skLEP: A Slovak General Language Understanding Benchmark

Marek Suppa, Andrej Ridzik, Daniel Hládek, Tomáš Javůrek, Viktória Ondrejová, Kristína Sásiková, Martin Tamajka, Marian Simko


Abstract
In this work, we introduce skLEP, the first comprehensive benchmark specifically designed for evaluating Slovak natural language understanding (NLU) models. We have compiled skLEP to encompass nine diverse tasks that span token-level, sentence-pair, and document-level challenges, thereby offering a thorough assessment of model capabilities. To create this benchmark, we curated new, original datasets tailored for Slovak and meticulously translated established English NLU resources. Within this paper, we also present the first systematic and extensive evaluation of a wide array of Slovak-specific, multilingual, and English pre-trained language models using the skLEP tasks. Finally, we also release the complete benchmark data, an open-source toolkit facilitating both fine-tuning and evaluation of models, and a public leaderboard at https://github.com/slovak-nlp/sklep in the hopes of fostering reproducibility and drive future research in Slovak NLU.
Anthology ID:
2025.findings-acl.1371
Volume:
Findings of the Association for Computational Linguistics: ACL 2025
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venues:
Findings | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
26716–26743
Language:
URL:
https://preview.aclanthology.org/ingestion-acl-25/2025.findings-acl.1371/
DOI:
Bibkey:
Cite (ACL):
Marek Suppa, Andrej Ridzik, Daniel Hládek, Tomáš Javůrek, Viktória Ondrejová, Kristína Sásiková, Martin Tamajka, and Marian Simko. 2025. skLEP: A Slovak General Language Understanding Benchmark. In Findings of the Association for Computational Linguistics: ACL 2025, pages 26716–26743, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
skLEP: A Slovak General Language Understanding Benchmark (Suppa et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-acl-25/2025.findings-acl.1371.pdf