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Abstract

Nonverbal communication (NVC) plays an
integral role in human language, but study-
ing NVC in general is challenging because
of its broad scope and also high variance in
interpretation among individuals and cultures.
However, mime—the theatrical technique of
suggesting intent using only gesture, expres-
sion, and movement—is a subset of NVC
that consists of explicit and embodied actions
with much lower human interpretation vari-
ance. We argue that a solid understanding
of mimed actions is a crucial prerequisite for
vision-language models capable of interpret-
ing and commanding more subtle aspects of
NVC. Hence, we propose Mime Identification
Multimodal Evaluation (MIME), a novel video-
based question answering benchmark compris-
ing of 86 mimed actions. Constructed with
motion capture data, MIME consists of varia-
tions of each action with perturbations applied
to the character, background, and viewpoint
for evaluating recognition robustness. We find
that both open-weight and API-based vision-
language models perform significantly worse
than humans on MIME, motivating the need for
increased research for instilling more robust
understanding of human gestures.

1 Introduction

Nonverbal communication (NVC) — the use of
nonverbal cues such as gestures, facial expressions,
and body language to convey messages — is an
instrumental part of human language (Mehrabian,
1972; Poyatos, 1983; Stickley, 2011). NVC not
only serves as a crucial substitute to communi-
cation when verbal modes are limited (Friedman,
1979; Mast, 2007; Park et al., 2022; Shafique et al.,
2023), but also makes interaction engaging and nat-
ural (Duncan Jr, 1969; Ha et al., 2012; Xu et al.,
2022), and may even betray true intent that contra-
dicts what is verbally expressed (Mehrabian, 1972;
Eaves and Leathers, 2015). Therefore, AI systems

What action is this person miming?

Multiple Choice

Free-form 

A: Playing harp 
B: Using phone 
C: Basketball shot
D: Playing guitar

VLM 🤖: B ❌
Human: C ✅

VLM 🤖: Catching
invisible ball ❌
Human: Shooting a
basketball ✅

Figure 1: Simplified illustration of a sample in MIME
shown with a single frame from a video of a 3D male
character miming a basketball shot. Humans achieve
almost perfect accuracy on identifying mimed actions re-
gardless of evaluation format, adversarial perturbations,
and the absence of any salient context (e.g., basketball,
court, basketball uniform). On the other hand, the best
performing VLM achieves only 52.3% with a multiple
choice format with four choices and 19.8% with free-
form short answers even without any perturbations.

need to establish a thorough understanding of NVC
for them to become more accessible and effective
assistants to humans (Argyle and Trower, 1979;
Troshani et al., 2021).

Unfortunately, this is an overwhelming undertak-
ing considering the broad scope of NVC (Mehra-
bian, 1972; Eaves and Leathers, 2015), variabil-
ity in how individuals interpret and exhibit non-
verbal cues (Kita, 2009; Matsumoto and Hwang,
2013), and the limited capabilities of current
vision-language models (VLMs). Despite impres-
sive achievements of VLMs on action recognition
benchmarks (Qu et al., 2024; Kong and Fu, 2022;
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(1) Collect motion capture data
with Vicon

(2) Retarget to 3D character with
Blender

(3) Render animations with GPU
acceleration

(4) Overlay rendered frames over
background image

Figure 2: An overview of the pipeline for constructing MIME. (1) We first collect motion capture data of a mimed
action on a Vicon stage. (2) Then, a 3D character is retargeted to our motion capture data in Blender, a computer
graphics software. (3) Next, we render frames of the animation with a transparent background. (4) With frames
rendered with transparent backgrounds, we can easily overlay them over images of our choice.

Wang et al., 2023), we find that they cannot even
reliably identify a subset of NVC that human adults
without apraxia1 comprehend with ease (O’Reilly,
1995): mime, the theatrical technique of suggesting
intent using only gesture, expression, and move-
ment. Compared to other general gestures, many
mimed actions are consistently identified among
humans, in part due to their direct ties to physical
movement and surfaces (O’Reilly, 1995; Alexan-
derson et al., 2017; Yi et al., 2023). Therefore,
we propose studying whether VLMs can reliably
recognize mimed actions as a foundational prereq-
uisite towards the sophisticated comprehension of
the full spectrum of NVC.

To this end, we address the following research
questions: (i) Can VLMs reliably recognize mimed
actions? and (ii) If not, can we improve a VLM’s
performance on identifying mimed actions? For
the first research question, we construct Mime
Identification Multimodal Evaluation (MIME),2 a
novel video-based question answering benchmark
comprising of 86 mimed actions. We create MIME

using motion capture data and computer graphics
software, which enables us to create variations of
each action with perturbations applied to the char-
acter, background, and viewpoint for evaluating
recognition robustness (see Figure 1 for a sam-
ple of MIME and corresponding human and VLM
predictions). On MIME, humans easily achieve
almost 100% accuracy, regardless of adversarial
perturbations and evaluation format. However,
VLMs, open-weight models and API-based black-
box models alike, only achieve at most 52.3% ac-

1A neurological disorder that disrupts the ability to plan
and execute purposeful movements, despite having the physi-
cal ability to do so.

2Data and code for MIME is available https://
justin-cho.com/mime.

curacy in a multiple choice format despite the con-
textual information provided by the answer choices
and at most 19.8% with a free-from short answers
format. These scores are even lower for videos
with adversarial perturbations, for which all evalu-
ated models achieving less than 10%. On the other
hand, their performance is significantly boosted
when provided a background that is contextually
relevant (e.g., basketball court for mime of bas-
ketball shot), suggesting that these models lack
a robust understanding of the mimed actions in
MIME.

To answer the second question, we conduct a
preliminary exploration into whether existing meth-
ods can help bridge this shortcoming. Specifi-
cally, we experiment with Chain of Thought (Wei
et al., 2022), few-shot in-context learning, and fine-
tuning with a subset of MIME. We find that the only
method that consistently improves model perfor-
mance over zero-shot is few-shot in-context learn-
ing for API-based black-box models, but their re-
sults remain significantly worse than human per-
formance. In conclusion, our findings with MIME

motivate research that instills a more robust under-
standing of human gestures in VLMs for establish-
ing an essential foundation for NVC comprehen-
sion.

2 MIME

MIME is a video-based question answering bench-
mark that comprises of animations of 86 mimed
actions, each with ten variants that are shown in Fig-
ure 3, resulting in a total of 860 evaluation samples.
The videos are rendered with 3D graphics software
by combining digital assets with motion capture
data of actors miming various actions. This setup
is advantageous for conducting a systematic study
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of recognition robustness with regards to various
components that comprise an action as each action
can be post-processed and remixed with different
backgrounds, characters, and camera angles. In this
section, we describe the data collection pipeline for
MIME. An overview is shown in Figure 2.

2.1 Motion Capture

First, we brainstorm 75 mimed action candidates
for which salient context is missing. For example,
playing a violin is a valid candidate because it is
acted out without a violin and swimming is also
valid because it is acted out without being in water,
and both mimed actions are understood by human
subjects. We exclude gestures such as hand-waving
or thumbs-up as salient context is not missing in
their enactment.

Next, we have two actors (one nonprofessional
actor and one professional actor) act out these ac-
tion candidates with three takes each. Each take
introduces some variance of the same acts if there
are multiple ways to perform them (e.g., swimming
can be done with front stroke, back stroke, etc. and
pushing can be done with various intensity) and if
they are clearly distinct, multiple takes of the same
action are kept. For more complex actions such as
shotputting, the actors reference YouTube videos
of professional athletes.

We collect motion capture with actors wearing
motion capture suits configured in the Vicon 10
finger marker setup, in addition to the standard 53
body marker setup.3 Motion capture is performed
on a Vicon stage configured with Vero capture cam-
eras driven by Vicon Shogun 1.11. An example
of a single frame from the resulting motion cap-
ture data is shown in (1) of Figure 2. Finally, the
dataset is batch cleaned, post-processed, and ex-
ported via Shogun Post into FBX format for further
processing in Blender.

Only the motion capture data for which at least
two out of three authors assign the same label to
the final rendered output without seeing the action
name are included in MIME. This process results
in 47 action types and 86 mimed action samples.

2.2 Blender File Creation

Motion capture data is imported into Blender and
combined with digital assets to render frames with
a transparent background so that they can be eas-

3https://help.vicon.com/space/Shogun112/
31229851/Place+markers+on+a+performer

ily overlaid over our background of choice later
without redundant rendering.

To efficiently combine various characters with
a large number of motion capture data together,
we write a Python-based macro that automates the
process of creating blender files to be rendered.
The result of the macro is shown in (2) of Figure 2.
The detailed steps that our script automates are
elaborated in Appendix A.1.

2.3 Rendering

Characters We use free 3D characters from Mix-
amo.4 For the base setting of MIME, we use a male
human character with casual clothes. To evaluate
for mime recognition robustness with regards to
the character, we also render with an adversarial
character that is wearing a sci-fi spacesuit (shown
in (h,i,j) in Figure 3. While we may choose even
more adversarial characters that look less human
to create a more challenging variant, we find that
not all motion capture data is compatible for char-
acters with largely diverging body proportions as
the mimed action can become unrecognizable due
to different body parts overlapping one another.

To test for a VLM’s robustness to the character’s
gender, we also render with a female human char-
acter with casual clothes. The female character that
we use is illustrated in (c) in Figure 3.

Backgrounds We use images from Creative
Commons licensed images from Wikimedia5 as
aligned and misaligned backgrounds (e.g., (d,i) and
(e,j) in Figure 3, respectively). We try our best
to find images for which the background provides
a large open space in the middle so that the full
action sequence does not look awkward and the
character does not appear disproportionately large
or small.6

Angle To test robustness to viewpoints of the ob-
served mimed action, we also render videos with
various angles by rotating the camera with the char-
acter at the center. We select angles of 90°, 180°,
and 270° rotations applied to the base setting.

4https://www.mixamo.com
5https://commons.wikimedia.org/
6While most images fulfill this criteria, there are a few

for which it was not feasible to scale or crop properly so that
the character ends up disproportionately large, such as the
example shown in Figure 6 in Appendix D. However, we find
this not to be an issue for humans to correctly identify the
mimed action, and therefore consider reasonable evaluation
samples and keep them in MIME.
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(a) Base + blank (0°) (b) Base + blank (90°)

(f) Base + blank (180°) (g) Base + blank (270°)

(c) Woman + blank (0°)

(h) 😈 + blank (0°)

(d) Base + =background (0°) (e) Base + ≠background (0°)

(i) 😈 + =background (0°) (j) 😈 + ≠background (0°)

Figure 3: Overview of variations of each action in MIME. Our setup of using motion capture and computer graphics
software allows us to flexibly permute different configurations for each action to ablate the robustness of a VLM’s
understanding of mimed actions. (a,b,f,g) are examples of the same animation but with changes to the camera angle.
Different body parts become occluded depending on the angle. (c) and (h) only change the character from (a). (c) is
a female human character while (h) is an adversarial character in a sci-fi spacesuit. (d) and (i) are variants of (a)
and (h) respectively with aligned backgrounds (=background, e.g., basketball court for basketball-related action)
while (e) and (j) have adversarial backgrounds (̸=background, e.g., living room).

3 Experimental Setup

3.1 Evaluation

MIME evaluates VLMs with two different ques-
tion answering conditions, the choice condition
and naming condition (Osiurak et al., 2012). The
choice condition provides answer choices, which
in effect supplies contextual information, while
the latter requires answering directly without any
choices and is therefore more challenging. We
elaborate on the setup for each condition in the
following.

Choice condition: multiple choice (MC) This
is the best setting for computing accuracy as it can
be done with exact match, but performance is de-
pendent on how confusing the distractors are. Our
multiple choice setup has four options to choose
from and the distractors are selected by randomly
sampling from other action labels that are included
in MIME after removing the top 10 that have high-
est cosine similarities when compared with sen-
tence embeddings (Reimers and Gurevych, 2019).7

While this may make the multiple choice setup eas-
ier, it simplifies evaluation by preventing instances
where multiple answer choices are valid.

7sentence-transformers/all-MiniLM-L6-v2

Naming condition: Free-form short answers
(FF) In order to test model performance when
it is not provided any context from the multi-
ple choice options, we also assess their perfor-
mance with free-form short answer format. To as-
sess the reference-based accuracy of our freeform
answers, we adopt a single sentence-embedding
cosine-similarity-based metric, effectively a relax-
ation of BertScore (Zhang et al., 2019), which is
popular in VLM question answering-based evalua-
tion of text-image similarity (Hu et al., 2023; Saxon
et al., 2024). We use a sentence transformers model,
the same one used above prior to selecting distrac-
tors, to produce sentence-level embeddings of the
generated free-form answers and gold labels, and
use a heuristically-selected cosine similarity thresh-
old of 0.5 to mark an answer as correct. While we
find these to return a few false positives (e.g., base-
ball swing given credit for baseball pitch) and false
negatives (e.g., pulling not given credit for drag-
ging), we find these to be a small subset that does
not significantly affect the overall performance of
a model.

3.2 Models

We evaluate a comprehensive set of open- and
closed-source VLMs with MIME to get a gen-
eral understanding of whether VLMs can identify
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Human

Gemini 1.5 Flash

GPT-4o Mini

InternVL2.5 (8B)

Phi-3.5

Qwen2.5 VL (7B)

Qwen2.5 VL (3B)

100%
99.6%

100%
52.3%

97.8%
41.9%

97.8%
31.4%

93.5%
29.1%

100%
39.5%

100%
34.9%

Multiple Choice (MC)

0 20 40 60 80 100

77.2%
89.5%

95.7%
19.8%

91.3%
11.6%

82.6%
2.3%

67.4%
2.3%

84.8%
5.8%

73.9%
2.3%

Free-form (FF)

Accuracy (%) REAL MIME

Figure 4: Performance comparison on the base setting of MIME and on the REAL dataset. Humans show equally
strong performance on both MIME and REAL. VLMs struggle with MIME while achieving comparative performance
on REAL, which suggests they lack a robust understanding of human actions.

Mime Real

Figure 5: A frame from videos of deadlifting from
MIME (left) and REAL (right). In MIME, salient ob-
jects are missing (e.g., barbell) and other hints (e.g.,
gym clothing).

mimed activities.
For open-source models, we evaluate on (i)

Qwen 2.5 VL Instruction (Team, 2025), both 3B
and 7B versions, (ii) InternVL 2.5 8B Instruct
(Chen et al., 2024), (iii) Phi 3.5 VL Instruction,
which is a 4.2B model released by Microsoft (Ab-
din et al., 2024). For closed-soure models, we eval-
uate on (iv) Gemini 1.5 Flash from Google (Team,
2024) and (v) GPT-4o mini from OpenAI.8 For our
first set of results, we use a zero-shot setting where
the models are asked to directly predict the answer
based on the video without any examples or reason-
ing steps. Our zero-shot prompt for multiple choice

8gpt-4o-mini-2024-07-18, https://platform.
openai.com/docs/models/gpt-4o-mini

and free-form formats are shown in Appendix B.

3.3 REAL Data
We ground the performance on MIME by measur-
ing the performance on recognizing actions from
real footage of the same set of actions in MIME. We
collect a set of license-free videos of such footage
and call it REAL. An example of a video from
REAL and its corresponding sample in MIME is
shown side by side in Figure 5. REAL functions as
a control dataset that estimates a VLMs understand-
ing of the actions that are mimed in MIME when
all reasonable salient context is present. Therefore,
the gap between performance on REAL and MIME

serves as a proxy in the lack of generalizability in
the understanding of the action to the understand-
ing of its mimed counterpart.

Videos for REAL are sourced through Pexels.9

Note that while MIME contains 86 total mimed
actions with multiple variations of the same activity,
we only find one for each in REAL, and therefore
REAL consists of 47 videos.

4 Results

4.1 MIME vs REAL

Humans understand actions and their mimed
counterparts equally well, while VLMs strug-
gle significantly for the latter. First, we share
our results with the models mentioned in Section
3.2 on the base setting of MIME ((a) in Figure 3)
and REAL using a zero-shot prompt are shown in
Figure 4.

Results on REAL clearly indicate that all VLMs
are able to identify actions when all of the salient

9https://www.pexels.com/
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Model Base + blank Base + =back. Base + ̸=back. + blank + =back. + ̸=back.

MC FF MC FF MC FF MC FF MC FF MC FF

Qwen 2.5 VL (3B) 34.9 2.3 61.6 30.2 27.9 0.0 30.2 1.2 60.5 29.1 24.4 0.0
Qwen 2.5 VL (7B) 39.5 5.8 68.6 38.4 32.6 1.2 34.9 0.0 64.0 30.2 30.2 0.0
Phi 3.5 29.1 2.3 73.3 27.9 31.4 8.1 44.2 0.0 72.1 27.9 36.1 5.8
InternVL2.5 8B 31.4 2.3 57.0 26.7 22.1 2.3 25.6 2.3 59.3 20.9 30.2 2.3

GPT 4o mini 41.9 11.6 66.3 39.5 37.2 3.5 33.7 8.1 67.4 33.7 36.1 2.3
Gemini 1.5 Flash 52.3 19.8 68.6 51.2 37.2 12.8 44.2 8.1 75.6 46.5 36.1 3.5

Human 99.6 89.5 98.5 89.2 99.2 93.4 98.5 93.8 99.2 94.1 99.2 95.0

Table 1: Evaluation results on MIME for various perturbations. =back. indicates aligned background (e.g.,
basketball shot on a basketball court), ̸=back. indicates misaligned background (e.g., basketball shot in living
room, see Figure 1). denotes using an adversarial character. Samples of each variant are shown in Figure 3.
Humans are robust to all variations, but VLMs drop performance for adversarial perturbations while get a significant
boost when exposed to signals from the background that are aligned with the action.

context is present (e.g., doing a deadlift in a gym
with a barbell while wearing gym attire), achieving
almost perfect scores for all models for the multiple
choice format while showing only a minor drop for
the free-form format. This is on par with human
performance.

However, on MIME, the performance drops
sharply, while human performance remains more
or less the same, with only a 0.4% drop in multiple
choice while there is actually a boost for free-form
by 12.3%. Upon manual inspection, we find that
this is not because human performance actually is
worse with real footage, but rather because humans
are more descriptive in their responses for the free-
form format for the real footage and this produces
more false negatives.

4.2 Character and Background Perturbations

Humans demonstrate similar performance
across all variations, while VLMs benefit from
contextual hints and suffer from adversarial per-
turbations. The main advantage of MIME is the
flexibility to swap out components of the anima-
tions in order to conduct ablation studies that shed
light on the nature of the VLMs shortcomings.

We apply the perturbations shown in Figure 3 to
test how performance is affected when the character
and backgrounds are changed. Results from these
perturbations with zero-shot are shown in Table 1.

The most noticeable result from this table is that
the aligned background significantly boosts per-
formance, even when the character is adversarial.
With the direct opposite effect, changing the back-
ground to an adversarial one seriously harms perfor-
mance for most models, but interestingly less so for
the open-weight models. Interestingly, humans are

extremely robust to all of the given perturbations,
maintaining almost perfect scores on all multiple
choice settings while scoring at least 89.5% in the
free-form setting. These results indicate that while
humans are able to ignore irrelevant information
and only focus on the actions themselves, VLMs
rely on other hints about the action present in the
scene. These results are in line with the resuls on
REAL.

4.3 Angle Variations

Next, we share results with various angle pertur-
bations to observe whether VLMs are viewpoint-
agnostic for identifying mime. We see that humans
clearly are in this setting as well, as shown by the
small variance in scores in the last row of Table 2.
For the most part, MIME is challenging such that
performance remains low regardless of the angle
and there is no clearly preferred angle shared by
VLMs. However, for the multiple choice format,
the variance in accuracy is much larger for VLMs
than humans, another indication of a lack of robust-
ness in VLMs in comparison to humans.

4.4 Gender Variation

Lastly, although our dataset has been verified as
easily identifiable for humans by evaluators that
span a balanced distribution across genders, we are
interested in whether VLMs have any underlying
gender biases that may affect their performance.
Therefore, we only change the character to a fe-
male character and compare results. These results
are shown in Table 3. As is the case in the angle
variations, we also observe a lack of robustness in
VLMs from the larger performance differences in
the VLMs compared to that of humans. On a posi-
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Model Eval Rotation Angle Avg. Std.
0° 90° 180° 270°

Qwen 2.5 VL
(3B)

MC 34.9 34.9 32.6 32.6 33.7 1.2
FF 2.3 1.2 0.0 1.2 1.2 0.8

Qwen 2.5 VL
(7B)

MC 39.5 39.5 50.0 43.0 43.0 4.3
FF 5.8 7.0 3.5 8.1 6.1 1.7

Phi 3.5
MC 29.1 31.4 33.7 33.7 32.0 1.9
FF 2.3 5.8 3.5 3.5 3.8 1.3

InternVL2.5
(8B)

MC 31.4 36.0 33.7 37.2 34.6 2.2
FF 2.3 7.0 7.0 4.7 5.2 1.9

GPT-4o-mini
MC 41.9 47.7 43.0 47.7 45.1 2.6
FF 11.6 15.1 13.9 13.9 13.7 1.3

Gemini 1.5
Flash

MC 52.3 47.7 52.3 53.5 51.5 2.2
FF 19.8 18.6 17.4 23.3 19.8 2.2

Human
MC 99.6 98.8 98.8 98.7 99.0 0.4
FF 89.5 95.0 90.7 85.1 90.1 3.5

Table 2: Performance on MIME for varying angles. For
MC, relative to human performance, model performance
varies largely depending on the viewpoint angle.

tive note, we do not observe a consistent preference
for a particular gender by the VLMs.

5 Improving on MIME

Given the poor performance of VLMs in MIME,
we are interested in whether there are simple
methods that can surface VLMs’ potential to un-
derstand mimed actions. Therefore, we attempt
to improve their performance via various well-
established methods that do not require excessive
compute.

5.1 Methods

The methods that we explore are the following: (i)
Chain-of-Thought (CoT) is a method of produc-
ing a reasoning chain before making a final judge-
ment. We ask the model to describe what it sees
in detail and then provide its prediction (Wei et al.,
2022). (ii) Few-shot in-context learning (Few-
shot): For models that support few-shot in-context
learning, we randomly sample three other samples
from MIME and provide them as in-context exam-
ples that the models can leverage to improve their
predictions on the target sample. (iv) Fine-tuning:
Lastly, we experiment with fine-tuning. Since we
have a limited data size and compute budget, we
fine-tune (FT) our model using a 5-fold validation
approach with a 41/18/41 train/validation/test split.
The details of these splits are present in Appendix
C. Fine-tuning is conducted separately for each
task type (free-form, and multiple choice). During
FT, only the vision encoder is trained, while the
text encoder remains frozen. We train for 7 epochs

Model Method MC FF

Male Female Male Female

Qwen 2.5 VL
(3B)

Zero-shot 34.9 29.1 2.3 1.2
CoT 29.1 37.2 0.0 2.3

Qwen 2.5 VL
(7B)

Zero-shot 39.5 41.9 5.8 9.3
CoT 41.9 46.5 8.1 10.5

Phi 3.5
Zero-shot 29.1 34.9 2.3 2.3
CoT 41.9 33.7 4.7 2.3

InternVL2.5
(8B)

Zero-shot 31.4 33.7 2.3 5.8
CoT 25.6 24.4 1.2 5.8

GPT-4o-mini
Zero-shot 41.9 44.2 11.6 12.8
CoT 43.0 53.5 16.3 10.5
Few-shot 74.4 65.1 9.3 10.5

Gemini 1.5
Flash

Zero-shot 52.3 47.7 19.8 20.9
CoT 54.7 52.3 22.1 19.8
Few-shot 57.0 59.3 14.0 22.1

Human - 99.6 98.5 89.5 90.3

Table 3: Performance comparison on MIME for gender
variations. Similar to angle variation results, results
for VLMs vary largely depending on the gender, while
human performance is consistent. However, there is no
consistent performance advantage for a certain gender.

with an initial learning rate of 2e-5, following a
cosine learning rate schedule. The batch size is
set to 8, and we use the AdamW optimizer with
β1 = 0.9 and β2 = 0.999. To optimize the balance
between computational speed and precision, BF16
and TF32 are enabled. All models are trained using
2× A100 GPUs. Refer to further details for our
fine-tuning setup in Appendix C.

5.2 Improvement Results

The main results of these preliminary methods are
shown in Table 4. We observe that, apart from
the API-based black box models, most methods do
not lead to consistent and significant improvements
over the results from zero-shot. One noticeable
improvement is that of GPT-4o mini when it is
given few-shot examples, where results on most
variations are boosted to over 50% for the multiple
choice format. While a smaller boost, we see a
similar trend for Gemini 1.5 Flash. However, the
performance for most cases still remain very low
for the free-form format, indicating that they con-
tinue to struggle without contextual information.
Overall, our results demonstrate that there is ample
room for improvement for VLMs to acquire an un-
derstanding of human gestures that is as robust as
those of humans.
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Model Method Base & blank Base & =back. Base & ̸=back. & blank & =back. & ̸=back.

MC FF MC FF MC FF MC FF MC FF MC FF

Qwen 2.5 VL
(3B)

Zero-shot 34.9 2.3 61.6 30.2 27.9 0.0 30.2 1.2 60.5 29.1 24.4 0.0
CoT 43.0 0.0 57.0 25.6 27.9 0.0 29.1 0.0 58.1 22.1 25.6 0.0
FT† 31.6 0.0 - - - - 22.0 0.0 - - - -

Qwen 2.5 VL
(7B)

Zero-shot 39.5 5.8 68.6 38.4 32.6 1.2 34.9 0.0 64.0 30.2 30.2 0.0
CoT 41.9 8.1 62.8 37.2 31.4 3.5 27.9 0.0 61.6 17.4 26.7 1.2
FT† 36.8 0.0 - - - - 25.0 0.0 - - - -

Phi 3.5
(4.2B)

Zero-shot 29.1 2.3 73.3 27.9 31.4 8.1 44.2 0.0 72.1 27.9 36.1 5.8
CoT 41.9 4.7 64.0 30.2 24.4 1.2 31.4 1.2 59.3 30.2 33.7 2.3
FT† 26.3 0.0 - - - - 22.0 0.0 - - - -

InternVL2.5
(8B)

Zero-shot 31.4 2.3 57.0 26.7 22.1 2.3 25.6 2.3 59.3 20.9 30.2 2.3
CoT 25.6 1.2 60.5 23.3 32.6 2.3 26.7 1.2 52.3 15.1 23.3 0.0

GPT 4o mini
Zero-shot 41.9 11.6 66.3 39.5 37.2 3.5 33.7 8.1 67.4 33.7 36.1 2.3

CoT 43.0 16.3 73.3 47.7 44.2 8.1 44.2 4.7 65.1 38.4 36.1 1.2
Few-shot 74.4 9.3 94.2 39.5 52.3 0.0 70.9 2.3 89.5 40.7 59.3 0.0

Gemini 1.5
Flash

Zero-shot 52.3 19.8 68.6 51.2 37.2 12.8 44.2 8.1 75.6 46.5 36.1 3.5
CoT 54.7 22.1 69.8 48.8 40.7 11.6 48.8 9.3 74.4 51.2 41.9 7.0

Few-shot 57.0 14.0 72.1 41.9 46.5 10.5 48.8 4.7 77.9 39.5 44.2 0.0

Human - 99.6 89.5 98.5 89.2 99.2 93.4 98.5 93.8 99.2 94.1 99.2 95.0

Table 4: Results for various methods to improve performance on MIME. The table follows the same format as
Table 1. †Refer to §5.1 for details on the experimental setup for fine-tuning results.

6 Related Work

6.1 Nonverbal Communication
Beginning with prior foundational work done in
NVC recognition, Gao et al. (2017) proposed
a model that jointly predicts action proposals
and Cao et al. (2018) presented a real-time multi-
person pose detection system. Carreira and Zis-
serman (2017) developed convolutional neural net-
work architectures and advanced action recognition
research. Such work paved the way for even more
sophisticated methods such as a sports action recog-
nition system that can analyze video input using
a particle swarm optimization algorithm (Zhang
and Hou, 2023). Although these studies have all
made substantial contributions, they are done with
non-VLM approaches.

6.2 Action Recognition
Currently, there exists several video datasets focus-
ing on people engaging with objects and perform-
ing actions in everyday contexts (Tenorth et al.,
2009; Goyal et al., 2017). Furthermore, there is
also RareAct, a video dataset with rare and com-
plex actions including some pantomimic gestures
(Miech et al., 2020). However, these datasets have
several shortcomings in that they are not focused
on pantomimic actions and are not modifiable so
that the same actions can be performed in a swap-
pable adversarial background. Our motion capture

dataset, on the other hand, allows for this flexibility.
Previous work testing VLM understanding of

human actions has been limited to scenarios where
a salient object, e.g. a sporting apparatus, is present
in the input data (Kong and Fu, 2022; Sun et al.,
2022). As such, it is dubious whether the VLM
is truly understanding complex human body mo-
tions or if it is simply identifying the salient object.
Overall, this presents ample motivation for further
exploration into how AI understands the nuances
of complex body motions through testing its inter-
pretation of pantomimic actions.

7 Conclusion

In this work, we introduced MIME as a novel bench-
mark for assessing VLMs’ understanding of NVC
through the controlled study of mimed gestures. By
constructing a dataset of 86 mimed actions with
systematic perturbations in character, background,
and viewpoint, we evaluated the robustness of both
open-weight and API-based VLMs in recogniz-
ing nonverbal cues. Our findings reveal a signifi-
cant gap between human and model performance,
highlighting the limitations of current VLMs in un-
derstanding gesture-based communication. While
humans remain highly robust to adversarial modifi-
cations, models struggle, particularly in free-form
settings where recognition accuracy approaches
zero under adversarial perturbations. These results
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highlight the need for further research in enhancing
VLMs’ capacity to generalize across variations in
nonverbal expressions and motivate future efforts
to integrate context-aware, multimodal reasoning
into vision-language models to bridge the gap in
NVC fluency between human and AI.

Limitations

Despite the unique value of MIME that we pre-
sented in this work, there are several limitations
worth mentioning.

First, the dataset used in this study is not pho-
torealistic. This introduces potential domain gaps
compared to real-world applications, where higher-
quality visual data and more naturalistic human
performances may contribute to better model un-
derstanding. Additionally, the dataset may exhibit
distribution shifts that could artificially increase the
difficulty of the task for machine learning models.
However, given that humans can successfully in-
terpret these mimed actions, we argue that models
should also be capable of generalizing if they de-
velop a robust understanding of nonverbal gestures
and movements. This highlights the importance of
evaluating model robustness under varying data dis-
tributions, particularly when dealing with abstract
or indirect representations of actions.

Another limitation is that our fine-tuning experi-
ments do not provide conclusive evidence regard-
ing the effectiveness of fine-tuning for improving
model performance on MIME. Our fine-tuning at-
tempts were conducted with a limited sample size,
which likely led to overfitting, preventing the model
from achieving meaningful generalization. While
this does not rule out the potential benefits of fine-
tuning on larger and more diverse datasets, our
findings suggest that additional research is neces-
sary to explore optimal fine-tuning strategies for
MIME-related tasks.

Lastly, it is important to consider that human
performance on MIME-based tasks is inherently
subjective and may vary across individuals due to
differences in prior exposure, cultural context, and
interpretative abilities. While human-level perfor-
mance provides a useful benchmark, it does not
fully account for potential ambiguities in mimed
actions, which could influence both model and hu-
man understanding. Future work should consider
incorporating diverse human evaluations, as well
as multi-modal learning approaches that leverage
audio, text, and additional context cues to enhance

model comprehension of mimed actions.

Ethical Considerations

Though VLMs present an exciting trove of possi-
bilities, prudent ethical considerations should be
made in their use. No AI is infallible and caution
must always be taken with regards to accuracy and
reliability. In the same vein, VLMs are not fully
explainable, making it difficult to trace back to a
point of failure if there is a lapse in the model’s
judgment. As with the handling of any sensitive
data, especially video, special care should be taken
to ensure the privacy, security and protection of
data. Finally, it should be acknowledged that there
exists inherit bias in VLMs based on their training
data, so as to not disproportionately harm certain
groups or reinforce harmful stereotypes.
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Appendix

A MIME Details

A.1 Blender Macro Script
Our script imports the character and motion capture
armature, adjusting their resting positions to be as
aligned as possible using the MCATS plugin,10 and
using the Rokoko Studio Live plugin11 to retarget
the animations from the motion capture data to
the character. In addition, a sun light source and
large plane at the feet level of the character are
added for shadow capture for more realistic videos.
Lastly, a camera is added so that videos can be
rendered from the camera’s viewpoint. We select
a conservatively zoomed out viewpoint in order to
make sure that the full action sequence is captured
in the rendered output.

A.2 Render settings
Each frame is rendered with the following render-
ing configurations:

• Number of samples: 32
• Maximum number of light bounces: 1
• Resolution: 1280 × 720

10https://github.com/absolute-quantum/
cats-blender-plugin

11https://github.com/Rokoko/
rokoko-studio-live-blender

26754

https://arxiv.org/abs/2411.02265
https://arxiv.org/abs/2411.02265
https://doi.org/10.5281/zenodo.11247979
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.05530
https://qwenlm.github.io/blog/qwen2.5-vl/
https://api.semanticscholar.org/CorpusID:10895196
https://api.semanticscholar.org/CorpusID:10895196
https://api.semanticscholar.org/CorpusID:10895196
https://arxiv.org/abs/2412.03603
https://arxiv.org/abs/2412.03603
https://arxiv.org/abs/2412.03603
https://aclanthology.org/2022.coling-1.12/
https://aclanthology.org/2022.coling-1.12/
https://aclanthology.org/2022.coling-1.12/
https://api.semanticscholar.org/CorpusID:259286493
https://api.semanticscholar.org/CorpusID:259286493
https://api.semanticscholar.org/CorpusID:259286493
https://github.com/absolute-quantum/cats-blender-plugin
https://github.com/absolute-quantum/cats-blender-plugin
https://github.com/Rokoko/rokoko-studio-live-blender
https://github.com/Rokoko/rokoko-studio-live-blender


• Adaptive threshold: 0.5
• Denoise using GPU: True
• Use persistent data: True
• Caustics reflective: False
• Caustics refractive: False
• Use light tree: Falses

We find these settings to strike a reasonable balance
between video quality and render time.

We process rendering jobs in parallel on P100
and V100 GPUs, depending on availability. The
final step of overlaying the frames with transparent
backgrounds over various backgrounds are acceler-
ated with parallel(Tange, 2024). Generative AI
workloads were run locally on an RTX 4090.

B Prompt Details

We provide the templates for our prompts here:

B.1 Zero-shot Multiple Choice
What action is the person doing in this
image/video?
Choose the most accurate description from the
options below.

A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}

Respond with just a single letter (A, B, C, or D).

B.2 Zero-shot Free-form
What action is the person doing in this
image/video?
Describe the action in a single short phrase
(under 5 words).

You can think out the action in a chain of thought,
but please reply on the final line of your
response, a single short phrase (under 5 words).

This action is being 'mimed' meaning backgrounds
or objects that are relevant may not be present.
Think about only the *action* taking place
in the video, and give a response for what it looks
like the character is "acting out" or
doing "charades" of.

B.3 CoT Multiple Choice
What action is the person doing in this
image/video?
Choose the most accurate description from the
options below.

A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}

Carefully think through the answer, by detailing

the particular actions and movements that you see
the person doing. Your output should contain your
explanation, and then on a new line, a single
letter corresponding to the answer you choose, with
no punctuation. An example response is shown below:

'In the video, the person is moving a single
arm back and forth, as if they are swinging a bat.
This action is most accurately described by
option B.

B'

B.4 CoT Free-form
What action is the person doing in this
image/video?
Carefully think through the answer, by detailing
the particular actions and movements
that you see the person doing.

This action is being 'mimed' meaning backgrounds
or objects that are relevant may not be present.
Think about only the *action* taking place
in the video, and give a response for what it
looks like the character is "acting out" or
doing "charades" of. Your output should contain
your explanation, and then on a new line,
a short phrase (under 5 words) corresponding to
your answer, with no punctuation or answer
prefix such as 'Answer:'

B.5 Few-shot ICL Multiple Choice
What action is the person doing in this video?
Choose from:
A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}
Answer with just a single letter (A, B, C, or D).

What action is the person doing in this video?
Choose from:
A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}
Answer with just a single letter (A, B, C, or D).
...
What action is the person doing in this video?
Choose from:
A. {options[0]}
B. {options[1]}
C. {options[2]}
D. {options[3]}
Answer with just a single letter (A, B, C, or D).

B.6 Few-shot ICL Free-form
What action is the person doing in this video?
Describe the action in a single short phrase.
Answer: <>
What action is the person doing in this video?
Describe the action in a single short phrase.
Answer: <>
...
What action is the person doing in this video?
Describe the action in a single short phrase.
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C Fine-tuning Details

The n = 5 folds that we use for N-fold training for
fine-tuning experiments are shown in Table 5.

D Human Evaluation Details

The interface for our human evaluation is shown
in Appendix D. In total, we had 56 unique internal
participants participate in our human evaluation
study. Our participants cover a wide demographic:
there are eight unique nationalities and their ages
range from early 20s to mid 40s. They are all
educated at the college level or beyond. While
they are all located in the same city, we believe
their diverse international backgrounds provide a
reasonable approximation of human performance
for our human evaluation setup.

E MIME via Video Generation Models

We also explore alternative video generation mod-
els for creating MIME and show sample outputs
in Figure 7. For paid services, we test Sora12 and
Runway13, and for open-weight models, we use a
variety of Hunyuan (Sun et al., 2024) fp16 and bf8
models using ComfyUI’s14 recommended text-to-
video Hunyuan workflow (Weijie Kong, 2024). All
video models struggle to generate mimed actions
and generate the action with the key object still
present in the video, even when explicitly asked
not to include it (see Figure 7c )or not mention-
ing it in the prompt (see Figure 7a. We also try
with prompts that are generated by language mod-
els, such as the output for the prompt: “Generate
a prompt for a video generation model to
generate a video of someone miming fencing
such that the resulting video does not
include any fencing equipment”. While this
avoids producing objects in some cases, it fails to
produce a video that matches to the intended action
(e.g., dancing move shown for a prompt for fencing
Figure 7b).

12https://openai.com/sora/
13https://runwayml.com/
14https://github.com/comfyanonymous/ComfyUI
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Figure 6: Our interface for human evaluation. The evaluators can only attempt to answer the question after seeing
the full video. After answering a free-form short answer question, they are asked to complete a multiple choice
equivalent before moving on to the next sample.
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(a) OpenAI Sora’s output with prompt: still shot
without background of someone miming typing
sitting by a desk without any objects on it.

(b) OpenAI Sora’s output with LM-generated prompt:
Generate a high-quality video of a person
performing mime movements that resemble
fencing. The individual should use expressive
body language, dynamic footwork, and precise
hand gestures to create the illusion of fencing
without any actual fencing equipment, such as
swords or protective gear. The performance
should be fluid and theatrical, emphasizing
exaggerated parries, lunges, and ripostes to
convey the essence of fencing through mime
alone. The person should be dressed in neutral
or casual clothing suitable for a performance,
with a simple background that keeps the focus
on their movement.

(c) Runway’s output with prompt: Generate a video
of a person miming a fencing match without any
fencing equipment. The person should perform
precise exaggerated fencing movements such as
lunges, parries, and ripostes. Their footwork
should be light and agile, moving back and forth
as if engaged in a real bout.

(d) Hunyuan-Large’s (Sun et al., 2024) output with prompt:
Man acting like shooting an arrow without
anything in his hands. This should be a mimed
action without any props.

Figure 7: Snapshots of outputs from various video generation models to generate mimed actions. All models that
we tested failed to produce videos that either did not include the action’s key object (e.g., keyboard while typing,
bow and arrow while shooting an arrow) or correctly act out the intended action.
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Volleyball001 Climbing001 DrinkingCoffee001 ConsoleGaming01 ArmCurls001
VolleyballServe Climbing01 ShootingAHandgun001 Darts001 ArmCurls01
WeightedSquat002 DeadLift001 ShootingARifle001 Bowling003 ArmCurls03
CheckingWatch001 Deadlift01 ShootingHandgun01 Bowling01 Baseball004
CheckingWatch01 Archery001 Basketball001 Weightlifting001 BaseballPitch002
Swimming001 Archery01 BasketballLayup001 Violin002 BaseballPitch02
Swimming002 Driving002 BasketballLayup02 ShotPut001 CheckingPhone002
Swimming03 Driving003 BasketballShot02 ShotPut01 WatchingTV01
Swimming04 Soccer003 Boxing001 DrivingSitting001 SittingAndWriting001
Swimming06 SoccerShot01 Boxing03 DrivingSittingDown03 TakingPhotoWithCamera001

Table 5: The action IDs in MIME that are divided into five folds we use for our fine-tuning setup.
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