a few-shot trans-
lation task on 21 PL pairs using two Llama-
based models. By decoding the embeddings
of intermediate layers during this task, we ob-
serve that the concept space is closer to English
(including PL keywords) and assigns high prob-
abilities to English tokens in the second half
of the intermediate layers. We analyze neuron
activations for 11 PLs and English, finding that
while language-specific neurons are primarily
concentrated in the bottom layers, those exclu-
sive to each PL tend to appear in the top layers.
For PLs that are highly aligned with multiple
other PLs, identifying language-specific neu-
rons is not feasible. These PLs also tend to have
a larger keyword set than other PLs and are
closer to the model’s concept space regardless
of the input/output PL in the translation task.
Our findings provide insights into how LLMs
internally represent PLs, revealing structural
patterns in the model’s concept space. Code
is available at https://github.com/cisnlp/
code-specific-neurons.

1 Introduction

Most state-of-the-art autoregressive large lan-
guage models (LLMs) perform well on coding
tasks (Chen et al., 2021; Hou et al., 2024; Lyu
et al., 2024; DeepSeek-AI et al., 2024; Jiang et al.,
2024). Including code in the pre-training data has
become a common practice in LLM pre-training,
even for models not specifically designed for cod-
ing (Aryabumi et al., 2024). Most of these LLMs
involved in coding tasks are pre-trained on multi-
ple programming languages (PLs) (Li et al., 2023;
DeepSeek-AI et al., 2024; Jiang et al., 2024; Guo

Observation NLs PLs

1) English detour ✓ ✓(shared with PLs)
2) High alignment ✓(English) ✓(other PLs, e.g., C#)
3) English neuron ID ✗ ✓
4) Non-English/PL neuron ID ✓ ? (inconsistent)

Table 1: Differences between natural languages (NLs)
and programming languages (PLs) in English-centric
LLMs. 1) LLMs’ layers reach non-English tokens
through a detour via English (Wendler et al., 2024).
The same occurs when outputting PLs, though English
is shared with PL tokens (§3.1). 2) Non-English lan-
guages show high cross-lingual alignment with English
in LLMs’ intermediate layers (Kargaran et al., 2024),
while PLs, including C#, exhibit high alignment with
each other (§3.2). 3), 4) It is challenging to identify
English-specific neurons whose ablation does not af-
fect non-English. It is easy to find neurons specific for
Non-English (e.g., French) (Tang et al., 2024). For PLs,
there are English ablatable neurons with minimal perfor-
mance degradation over PLs, but for some PLs (e.g., C#,
see §3.3) finding ablatable neurons without affecting
other PLs is hard.

et al., 2024). This raises an intriguing question:
How does pre-training on multiple PLs and En-
glish affect the behavior of the models’ “concept
space” in coding tasks? More specifically: RQ1.
Does the model use English or a PL as a kind of
“pivot” language? RQ2. Can we identify language-
specific neurons for PLs and English? Do PLs
and English influence one another and neurons are
shared across PLs and English?

As summarized in Table 1, we observe both sim-
ilarities and differences in how LLMs represent
natural languages versus PLs.

Contributions. To investigate the relationship
between English and multiple PLs in the LLM’s
concept space, we apply methods from the field of
interpretability. Specifically, we focus on two mod-
els from the Llama family: CodeLlama 7B (Roz-
ière et al., 2023) and Llama 3.1 8B (Dubey et al.,
2024). We use the logit lens technique (Nostal-
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gebraist, 2020), which involves applying the “un-
embedding” operation prematurely at intermediate,
non-final layers. This approach provides insight
into the model’s internal numerical representations,
which are otherwise difficult to interpret. We cre-
ate a super-parallel dataset of 42 translation direc-
tions (21 pairs) across seven PLs using the dump of
GeeksforGeeks (GeeksforGeeks, 2008) prepared
by Zhu et al. (2022b). Our results show that the se-
lected Llama models assign high probabilities and
top ranks to expected tokens during translation in
the last layer, meaning they completely understand
the translation task. Tracking token probabilities
across layers for different PLs and English using
logit lens (see Figure 1), we observed: (1) Most
tokens in the first half of the layers have low prob-
abilities, near zero, across PLs and English. (2)
Tokens from English and various PLs appear in the
intermediate layers, mostly in the second half of the
layers. (3) Most tokens belong to English, followed
by all PLs. Among individual PLs, the output PL
comes next, followed by PLs such as C++ and C#,
which have some of the largest keyword sets. We
use our super-parallel data and measure the cross-
lingual alignment for these PLs and find that C#
is more aligned with most languages but not in all
cases. For example, the best-aligned PL for PHP
and Python is JavaScript.

We also explore how neuron activations are
shared across 11 PLs and English. We use language
activation probability entropy (Tang et al., 2024) to
identify language-specific neurons. Our analysis re-
veals the following insights: (1) Language-specific
neurons are more concentrated in the bottom layers,
followed by another smaller peak observed around
the three quarter point of the layers. (2) Among
language-specific neurons, those exclusive to a sin-
gle PL tend to appear in the top layers. (3) For
PLs such as C# and Java, which closely align with
multiple other PLs, identifying language-specific
neurons is challenging.

2 Materials and methods

We use three established methods to uncover the
concept space of LLMs, using datasets from PLs
at parallel, keyword, and raw levels.

2.1 Datasets

Super-parallel PL. Most of the parallel datasets
available in code community research (Zhu et al.
(2022a,b); Lachaux et al. (2020), inter alia) come

Figure 1: Illustration of logit lens (Nostalgebraist, 2020)
applied to CodeLlama 7B for the task of translating a
for loop from Java to Rust (showing only Rust loop
here). The y-axis shows layers, the x-axis input to-
kens, and color next-token probabilities (red: low, blue:
high). Terms decoded in intermediate layers, such as
interval, range, until, and ten, are not keywords in
Java or Rust but belong to other PLs (Python, Go, Ruby)
and English. In Rust, the .. syntax defines a range. The
tokens until and through, which decode for the same
position but with lower probabilities or in earlier layers,
share similar semantics with this syntax.

from GeeksForGeeks (GeeksforGeeks, 2008), a
website that hosts data structure and algorithm
problems along with solutions in up to seven differ-
ent PLs: C++, Java, Python, C#, JavaScript, PHP,
and C. According to GeeksForGeeks, the solution
programs for the same problem follow the same
structure, including consistent variable names, re-
sulting in semantic consistency across the different
languages. In most cases, the programs for the
same problem share the same set of comments in
the same order, indicating that they are parallel at
the snippet level. We use the (Zhu et al., 2022b)
dump of GeeksForGeeks and create a super-parallel
dataset for all seven PLs, containing 581 parallel
code snippets, each available for all seven PLs. We
retain only programs that are available in all PLs
and that have the same number of snippets to en-
sure alignment across all seven PLs.

English and PL keywords. We gather, for 22
PLs, programming-specific keywords, as well as
the names of other built-ins starting from (Meyer
and McCulloch, 2022). For brevity, we refer to
these as PL keywords. We also extract English key-
words from PanLex (Kamholz et al., 2014), which
contains words from several thousand languages,
including English. We only keep keywords that
the model’s tokenizer represents as a single token
and remove numbers from this list (if represented
numerically). Note that PLs have a limited vocab-
ulary consisting primarily of keywords whereas
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natural languages have an extensive and continu-
ously evolving lexicon. Additionally, many PLs are
influenced by older PLs (Sebesta, 2016), leading
to shared structures and common keywords like if,
for, while, and return.

Raw PL and English. We take raw code
of eleven popular PLs from the GitHub Code
dataset (CodeParrot, 2022). It consists of 115 mil-
lion code files from GitHub in 32 PLs. We select
the following eleven popular PLs (GitHut, 2024):
C, C++, C#, Go, HTML, Java, JavaScript, PHP,
Python, Ruby, and Rust. We also use the English
Wikipedia as the source for English texts. We limit
each language to 50,000 code files/articles.

2.2 Models
We focus on models from the Llama family, which
are autoregressive and decoder-only transform-
ers (Vaswani et al., 2017). We focus on pre-trained
models rather than fine-tuned ones with instruction
tuning or RLHF to minimize confounding factors.
We select two models: CodeLlama 7B (Rozière
et al., 2023) and Llama 3.1 8B (Dubey et al., 2024).
We choose models around 7B parameters, which
are considered a base size in the LLM community.
CodeLlama 7B is pre-trained on 500B tokens from
a code-heavy dataset. It is first initialized with
Llama 2 (Touvron et al., 2023b) model weights,
which are pre-trained on general-purpose text and
code. CodeLlama is the only family of Llama mod-
els introduced primarily for coding tasks. The latest
models in the Llama family are general foundation
models. Llama 3.1 8B is the latest model in the
family with a base size around 7B parameters and is
pre-trained on 15 trillion tokens of general-purpose
text and code.

2.3 Method 1: Interpreting latent embeddings
Following Wendler et al. (2024), we use logit lens
(Nostalgebraist, 2020) instead of tuned lens (Bel-
rose et al., 2023) to decode intermediate embed-
dings, as tuned lens is trained to map internal states
to the final next-token prediction, which may lose
the signal of interest. We use logit lens to find
which of the PLs or English is closer to the abstract
concept space of the selected models.

Logit lens. A transformer model at layer ℓ can
be viewed in two parts: (i) a lower part, which in-
cludes layers up to and including layer ℓ, that maps
input tokens to hidden states, and (ii) an upper part,
which includes layers after ℓ that convert hidden
states into logits. The core idea of logit lens is to

see the lower part as a complete transformer and
apply WU, the “unembedding” matrix, to project
the hidden state at layer ℓ, h(ℓ), into logit scores.
These logit scores are then transformed into token
probabilities via the softmax operation. The logit
lens operation can be defined as:

LogitLens(h(ℓ)) = LayerNorm[h(ℓ)]WU.

Few-shot translation. The task is to translate
the preceding PL (e.g., Java) code snippet into an-
other PL (e.g., Python). We show the model four
code snippets with their correct translations, fol-
lowed by a fifth code snippet without its translation,
and ask the model to predict the next tokens. With
such a prompt, the model can infer that it should
translate the fifth code snippet. Since the fifth pre-
dicted code snippet could diverge at some point
and affect all the subsequent tokens, we predict the
tokens one by one and replace the previous tokens
with the expected ones. We use our super-parallel
PL dataset (§2.1) for the fifth code snippet (both
input and output PLs). For every input token, at
each layer, we compute the probabilities of the top
α = 10 decoded tokens using logit lens and clas-
sify them as belonging to English or one or more
PLs using the keywords dataset (§2.1).

As for the four-shot code snippets, we always
use parallel data for basic structures, as shown in
the example below (Input PL: Java, Output PL:
Python).

Java: String message = ""; - Python: message = ""
Java: public class MyClass {} - Python: class MyClass:
Java: public int value = 5; - Python: value = 5
Java: public void doSomething() {} - Python: def do_something():
Java: for (int i = 0; i < 10; i++) - Python:

2.4 Method 2: Cross-lingual alignment
We employ MEXA (Kargaran et al., 2024), a mea-
sure of cross-lingual alignment, to determine which
PL aligns most closely with the majority of the se-
lected PLs in the model’s intermediate layers. To
compute MEXA, we generate code snippet embed-
dings using position-weighted averaging (Muen-
nighoff, 2022) and assess alignment based on co-
sine similarity comparisons. The higher the score,
the greater the alignment, with values ranging be-
tween 0 and 1.

MEXA. Given a decoder-only transformer
model m, MEXA computes the cross-lingual align-
ment score for language L1 relative to a pivot lan-
guage L2. Let S = {s1, s2, . . . , sn} be a set of n
parallel sentences (i.e., code snippets) in L1 and
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L2. We use our super-parallel dataset (§2.1) for
each pair. First, we compute sentence embeddings
using model m at layer ℓ with position-weighted
averaging. Given a sentence s, its corresponding
embedding is denoted as e(ℓ)(s). We construct a
similarity matrix C(L1, L2,m, ℓ) ∈ Rn×n, where
each element cij(ℓ) represents the cosine similarity
between the embeddings of sentence si in L1 and
sentence sj in L2. The diagonal elements cii(ℓ)
correspond to the similarity between parallel sen-
tence pairs. The MEXA alignment score for matrix
C(L1, L2,m, ℓ) is defined as:

1

n

n∑

i=1

I
(
cii(ℓ) > max

j ̸=i
{cij(ℓ), cji(ℓ)}

)
,

where I is the indicator function, which returns 1 if
the condition holds and 0 otherwise. This measures
how often a parallel sentence pair has the highest
similarity compared to any non-parallel pairs.

2.5 Method 3: Language-specific neurons
We use language activation probability entropy
(LAPE) (Tang et al., 2024), which outperforms
similar methods in identifying language-specific
regions across natural languages. We use LAPE to
identify language-specific neurons in each model
and analyze their impact on other languages.

Neurons in FFN. Llama-based models (Touvron
et al., 2023a) use a transformer architecture with
a GLU variant (Shazeer, 2020). Like other trans-
former architectures, their core building blocks in-
clude multi-head self-attention (MHA) and feed-
forward networks (FFNs). Let h̃(ℓ) denote the out-
put of the MHA module in the ℓ-th layer, computed
using the previous layer’s hidden states and train-
able parameters. The FFN module, which outputs
the hidden state h(ℓ) ∈ Rd1 , in a GLU variant trans-
former is given by:

h(ℓ) =
(
ϕ(h̃(ℓ)W

(ℓ)
1 )⊗ h̃(ℓ)W

(ℓ)
3

)
·W(ℓ)

2 ,

where W
(ℓ)
1 ,W

(ℓ)
3 ∈ Rd1×d2 and W

(ℓ)
2 ∈ Rd2×d1

are learnable parameters, and ϕ(·) denotes the ac-
tivation function. In LAPE, a neuron is defined
as the linear transformation of a single column in
W

(ℓ)
1 followed by the application of the non-linear

activation function. Thus, each FFN module con-
tains d2 neurons. A neuron indexed by r in the ℓ-th
FFN layer is considered “active” if its activation
value ϕ(h̃(ℓ)W

(ℓ)
1 )r exceeds zero.

LAPE. To compute LAPE, we feed LLMs dif-
ferent texts, each written in a single language from

raw PL and English texts (§2.1). For the r-th neu-
ron in the ℓ-th layer, we calculate the activation
probability when processing texts in language z:

pzℓ,r = E
(
I
(
ϕ(h̃(ℓ)W

(ℓ)
1 )r > 0

)
| language z

)
,

where I is the indicator function. This probability
is empirically estimated as the likelihood that the
neuron’s activation value exceeds zero. We obtain
the probability distribution across languages and
normalize it via sum normalization to compute the
normalized probability p′zℓ,r for each language z.
The entropy of this distribution is:

LAPEℓ,r = −
∑

z∈L
p′zℓ,r log(p

′z
ℓ,r).

where L is the set of languages. We designate neu-
rons with low LAPE scores as “language-specific
neurons,” as they show a predilection for activa-
tion in response to one or two languages, while
showing reduced activation probabilities for others.
A neuron is deemed specific to language z if its
corresponding activation probability pzℓ,r surpasses
a predefined threshold.

LAPE is highly dependent on hyperparameter
thresholds. The first hyperparameter is the activa-
tion threshold, set at the activation probability cor-
responding to the τ quantile. The default for LAPE
is τ = 0.95. For CodeLlama 7B/Llama 3.1 8B, this
corresponds to activation probability thresholds of
0.531 and 0.554, respectively, meaning selected
neurons must exhibit activation probabilities ex-
ceeding these values for at least one language. The
second threshold, the filter threshold γ, retains only
a small fraction of neurons as language-specific by
selecting those in the bottom γ of LAPE scores.
The default setting is γ = 0.01. However, since
this results in varying numbers of selected neurons
across languages and makes the comparison be-
tween different languages harder to interpret, we
instead compute the average number of selected
neurons and select the same number, ν, for each
language. For the default settings of both selected
models, ν is around 400.

Controlled generation. To assess the impact of
the selected neurons, we set their activation values
to zero or zero out the corresponding parameters
and then measure changes in model performance.
Specifically, we compute language model perplexi-
ties (PPLs) to examine how much removing these
neurons affects various languages.
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Figure 2: Language keyword probability or 1
rank value (best keyword rank) during translation task. The PLs

contributing the most to each score, selected from the 22 PL keywords, are C++ and C#.

3 Results

3.1 Method 1: Interpreting latent embeddings

We present the results of interpreting latent embed-
dings for the translation task in Figure 2. Neither
English nor PL keywords exhibit noticeable proba-
bility during the first half of the layers (Figures 2a,
2b). Although these probabilities remain negligi-
ble, English keywords still appear among the top
rank decoded tokens in the first half of the layers
(Figures 2c, 2d); this occurs much less frequently
for PL keywords.

Around the half point (rougly, layer 15), the prob-
abilities of English and PL keywords, as well as
expected tokens, begin to rise sharply (Figures 2a,
2b). English and PL keywords overtake the ex-
pected tokens at first. While expected token prob-
ability continues increasing until the final layers,
English and PL keyword probabilities decline, par-
ticularly when English token probability crosses
over the expected token probability.

In the final layer, while the expected token holds
rank = 1, English keywords (excluding PL key-
words) and PL keywords maintain a high and simi-
lar 1

rank value of 0.4 each (Figures 2c, 2d), indicat-
ing their presence among the top decoded tokens.
Among individual PL keywords, the output PL
dominates in both rank and probability measures,
followed by popular PLs like C++ and C# (which
have some of the largest keyword sets), while the

input PL has less influence. This distribution holds
across different PL keywords: rising in the second
half of the layers, peaking, and then decreasing in
the final layers. Notably, many expected tokens
are variable names, symbols, numbers, or punctua-
tion, which typically fall outside the different PL
keyword sets.

Regarding the comparison between CodeLlama
7B and Llama 3.1 8B: In terms of token probabil-
ity, Llama 3.1 8B exhibits a slower initial rise in
expected token probability, followed by a sharp
increase in the top three layers. In contrast, CodeL-
lama 7B demonstrates a more gradual increase
throughout. In terms of rank, CodeLlama 7B con-
sistently shows a mainstream presence of English
keywords. However, their distribution shifts: in
the first half of the layers, they primarily consist of
English keywords excluding PL keywords, while
in the second half, they increasingly include En-
glish keywords that overlap with PL keywords. For
Llama 3.1 8B, the presence of PL keywords also
increases in the second half of the layers, reaching
a 1

rank value of 0.7 at layer index 23 for English
keywords shared with PL keywords.

3.2 Method 2: Cross-lingual alignment
We present the results of cross-lingual alignment
in Figure 3. We compute alignment scores for all
pairs of PLs and determine which PL aligns bet-
ter with others. C# achieves the best alignment
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Figure 3: MEXA alignment score. The minimum value
of the MEXA alignment score is 0. The figures are
limited to scores above 0.4 for better visualization.

overall across all layers in both models, though
the difference between C-family PLs and Java is
minimal. Both models show fewer alignments for
Python. JavaScript is the best-aligned PL for both
PHP and Python. The high alignment of C# and
C++ further supports the influence of popular PLs,
as discussed in Section 3.1. This finding is also
aligned with Quan et al. (2025), who find that al-
though Python is the most familiar language for
existing LLMs and competition-level code bench-
marks, model performance improves over Python
when responding in C++ for most of the models,
including for the instruction-tuned version of the
Llama 3.1 8B model.

The alignment scores consistently increase ex-
cept for two instances: first, in the bottom layers
(layer index 2 in Figures 3a, 3b), where representa-
tions diverge from the “input space”; and second,
immediately before the final layer (layer index 31
in Figures 3a, 3b), where they transition into the fi-
nal “output space”. The alignment of different PLs,
especially in the layer preceding the final layer, in-
dicates the high quality of the parallel data, as the
alignment reaches values of 0.9 in average.
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Figure 4: Impact of LAPE identification (ν = 400, τ =
0.95) on PPL increase. The element at row i, column j
represents the PPL change for language j due to pertur-
bations in the language i region.

Llama 3.1 8B achieves better MEXA alignment
scores across all pairs compared to CodeLlama
7B. This is not entirely unexpected: even though
CodeLlama 7B and its instruction-tuned version are
specifically trained for code, newer generic models
of Llama, including Llama 3 8B (Dubey et al.,
2024) and its instruction-tuned version, achieve
better scores in code generation tasks (as evaluated
on LiveCodeBench (Jain et al., 2024)).1

3.3 Method 3: Language-specific neurons

We identify language-specific neurons for 11 PLs
and English using LAPE. PPL change results (ν =
400, τ = 0.95) in Figure 4 show that deactivating
language-specific neurons has negligible effects on
other languages, while more noticeably impacting
the primary language—though this may not hold
across all settings. For other ν values, we apply
the LAPE neuron identification method and mea-
sure PPL changes by incrementally deactivating
language-specific neurons for each primary lan-
guage. The results for τ = 0.95 are shown in

1hf.co/spaces/livecodebench/leaderboard
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Figure 5: Impact of LAPE neuron identification. X-axis: Number of shared neurons for each language. Y-axis:
Change in PPL across languages when deactivating the primary language’s neurons (e.g., English in the lower-right
figure). Figure 7 in Appendix A shows the same figure for more languages.
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Figure 6: Number of “language-specific” neurons, i.e.,
neurons that are exclusive to one PL and not shared
with any other PL, in the LAPE experiment with ν =
1400, τ = 0.95. The figure shows the total number of
language-specific neurons summed over all PLs.

Figure 5, where we observe that LAPE fails to iden-
tify “effective” language-specific neurons for some
languages. Effectiveness is indicated by a larger
PPL change for the primary language compared
to other languages when deactivating the primary
language-specific neurons.

In most cases, increasing the number of neu-
rons enlarges the PPL gap between primary and
other languages in Llama 3.1. However, for C#
and Java (and C++ and HTML in Figure 7) the
gap is less pronounced. Interestingly, C# and Java
are the PLs with the highest alignment in Llama
3.1, as shown in Section 3.2. Additionally, C#
has one of the largest PL keyword sets appearing
frequently in intermediate layers, as shown in Sec-
tion 3.1. This suggests that the identified specific
neurons for these languages are more shared across

languages. In other words, for PLs such as C# and
Java, which closely align with multiple other PLs,
distinguishing language-specific neurons is more
challenging.

For CodeLlama 7B, even though some effective
language-specific neurons exist, the PPL change is
not significant (Figures 4a, 5a). When the number
of deactivated neurons exceeds 12,500, the impact
on other languages sometimes surpasses that on the
primary language. The only language for which
CodeLlama 7B identifies effective specific neurons
with a larger PPL change margin is English. This
suggests that PL neurons in CodeLlama 7B are
highly shared, possibly due to its training recipe,
where the pre-training phase following Llama 2
initialization primarily focuses on code.

To further investigate what makes language-
specific neurons effective in Llama 3.1 8B but
not in CodeLlama 7B, we examine the language-
specific neurons selected for all PLs that are “ex-
clusive” to each PL, as shown in Figure 6 for
ν = 1400, τ = 0.95. Other ν settings exhibit a
similar distribution. In general, most language-
specific neurons in both models and across most
languages are selected from the bottom layers (in-
dices 0 to 4), followed by layer indices 18 to 22 in
both models. However, those that are exclusive to a
specific PL are predominantly selected from the top
layers (indices 29 to 31). Notably, LAPE selects
more exclusive neurons from top layers for Llama
3.1 8B than CodeLlama 7B as shown in Figure 6.
This aligns with the fact that top layers serve for
token generation, where the LLM must handle the
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“output space” and map it to the expected token. If
exclusive language-specific neurons exist for each
primary language at the top layers, deactivating
that language’s neurons only affects the PPL of
that language. However, if there are no such exclu-
sive neurons, it affects PPL of other languages as
well.

4 Discussion and Implications

Our findings suggest several strategies for building
more efficient multilingual code models.

1) Since English and certain PLs are centrally
located in the model’s concept space, these could
serve as intermediate representations for multilin-
gual code translation, minimizing the distance be-
tween source and target languages.

2) The distribution of neuron types across layers
– shared/general in bottom layers, specific in top –
supports modular architectures where base layers
encode general syntax/semantics and top layers can
be swapped or specialized for specific languages.

3) For closely aligned PLs (e.g., Java and C#),
shared representations could enable parameter shar-
ing or adapter-based methods for lightweight mul-
tilingual support, while only tuning minimal addi-
tional weights.

4) Some languages enforce object-oriented pro-
gramming, while others support it optionally. This
structural difference may lead the model to develop
stronger internal representations for languages with
stricter paradigms, potentially introducing some
bias in code generation. Other differences in lan-
guage design and idiomatic usage can influence
the model’s behavior when generating code across
languages. Recognizing these factors could help
improve the generalization capabilities of multilin-
gual code models.

5 Related work

Pivot language. Wendler et al. (2024) use logit
lens (Nostalgebraist, 2020) to show that English
acts as a kind of “pivot” language in English-centric
LLMs, such as Llama-2 (Touvron et al., 2023b),
enabling these models to solve complex seman-
tic tasks in a non-English language by detouring
through English internal states before generating
non-English text. Building on this idea, Wu et al.
(2025) propose the semantic hub hypothesis, which
suggests that the same phenomenon could occur
not only across different languages but also across
different modalities. As one of these modalities,

they introduce code. Their analysis focuses solely
on Python within the Llama 2 model. Since obtain-
ing semantically equivalent English-Python pairs
is challenging, they test only a few targeted cases,
such as the English token “and” and its Python
counterpart “,”. Using logit lens, they show that in
the intermediate layers, the expected Python token
is closer to “and” than to other tokens such as “or”
and “not.” In our work, we focus exclusively on
PLs and consider seven PLs. As noted by Wu et al.
(2025), obtaining semantically equivalent English-
PL pairs is challenging. Instead, we analyze key-
word sets—comprising keywords from 22 PLs and
an English dictionary—through a translation task
across 42 directions. This allows us to examine
which PLs and English-derived tokens appear in
the model’s intermediate layers and are closer to
its concept space, both in terms of probability and
rank. Our findings reveal that not only English but
also other PLs contribute to the model’s concept
space.

Neuron-level interpretability. Initially,
language-specific components were studied in
neural machine translation using small language
models (Lin et al., 2021; Xie et al., 2021; Zhang
et al., 2021). Later, the role of FFNs within LLMs
was explored in several studies, highlighting
their function as key-value memories for storing
factual and linguistic knowledge (Geva et al., 2021,
2022; Ferrando et al., 2023). However, these
analyses typically investigate neuron behavior,
focusing on monolingual settings in natural
languages and PLs. Building on methods explored
in investigations on the role of FFNs within
LLMs and considering clear evidence that LLMs
exhibit significant overlap in their embeddings
across languages—particularly among those from
the same linguistic family (Doddapaneni et al.,
2021)—several recent studies (Xie et al., 2021;
Tang et al., 2024; Zhao et al., 2024; Kojima et al.,
2024; Wang et al., 2024; Bhattacharya and Bojar,
2023, 2024; Mueller et al., 2022; Liu et al., 2024a;
Dumas et al., 2024; Liu et al., 2025) have investi-
gated the existence of language-specific neurons
and internal mechanisms for natural languages,
especially within the FFN layers of LLMs. Just as
there are many natural languages, there are also
many PLs. However, no research has explored the
existence of language-specific neurons for PLs,
even though LLMs are typically pre-trained on
a mixture of these languages. Building on this,
our work adopts the method proposed by Tang
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et al. (2024) to identify PL-specific neurons. This
approach enables a scalable and targeted analysis
of neurons for many PLs using only raw PL data.

Interpretability for code. Interpretability in lan-
guage models for code-related tasks remains under-
explored, with most research focusing on attention
layers (Mohammadkhani et al., 2023; Wan et al.,
2022; Paltenghi and Pradel, 2021; Liu et al., 2024b).
Our work is closest to Haider et al. (2024), who
analyze FFN layers. They analyze two GPT-based
models (Xu et al., 2022; Nijkamp et al., 2022) for
three PLs, showing that lower layers capture syn-
tax while higher layers encode abstract concepts
and semantics. They demonstrate that concepts are
stored in the FFN layers and can be edited without
compromising code language model performance.
However, their analysis is performed in monolin-
gual settings, while our work investigates the re-
lationship between PLs to determine if they share
concepts and neurons in coding tasks.

6 Conclusion

In this study, we investigate how LLMs represent
programming languages (PLs) in their concept
space using the logit lens method. We observe
that English and PL keywords appear in interme-
diate layers, with notable probabilities in the lat-
ter half. Initially, these keywords surpass the ex-
pected output tokens, but as the probabilities of
expected tokens increase and overtake those of En-
glish and PL keywords, the probabilities of the
latter decline. We further investigate the existence
of language-specific neurons using the language ac-
tivation probability entropy (LAPE) method. Our
analysis reveals that language-specific neurons can
be identified for most languages in the Llama 3.1
model, but not for PLs such as Java and C#, which
align closely with other PLs. We find that language-
specific neurons are concentrated in the bottom lay-
ers, while neurons exclusive to each PL are located
in the top layers. These findings deepen our under-
standing of LLMs’ inner workings in the context of
PLs and provide valuable insights for interpretabil-
ity in code-related tasks.

Limitations

We are aware of three main limitations of our work.
First, parts of our analysis rely on a super-

parallel dataset, which is limited to seven languages
due to source constraints. To our knowledge, no
super-parallel dataset with a broader language set

is publicly available. A potential solution is to gen-
erate super-parallel data for more languages using
more powerful LLMs and validate it through unit
tests to ensure quality and consistency.

Second, while we use keywords to interpret la-
tent embeddings, a more precise approach would
involve constructing a dictionary mapping PL key-
words to each other and their English equivalents.
However, this is not always feasible, as some PL
keywords lack direct English meanings or map to
multiple tokens.

Third, we hypothesize that the ineffectiveness
of neuron identification for CodeLlama 7B stems
from its training recipe, but further investigation
across other models could be beneficial. Our anal-
ysis focuses on PLs in Llama-based architectures,
which underlie many state-of-the-art models, but
it’s important to explore other architectures for
broader validation.
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Figure 7: Impact of LAPE neuron identification. X-axis: Number of shared neurons for each language. Y-axis:
Change in PPL across languages when deactivating the primary language’s neurons (e.g., English in the lower-right
figure).
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