
Findings of the Association for Computational Linguistics: ACL 2025, pages 26584–26606
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

NBDESCRIB: A Dataset for Text Description Generation from Tables and
Code in Jupyter Notebooks with Guidelines

Xuye Liu1, Tengfei Ma2, Yimu Wang1, Fengjie Wang1, Jian Zhao1

1University of Waterloo, Canada 2Stony Brook University, USA

Abstract

Generating cell-level descriptions for Jupyter
Notebooks, which is a major resource consist-
ing of codes, tables, and descriptions, has been
attracting increasing research attention. How-
ever, existing methods for Jupyter Notebooks
mostly focus on generating descriptions from
code snippets or table outputs independently.
On the other side, descriptions should be per-
sonalized as users have different purposes in
different scenarios while previous work ignored
this situation during description generation. In
this work, we formulate a new task, personal-
ized description generation with code, tables,
and user-written guidelines in Jupyter Note-
books. To evaluate this new task, we collect and
propose a benchmark, namely NBDESCRIB,
containing code, tables, and user-written guide-
lines as inputs and personalized descriptions
as targets. Extensive experiments show that
while existing models of text generation are
able to generate fluent and readable descrip-
tions, they still struggle to produce factually
correct descriptions without user-written guide-
lines. CodeT5 achieved the highest scores
in Orientation (1.27) and Correctness (-0.43)
among foundation models in human evaluation,
while the ground truth scored higher in Orien-
tation (1.45) and Correctness (1.19). Common
error patterns involve misalignment with guide-
lines, incorrect variable values, omission of im-
portant code information, and reasoning errors.
Moreover, ablation studies show that adding
guidelines significantly enhances performance.
both qualitatively and quantitatively.

1 Introduction

In recent years, computational notebooks like
Jupyter have become popular among data scien-
tists and machine learning researchers for docu-
menting ideas, writing code, and visualizing results
in a single document (Wang et al., 2021a). De-
scription in a notebook provides a rich medium
for users to record what the code does and the rea-

soning behind it. Description is found essential
for data scientists to share or reuse code (Zhang
et al., 2020; Chattopadhyay et al., 2020). How-
ever, research has shown that many data scientists
still neglect to write appropriate descriptions for
their code in notebooks, especially for code output
(i.e. table), as they feel writing description will
slow down their coding process (Ramasamy et al.,
2023). Rule et al. (2018a) reported that among one
million computational notebooks on Github, 25%
of them have no comment. Besides, unlike other
integrated development environments (IDEs) such
as Visual Studio, data scientists working in compu-
tational notebooks often write concise descriptions,
typically less than 100 words(Wang et al., 2022a).
This brevity poses challenges for large language
models (LLMs), such as GPT and LLaMA, lim-
iting their ability to generate accurate markdown
descriptions(Park and Choi, 2024).

Existing literature has explored techniques to
generate descriptions for code snippets or table out-
puts independently (Richardson et al., 2017; Li
et al., 2021; Liu et al., 2018; Wang et al., 2021b;
Liu et al., 2021; Wang et al., 2024; Parikh et al.,
2020a; An et al., 2022; Zhao et al., 2023b,a; Ding
and Xu, 2023; Cm et al., 2023), achieving satis-
fying performance. However, in real-world appli-
cations, documentations are always related to the
corresponding code and table output, at the same
time. For example, ground truth descriptions re-
quire summarization from the code and table output
simultaneously, as shown in Section 1.

Moreover, while the same code-table output pair
could serve different purposes under different user
requirements, existing work (Zhao et al., 2023b;
Chen et al., 2020; Zhao et al., 2023a; Ding and
Xu, 2023; Cm et al., 2023; Muller et al., 2021;
Richardson et al., 2017; An et al., 2022; Liu et al.,
2021; Khan and Uddin, 2022; Koehn and Knowles,
2017; Pasupat and Liang, 2015; Ye et al., 2023;
Zhang et al., 2024; Guo et al., 2024) only focuses

26584

Table

passengerid pclass sex age fare cabin embarked y_pred y_scores

0 892 3 male 34.5 7.8292 nan q 0 0.108682

1 893 3 female 47.0 7.0000 nan s 1 0.516569

2 894 2 male 62.0 9.6875 nan q 0 0.130859

3 895 3 male 27.0 8.6625 nan s 0 0.116366

4 896 3 female 22.0 12.2875 nan s 1 0.553491

Guideline Description

Value
The 'y_pred' column in the output table represents the binary prediction (0 or 1)
generated by the 'model_consumer' for each passenger，such as passenger 893's
 prediction being 1 (indicating survival)

Goal Builds a prediction pipeline and and applies it to a 'df_test' dataset,generating
predictions and scores for further analysis

Association It is clear that fare has nothing to do with age in the titanic dataset

Outlier Cabin feature has some missing values in the test set

Aggregation There are two classes for Embarked feature

Reason Analyze the data like passenger class, gender, age, and fare to generate
predictions and scores with prediction pipeline

Code Only Table Only

It sets up a machine
learning prediction pipeline
with initial preprocessing
and model consumption

stages and applies it to test
data from a CSV file

The table lists passenger
data with features like

class, sex, age, fare, and
predictions with scores for

a Titanic dataset.

Previous WorkOur Work(Guideline + Code + Table)

Code

Figure 1: An example in our proposed NBDESCRIB dataset, which targets generating high-fidelity and per-
sonalized descriptions based on the input of codes, tables, and user-written guidelines. Previous methods and
benchmarks focus on understanding the codes or tables only, which makes the generated description unfaithful.

on description generation for either code or table
without considering various user requirements. As
shown in Figure 1, under different user-written
guidelines, the focus of different ground-truth de-
scriptions could differ from each other.

To address the aforementioned issues and step
forward in faithful and personalized description
generation, in this paper, we propose a challenging
user-written guideline-based text generation task
focusing on the table and code description genera-
tion (TCDG) for Jupyter Notebooks. Given codes
and output tables, the goal of TCDG is to produce
a concise description under different user-written
guidelines. The guidelines will be of a given cat-
egory corresponding to the type of target text as
shown in Table 2.

Moreover, we construct the first benchmark
(NBDESCRIB) for TCDG that contains 3,924
processed code-table-description pairs extracted
from highly-ranked notebooks from Kaggle com-
petitions and identifies 15 guideline categories of
the texts (details in Section3). Specifically, the raw
Jupyter Notebook data with tables, code, and as-
sociated text from popular Kaggle competitions is
crawled. However, the raw data cannot be directly
used due to the large amount of noise (Mondal
et al., 2023; Lin et al., 2022). For example, "I plan
to refine the models by using more sophisticated
machine learning techniques." is about personal ex-
periences and future plans, which is not useful for
text generation tasks. On the other side, the user-
written guidelines and ground-truth descriptions
in the markdown cell generally contain multiple

different purposes or facts on the tables. To reduce
the noise in the raw data, we recruit annotators to
first break down the markdown cells and make each
piece of text only contain one purpose or fact. For
each guideline category, we create the label as well
as descriptions, and then curate the tables and filter
out the noise text. Finally, the text descriptions
in our data are natural, faithful, and specifically
targeted under different guidelines (Figure 1).

Next, we evaluate the performance of existing
pretrained models. The ablation study shows that
guidelines significantly affect the final performance
at different levels, which demonstrates the validity
of our task. Human evaluation further shows that
these advanced models (i.e., CodeT5, Llama, and
GPT-4o) still struggle to produce faithful enough
results, regardless of high-quality training data.
Moreover, common error patterns involve misalign-
ment with guidelines, incorrect variable values,
omission of important code information, and rea-
soning errors.

Based on these results, we integrated our ap-
proach into a user-facing application to explore
Human-AI collaboration in code documentation.
In a follow-up study, users found that the gener-
ated documentation reminded them of documenting
codes they might have overlooked and increased
their satisfaction with their notebooks.

The main contributions of our work are:
• We formulate a novel task, TCDG, and collect a

high-quality benchmark, namely NBDESCRIB;
• Experiments show that fine-tuned LMs (CodeT5)

outperform powerful pretrianed models, i.e.,

26585

GPT-4o and Llama, highlighting the vulnerabil-
ity of LLMs on TCDG. Ablation studies and
downstream user application demonstrate that
guidelines significantly enhance model perfor-
mance, helping users create accurately oriented
and reasonable descriptions.

• Error analysis shows that LLMs fail to align with
guidelines, understand variable values, and rea-
son.

2 Related Work

In this work, we focus on table and code description
generation (TCDG) tasks. Our work is closely re-
lated to table-to-text generation and code documen-
tation generation (CDG). Most existing datasets for
table-to-text generation (Li et al., 2021; Liu et al.,
2018; Parikh et al., 2020a; Dhingra et al., 2019;
Zhao et al., 2023b; Chen et al., 2020; Zhao et al.,
2023a; Ding and Xu, 2023; Cm et al., 2023; Zhang
et al., 2024; Guo et al., 2024; Min et al., 2024)
or code documentation (Richardson et al., 2017;
An et al., 2022; Liu et al., 2021; Khan and Ud-
din, 2022; Wang et al., 2022b; Dvivedi et al., 2024;
Luo et al., 2024) generation contain one text per
table or code on a specific topic and schema. For
instance, (Suadaa et al., 2021) contains 1.3K table-
documentation pairs with richer inference from
scientific papers and CodeSearchNet (Husain et al.,
2019) contains 2M function-documentation pairs
across six programming languages (e.g., java, php,
python). Differing from previous CDG and table-
to-text datasets, a documentation text can corre-
spond to both code and its table output in ours.

Previous work on table-to-text focuses on text
generation for standalone table data. Parikh et al.
(2020b) proposed an open domain table-to-text
dataset. They collected tables from Wikidepia
and paired them with single-sentence documen-
tation. They then requested annotators to revise
the Wikipedia candidate sentences into target sen-
tences, rather than writing new ones. Several
studies focused on a specific topic and schema
such as WEATHERGOV (Liang et al., 2009) and
ROBOCUP (Chen and Mooney, 2008), Rotowire
(Wiseman et al., 2017), Wikibio (Lebret et al., 2016,
Biographies), E2E (Novikova et al., 2016, Restau-
rants). However, they cannot provide different tar-
get texts for various data facts in tables, resulting
in too singular results during model training.

Another task similar to table-to-text is table ques-
tion answering (Pasupat and Liang, 2015; Wang

et al., 2018; Nan et al., 2022; Cheng et al., 2021; Ye
et al., 2023). While they can locate relevant tables
and provide answers by tagging relevant cells, they
do not provide a meaningful explanation of differ-
ent kinds of data facts. There are also other sources
of information that may be used in data science
projects. Without following appropriate guidelines
and integrating these sources, we would not be able
to produce satisfactory results. Chen et al. (2019);
Gupta et al. (2020) attempted to verify whether a
provided textual statement is entailed or refuted by
the given table. But they only address verification
issues and cannot generate descriptive statements
for different data fact types.

Since our work focuses on both code and ta-
ble, it is essential to discuss related work on CDG,
which aims to understand the code and generate
the code descriptions. Typical datasets include
CodeSearchNet (Husain et al., 2019) and some
datasets collected from GitHub (Kanade et al.,
2019) or BigQuery (Yue Wang, 2021). Recently,
LLMs have been applied to the CDG task such
as CodeLlama (Roziere et al., 2023), CuBERT
(Kanade et al., 2019), CodeBERT (Feng et al.,
2020), GraphCodeBERT (Guo et al., 2020) or
GPT (Svyatkovskiy et al., 2020; Lu et al., 2021).
Some recent works explore encoder-decoder mod-
els such as PLBART (Ahmad et al., 2021), CodeT5
(Yue Wang, 2021), and TreeBERT (Jiang et al.,
2021). The documentation in this task often does
not cover the facts of the output from the code, only
focusing on the description of the code.

Different from the aforementioned works that
only focus on one text generation for a single stan-
dalone code or table, in our new TCDG task for
computational notebooks, code and its table output
can correspond to one description, and these de-
scriptions may have many categories depending on
the needs of the user. We thus propose to construct
a notebookTCDG dataset to handle text generation
of multiple guideline categories for code and its
table output.

3 TCDG - Task Description

In our task, the model is provided with a long text
including a code cell and its table output, as well as
the corresponding guideline category description.
The guideline indicates the direction of the target
description generation, and the specific category
is described in Section 4.3. The model is asked to
read the input and generate reasonable descriptions

26586

based on the given guideline, code, and table.

3.1 Input
The input to a text generation model consists of an
input text and a target document:

(1) Codes and tables from the input texts are
extracted from notebooks crawled from the Kaggle
website. The code provides the necessary context
to understand how the table output was generated.
By analyzing the code, one can infer the logic and
algorithms applied to the input data, which facili-
tates accurate interpretation of the table’s contents.

(2) A guideline category serves as a guid-
ing principle for generating the target description.
Some descriptions focus on interpreting table con-
tent while code snippets also provide essential con-
textual information. At the same time, while de-
scribing the purpose of the code, we also need
tables to provide essential data-driven explanations.
This setup mimics the real scenario.

3.2 Output
A text generation model is employed to predict
the specific guideline category of descriptions. Ta-
ble code associated Markdown cells are the target
documents that we collect since these cells are typ-
ically used to provide descriptive text for code and
tables. Also, some Markdown cells can be used
only for headings in the notebook. To exclude such
Markdown cells, search for key characters like #,
which generally refers to the titles.

4 NBDESCRIB

4.1 Data Collection
As we are focusing on the description generation
in Jupyter Notebooks, we need to crawl a suffi-
cient number of code-table-description pairs first.
Publicly shared notebooks on GitHub are often ill-
documented (Rule et al., 2018b) and do not have
many tables, thus are not suitable for this task.

On the other side, Kaggle allows community
members to vote up and down on uploaded note-
books, and findings show that the highly-voted
notebooks are of good quality and quantity for
code documentation (Wang et al., 2021a; Liu
et al., 2021). Thus, we decided to utilize the top-
voted and well-documented Kaggle notebooks. We
crawled notebooks from seven popular competi-
tions, i.e., seven top popular Kaggle competitions -
House Price Prediction, Titanic Survival Prediction,
Predict Future Sales, Spaceship Titanic, U.S. Patent

Overall Train Dev Test

Code-Table-Description pairs 3,924 2,747 393 785
Code vocabulary size 3,497
Table vocabulary size 16,424
Description vocabulary size 4,481
Avg. # token in Description 12.41 12.37 12.51 12.52
Max. # token in Description 66 57 46 66
Std. # token in Description 7.45 7.43 7.26 7.66
Avg. # token in code cell(s) 10.68 11.17 10.46 10.22
Max. # token in code cell(s) 310 310 131 131
Std. # token in code cell(s) 19.54 21.40 16.42 15.64
Avg. # token in table 13.85 13.92 12.84 14.11
Max. # token in table 272 272 97 261
Std. # token in table 17.27 16.47 11.97 21.68

Table 1: NBDESCRIB dataset statistics.

Phrase to Phrase Matching, JPX Tokyo Stock Ex-
change Prediction, and Ubiquant Market Predic-
tion, and built around 4,000 pairs of code-table-
description pairs. Links for these competitions can
be found in Appendix C. To build this dataset, we
also filtered out the description which is not in En-
glish. We checked the data policy of each of the
competitions, and none of them have copyright is-
sues. We also contacted Kaggle to make sure our
data collection complies with the platform’s policy.

4.2 Data Preprocessing
We employed the following heuristics to collect
codes, tables, and Markdown:

Cell Matching: We search for codes that pro-
duce tables in the notebooks and check if there is a
corresponding Markdown cell describing the code
and table above. The sentences are also split if there
are multiple sentences in the corresponding Mark-
down cell. However, there are instances where the
text content is inaccurate. For example, in texts
labelled as value guidelines, the extracted value
might be incorrect, or in texts describing Feature
Engineer guidelines, the variable name extracted
from the code might be misspelled. Thus, we label
each sentence and let annotators rewrite it accord-
ingly, since each sentence may have a different de-
scription angle. Details about how annotators code
the sentence and reach an agreement are shown in
Section 4.3. The specific guideline details will be
described in the following.

Table Processing: Since the table in Jupyter
Notebook is in HTML code, to transfer it into a
table format, we use HTMLParser1 to get the data
value for each row, column, and their relationship
based on the tags, such as <th>, <td>. We first drop
their parent tags <table> to simplify the document
format. Next, we remove the tags <td> and <th>

1https://docs.python.org/3/library/html.parser.html

26587

from cells to extract variables and corresponding
values from the HTML code. Then we concatenate
variables and values with pipe(“|”) to generate table
description. An example of table processing is
shown in Appendix I.

Table Curation: If the description contains vari-
able names in a table, the corresponding rows and
columns containing those variables are extracted
to create a new table. If no key variables are in-
cluded, we keep the original tables. This process
aims to minimize the inclusion of irrelevant infor-
mation. Appendix I.3 provides an example of how
to implement table curation.

4.3 Guideline Category Description
Three members of the research team conducted
an iterative open-coding process to analyze the
collected notebooks. Differing from Wang et al.
(2020), where their qualitative coding stopped at
the tabular data level, and our analysis goes deep
to the granularity of the cell, the cell be used to
explain beyond the adjacent code cell whose out-
put is the table: we annotate these cells’ purposes
and types of content. Each annotator independently
analyzed the same five notebooks to develop a code-
book. After discussing and refining the codebook,
they again went back to recode those five notebooks
and achieved pairwise inter-rater reliability ranged
0.81–0.93 (Cohen’s K). To further determine the
correctness of inter-annotator agreement, we let
these three annotators analyze another undiscussed
five notebooks and get pairwise inter-rater reliabil-
ity ranging from 0.78 to 0.89 (Cohen’s K) which
is convincing to demonstrate the reliability of our
codebooks. After getting a reliable agreement, the
three coders divided and coded the remaining note-
books. In total, we identified fifteen guideline cat-
egories for the content of the markdown cells (Ta-
ble 2, Appendix E provides examples).

As shown in Table 2, eleven guideline categories
mainly focus on the data facts of a table. It is worth
noting while these guidelines focus more on the
description of the table data, the code still provides
contextual information to supplement their descrip-
tion, as shown in Figure 1. Our analysis revealed
that markdown cells are mostly used to describe
the specific attribute values from the table (Value,
7.29%). Second to the Value category, 6.55% mark-
down cells are used to specify the outliers from the
table output (Outliers).

However, these guidelines do not meet the needs
of Jupyter Notebook users. This kind of markdown

Guideline # Description

Value 286
(7.29%)

Get the exact data attribute values for a set of criteria.

Difference 138
(4o2%)

A comparison between at least two distinct attributes within the
target object, or a comparison between the target object and
previously measured values.

Trend 31
(0.79%)

Indicates a general tendency over a period of time.

Proportion 120
(3.06%)

Measure the proportion of selected data attribute(s) within a
specified set

Categorization 74
(1.89%)

Select the data attribute(s) that meet the condition.

Distribution 127
(3.20%)

Show the amount of shared value for the selected data attributes
or present a breakdown of all data attributes.

Rank 73
(1.86%)

Sort data attributes by their values and display a breakdown of
selected attributes.

Association 165
(4.21%)

Identify the useful relationship between two or more data at-
tributes.

Extreme 227
(5.78%)

Identify the data cases that are the most extreme in relation to
the data attributes or within a specific range

Outlier 257
(6.55%)

Determine whether there are unexpected data attributes or statis-
tically significant outliers.

Aggregation 125
(3.19%)

Calculate the descriptive statistical indicators (e.g., average, sum,
count, etc.) based on the data attributes.

Goal 771
(19.64%)

Express user’s goal. To say what value or function they tend to
use for the later research

Reason 276
(7.03%)

Express reason using the data from the table or explain the rea-
sons why certain functions are used or why a task is performed.

Feature Engi-
neer

393
(10.02%)

The process of selecting, transforming, extracting, combining,
and manipulating raw data to generate the desired variables for
analysis or predictive modeling.

Complementary
Details

870
(22.17%)

Express additional contextual elements and supporting informa-
tion to enhance understanding of the primary content

Table 2: We identify 15 guideline categories based on
the types of descriptions in the Markdown cells which
are below the code whose output is a table.

cells can also be used to mainly explain the beyond
adjacent code cells. Even though they mainly focus
on the code, a clear understanding of table data is
also crucial for understanding the code logic.

We found that some of these markdown cells
describe the motivation from the code descriptive
text(Goal, 19.64%), to explain the results or critical
decisions (Reason, 7.03%), or to describe a com-
bination of mathematical transformations from the
code (Feature Engineer, 10.02%). We also found
that some markdown cells aim to provide additional
context to help with code and table understanding
(Complementary Details, 22.17%).

4.4 Train / Dev / Test Splits
Overall, the dataset contains 2747 Code-Table-
Description pairs in the training set, 393 pairs in
the development set, and 785 pairs in the test set
(see Table 1 for more statistics).

5 Experiments

Baselines. We utilized three types of models:
a fine-tuned encoder-decoder-based CodeT5, the
popular decoder-only LLMs (an off-the-shelf GPT-
4o, Llama3, CodeLlama3), and a fine-tuned GPT-
3.0. Details are shown in Appendix D.

26588

Models ROUGE-1 ROUGE-2 ROUGE-L BERTScore Pyramid Evaluation G-EVAL:Coherence G-EVAL:Correctness G-EVAL:Consistency G-EVAL:Fluency G-EVAL:Orientation G-EVAL:Readability

Baselines

CodeT5 29.61 14.38 26.72 59.51 19.37 3.12 2.43 2.78 3.98 2.46 3.88

GPT-4o 26.06 3.57 26.18 53.62 18.29 3.23 2.38 2.61 4.13 2.42 4.15

GPT-3 19.25 4.42 20.72 51.26 13.37 2.64 2.19 2.16 2.89 2.08 2.86

Llama3 19.57 2.07 20.91 52.41 13.43 3.06 2.38 2.72 3.88 2.21 3.82

CodeLlama3 19.63 2.46 21.18 52.85 15.72 2.35 1.98 2.06 2.61 2.03 2.56

Ablation Study

CodeT5
without table 22.40 9.54 20.49 55.91 18.52 2.55 2.06 2.17 3.74 2.02 3.53

CodeT5
without code 26.35 11.72 24.01 57.93 19.14 3.12 2.31 2.59 3.83 2.28 3.69

CodeT5
without guideline
description

25.09 10.78 22.61 56.63 18.75 3.07 2.99 2.56 3.90 2.21 3.72

GPT-4o with
chain of
thoughts

24.91 3.82 25.42 51.25 16.91 3.22 2.87 2.69 3.84 2.48 3.86

GPT-4o with
in context
leaning

23.64 3.52 24.62 49.10 15.92 3.03 2.81 2.54 3.86 2.42 3.92

Table 3: ROUGE scores and BERTScore for the baselines, our model, and the ablation studies. Results show that
this task is challenging though we use it in the state-of-art text generation models.

5.1 Evaluation Metrics
We use the ROUGE scores (ROUGE-1, ROUGE-2,
and ROUGE-L) (Lin, 2004), BERTScore (Zhang
et al., 2019), and G-EVAL (Liu et al., 2023a) to
evaluate our model’s performance with regard to
the ground-truth description content. Details are
shown in Appendix H.

5.2 Results
The numbers in Table 3 show that this guideline-
based text generation task is very challenging,
while the fine-tuned CodeT5 obtained the best per-
formance. It is interesting to note that CodeLlama3
has bad performance in this task. The possible rea-
son is that CodeLlama3 focuses mainly on code
generation and is not suitable for description gen-
eration. As shown in Table 3, CodeT5-Large out-
performs the GPT-4o, GPT-3, Llama3, and CodeL-
lama3 in this task. Additionally, we notice that the
ROUGE-L of CodeT5-Large is above 25, and the
ROUGE-2 is around 15, indicating that our dataset
can produce more accurate and fluent text in re-
sponse to different guidelines in this task. However,
these metrics primarily check for semantic similar-
ity. To further evaluate generated descriptions in
diverse dimensions and achieve higher human cor-
respondence, we conduct LLM-based evaluators
G-EVAL (Liu et al., 2023b) in six dimensions (Co-
herence, Correctness, Consistency, Fluency, Orien-
tation, and Readability) on a 5-point Likert Scale.
Details of G-EVAL are shown in Appendix H. we
can find that CodeT5-Large outperforms the GPT-
4o, GPT-3, Llama3, and CodeLlama3 in this task.
It is interesting to note that existing LLM can gen-
erate fluent descriptions but struggle to produce
coherent and consistent descriptions.

Ablation Study: To better understand the impact
of each component on this new task, we perform ab-
lation studies(Table 3) to evaluate how table, code,
and guideline description contribute to the model
performance separately. More concretely, we gen-
erate ablation models with the following settings:
(1) without table, (2) without code, (3) without
guideline description, (4) chain of thought prompt-
ing on GPT-4o, (5) in-context learning on GPT-4o.

Since CodeT5 performs best in the task, we use
it as a backbone to test its performance without
code, table, and guideline description. In general,
all the elements contribute to the performance, and
removing one element will lead to a significant
performance drop.

Note that table content has a bigger effect on
model performance compared to code. Code also
influences performance by providing the necessary
context to infer the logic, which aids in interpreting
the table’s content accurately. Guideline descrip-
tion can be seen as a synergy of tables that guide
the generation system to generate desirable topics,
and without it, the performance is slightly higher
than one without any table content.

One intuitive method to enhance the reasoning
ability of LLMs is Chain-of-Thoughts (CoT). Here
we want to further answer this question: using CoT,
can a large language model automatically find an
optimum guideline and generate summaries better
aligned with human interests? CoT is well known
to work well for GPT models, so we experimented
on GPT-4o with a CoT prompt containing both
an example and middle steps of guessing a guide-
line (prompts shown in Appendix F). For a fair
comparison, we also added the performance of in-
context-learning for GPT-4o, by removing the pro-
vided guideline and directly providing the example

26589

(prompts shown in Appendix G). The result of
CoT improved over in-context learning but is still
inferior to the performance of the original GPT-4o
with ground-truth guidelines (except ROUGE-2).

Then we analyzed the match rate between guide-
lines generated through the CoT process and the
ground truth. Results show that 72% of the guide-
lines did not match. Thus, although LLM can often
generate readable and decent descriptions for code
and table(see results in Table 5 and Table 3), most
of the generated descriptions are not as the users
expected (see result in Orientation dimension in
Table 5). This demonstrates the necessity of guide-
lines. To fairly compare the generation models
and standardize evaluation, we need to specify our
guidelines for generating descriptions.
Pyramid Evaluation: We employ an automatic
evaluation method based on pyramid evaluation
(PyrEval) (Gao et al., 2019) to assess the faithful-
ness of generation. This metric, which correlates
well with human evaluation, extracts and filters key
phrases to preserve factual information, offering
a more reliable metric to ROUGE. The results in
Table 3 show consistent trends between PyrEval
and ROUGE, validating the impact of table, code,
and guideline descriptions in our ablation studies.

5.3 Human Evaluation
We conducted a human evaluation with 10 partic-
ipants to assess the performance of various LLM
models in generating code documentation. Par-
ticipants rated 50 pairs of code and documenta-
tion across three dimensions: Correctness, Orienta-
tion, and Readability. The results showed that the
Ground Truth outperformed other baselines. Re-
sults and analysis are deferred to Appendix A.

6 Error Analysis

In this section, we analyze some common error
cases in this guideline-based text generation task.
Some examples can be found in the Appendix B.
(1) Variable values were generated and matched in-
correctly. As shown in the example in Table 4, even
though CodeT5-Large, GPT-4o, GPT-3, Llama3,
and CodeLlama3 are capable of generating key-
words such as ”highest” based on the ”Extreme”
guideline, it remains difficult to produce accurate
text content based on the variables in the table. For
example, CodeT5-Large incorrectly predicted the
oldest passenger as 80 years old. Table 4 also has
this kind of error.

Guideline category description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

cols2 = X_test.columns.tolist() # List of column names
X_test = X_test[cols2] # Applying the new order
X_test

Table

Passenger Sex Age Embarked FamilySize

0 0 34.5 1 1
1 1 47.0 2 2
2 0 62.0 1 1
3 0 27.0 2 1
4 1 22.0 2 3

Description

ground truth The oldest passenger in X_test dataset
is 62 years old

CodeT5-Large Oldest person in the titanic was 80
years old and youngest person was less
than one year

GPT-4o It shows the initial rows of the table
providing insights into the age distribu-
tion of passengers, with the label draw-
ing attention to the oldest passenger

GPT-3 The oldest passenger is a man in his
fifties

Llama3 The ages of passengers ranging from
27 to 62 years old with the youngest
passenger being 27 years old

CodeLlama The average age of the passengers is
34.5 years old.

Table 4: An example of code-table cells and different
models. Note that the table above is the original table,
which will be processed by the table curation in Section
4.2 when generating the description. In this case, the
curated table only keeps the passenger and age columns.

(2) The generated text focuses solely on the table
and ignores important information in the code. In
the example from Table 10, ground truth is in
the “Extreme” guideline and tends to convey that
the first red wine has the highest pH value. How-
ever, the table does not have a related keyword “red
wine.” And CodeT5 failed to extract this informa-
tion and also extracted the wrong value. GPT-4o
cannot generate correct description either. Example
from Table 8 also has this kind of error.
(3) Generating incorrectly oriented text based on
guidelines. For example, GPT-3, Llama3, and
CodeLlama3 produce text related to “Difference”,
“Extreme”, or “Distribution”, but not “Trend” in
the example from Table 7. Another example in
Table 8, requires models generating text related to
“Goal”, but GPT-3 generates text related to “Associ-

26590

Figure 2: We implement a downstream application as a Jupyter Notebook plugin (A) to assist users in documentation
writing for selected rows and columns from different guideline categories (B) and a user-prompt approach (C).

ation”, describing the relationship between SibSP
and Parch. Llama3 also generates text in “Feature
Engineer” but not “Aggregation” in the example
from Table 6.
(4) Reasoning error. If operating under Aggrega-
tion guidelines, CodeT5, GPT-4o, and GPT-3 may
generate incorrect Aggregation data (count, mean,
sum). In this example (Table 6), GPT-3 can gener-
ate text such as this feature has many null values,
but cannot obtain the count of null values.

We manually check 50 examples of CodeT5,
GPT-4o, GPT-3, Llama3, and CodeLlama3 models
used in our user study and label the type of errors
made. The most errors are made when they gen-
erate incorrectly oriented text (3rd type) (54.1%).
This is because the model tends to generate doc-
uments related to the best-trained guideline type
in the dataset, such as “Association” or “Value”.
There are also two common errors made by gener-
ating documents with wrong values (1st type) and
wrong reason (4th type) (27% respectively). Such
errors are commonly made by generating “Value”
or “Aggregation” type documents. There are also
13.5% errors made by generating documents with-
out considering the code. The dataset has numerous
examples with insufficient code, leading the model
to overlook some code instances.

These errors show that our task and dataset pro-
vide some challenges for existing foundation mod-
els. We firmly believe that researchers can enhance
the existing foundation models in the future when

they address the challenges. By building on our
work and leveraging the valuable insights gained
from it, they can push the boundaries even further,
contributing to the continuous evolution of founda-
tion models.

7 Downstream User Application

To demonstrate the application of our benchmark
NBDESCRIB, we designed a Jupyter Notebook
plugin to assist document writing in data science
programming (as shown in Figure 2).

The plugin is triggered when detecting users fo-
cusing on a code cell (Figure 2.A). The plugin then
reads the contents from the focused cell and its cu-
rated table output based on the selected columns
and rows and sends the content to the backend. The
backend server first generates documentation un-
der different guideline categories using fine-tuned
CodeT5-Large(Figure 2.B). In addition, we used
prompts to nudge users to explain an output (Fig-
ure 2.C). If the user selects one of his preferred
candidates, the chosen documentation will be in-
serted below the code cell.

Our plugin went through several rounds of pilot
testing and iterative design. Participants found that
it reminded them to document code they would
have ignored, reducing the time spent developing
documentation while actively exploring the data
science task.

26591

8 Conclusion
In this paper, we formulated a new task, TCDG,
that aimed to automatically generate descriptive
text for code and table based on the given guide-
lines for a computational notebook. We collected
a large amount of well-documented Jupyter Note-
books from Kaggle, resulting in a new benchmark
dataset NBDESCRIB. From our analysis, our task
imposed unique challenges to the current genera-
tion methods, including CodeT5 and LLMs. This
dataset facilitated the task like creation of practical
slides (Wang et al., 2023) for Jupyter notebooks
and enabled evaluations on faithful, high-fidelity,
and factual generation.

Limitations and Potential Risk

As annotations are often performed by multiple
individuals, there may be a degree of subjectivity
and bias in guidelines and datasets used for text
generation. As a result, text can be generated that
does not reflect a diverse range of perspectives.
Furthermore, although we have automatic evalua-
tion metrics such as ROUGE and BERTScore, the
correctness of the generated texts is primarily eval-
uated through human evaluation, which is accurate
but not efficient. Future research should focus on
developing methods for automatically evaluating
the factual correctness of the generated texts, in
order to ensure that the generated text is accurate,
unbiased, and representative of a diverse range of
perspectives.

One potential risk involves the substantial com-
putational resources needed to run state-of-the-art
language models. These resources consume signif-
icant amounts of energy, which not only raises the
carbon footprint of such research but also leads to
environmental degradation.

Acknowledgements

This work is supported in part by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) Discovery Grant #RGPIN-2020-03966,
and Canada foundation for innovation (CFI) John R.
Evans Leaders Fund (JELF) #42371. We acknowl-
edge that much of our work takes place on the
traditional territory of the Neutral, Anishinaabeg,
and Haudenosaunee peoples. Our main campus is
situated on the Haldimand Tract, the land granted
to the Six Nations that includes six miles on each
side of the Grand River.

References
Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and

Kai-Wei Chang. 2021. Unified pre-training for pro-
gram understanding and generation. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2655–2668,
Online. Association for Computational Linguistics.

Chenxin An, Jiangtao Feng, Kai Lv, Lingpeng Kong,
Xipeng Qiu, and Xuanjing Huang. 2022. Cont: Con-
trastive neural text generation. Advances in Neural
Information Processing Systems, 35:2197–2210.

Souti Chattopadhyay, Ishita Prasad, Austin Z Henley,
Anita Sarma, and Titus Barik. 2020. What’s wrong
with computational notebooks? pain points, needs,
and design opportunities. In Proceedings of the 2020
CHI Conference on Human Factors in Computing
Systems, pages 1–12.

David L Chen and Raymond J Mooney. 2008. Learning
to sportscast: a test of grounded language acquisition.
In Proceedings of the 25th international conference
on Machine learning, pages 128–135.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and
William Yang Wang. 2020. Logical natural language
generation from open-domain tables. arXiv preprint
arXiv:2004.10404.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai
Zhang, Hong Wang, Shiyang Li, Xiyou Zhou, and
William Yang Wang. 2019. Tabfact: A large-
scale dataset for table-based fact verification. arXiv
preprint arXiv:1909.02164.

Zhoujun Cheng, Haoyu Dong, Zhiruo Wang, Ran Jia,
Jiaqi Guo, Yan Gao, Shi Han, Jian-Guang Lou, and
Dongmei Zhang. 2021. Hitab: A hierarchical table
dataset for question answering and natural language
generation. arXiv preprint arXiv:2108.06712.

Harika Cm, Debasmita Das, Rajesh Kumar Ranjan, Sid-
dhartha Asthana, et al. 2023. Loki: Money launder-
ing report generation via logical table-to-text using
meta learning. In Proceedings of the Fifth Workshop
on Financial Technology and Natural Language Pro-
cessing and the Second Multimodal AI For Financial
Forecasting, pages 104–110.

Hoa Trang Dang. 2005. Overview of duc 2005. In Pro-
ceedings of the document understanding conference,
volume 2005, pages 1–12. Citeseer.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-
Wei Chang, Dipanjan Das, and William W Cohen.
2019. Handling divergent reference texts when
evaluating table-to-text generation. arXiv preprint
arXiv:1906.01081.

Haijie Ding and Xiaolong Xu. 2023. San-t2t: An au-
tomated table-to-text generator based on selective
attention network. Natural Language Engineering,
pages 1–25.

26592

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211

Shubhang Shekhar Dvivedi, Vyshnav Vijay, Sai
Leela Rahul Pujari, Shoumik Lodh, and Dhruv Ku-
mar. 2024. A comparative analysis of large language
models for code documentation generation. In Pro-
ceedings of the 1st ACM International Conference on
AI-Powered Software, pages 65–73.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Yanjun Gao, Chen Sun, and Rebecca J. Passonneau.
2019. Automated pyramid summarization evaluation.
In Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), pages
404–418, Hong Kong, China. Association for Com-
putational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Zhixin Guo, Jianping Zhou, Jiexing Qi, Mingxuan Yan,
Ziwei He, Guanjie Zheng, Zhouhan Lin, Xinbing
Wang, and Chenghu Zhou. 2024. Towards con-
trolled table-to-text generation with scientific rea-
soning. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 9951–9955. IEEE.

Vivek Gupta, Maitrey Mehta, Pegah Nokhiz, and Vivek
Srikumar. 2020. INFOTABS: Inference on tables
as semi-structured data. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2309–2324, Online. Association
for Computational Linguistics.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and
Lei Lyu. 2021. Treebert: A tree-based pre-trained
model for programming language. In Proceedings
of the Thirty-Seventh Conference on Uncertainty in
Artificial Intelligence, volume 161 of Proceedings of
Machine Learning Research, pages 54–63. PMLR.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2019. Pre-trained contextual embed-
ding of source code. ArXiv, abs/2001.00059.

Junaed Younus Khan and Gias Uddin. 2022. Automatic
code documentation generation using gpt-3. In Pro-
ceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, pages
1–6.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation,
pages 28–39, Vancouver. Association for Computa-
tional Linguistics.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

Tongliang Li, Lei Fang, Jian-Guang Lou, and Zhoujun
Li. 2021. Twt: Table with written text for controlled
data-to-text generation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2021,
pages 1244–1254.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99, Suntec, Sin-
gapore. Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Sherry Lin, Winthrop F Gillis, Caleb Weinreb, Ayman
Zeine, Samuel C Jones, Emma M Robinson, Jeffrey
Markowitz, and Sandeep Robert Datta. 2022. Charac-
terizing the structure of mouse behavior using motion
sequencing. arXiv preprint arXiv:2211.08497.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation by
structure-aware seq2seq learning. In Proceedings of
the AAAI conference on artificial intelligence, vol-
ume 32.

Xuye Liu, Dakuo Wang, April Wang, Yufang Hou, and
Lingfei Wu. 2021. HAConvGNN: Hierarchical at-
tention based convolutional graph neural network for
code documentation generation in Jupyter notebooks.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4473–4485, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023a. G-eval:
Nlg evaluation using gpt-4 with better human align-
ment. Preprint, arXiv:2303.16634.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023b. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

26593

https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/K19-1038
https://doi.org/10.18653/v1/2020.acl-main.210
https://doi.org/10.18653/v1/2020.acl-main.210
https://proceedings.mlr.press/v161/jiang21a.html
https://proceedings.mlr.press/v161/jiang21a.html
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://aclanthology.org/P09-1011
https://aclanthology.org/P09-1011
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://doi.org/10.18653/v1/2021.findings-emnlp.381
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2303.16634
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang,
Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong, Yankai
Lin, Yingli Zhang, et al. 2024. Repoagent: An
llm-powered open-source framework for repository-
level code documentation generation. arXiv preprint
arXiv:2402.16667.

Dehai Min, Nan Hu, Rihui Jin, Nuo Lin, Jiaoyan Chen,
Yongrui Chen, Yu Li, Guilin Qi, Yun Li, Nijun
Li, et al. 2024. Exploring the impact of table-to-
text methods on augmenting llm-based question an-
swering with domain hybrid data. arXiv preprint
arXiv:2402.12869.

Tamal Mondal, Scott Barnett, Akash Lal, and Jyothi Ve-
durada. 2023. Cell2doc: Ml pipeline for generating
documentation in computational notebooks. In 2023
38th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 384–396.
IEEE.

Michael J Muller, April Yi Wang, Steven I Ross,
Justin D Weisz, Mayank Agarwal, Kartik Tala-
madupula, Stephanie Houde, Fernando Martinez,
John T Richards, Jaimie Drozdal, et al. 2021. How
data scientists improve generated code documenta-
tion in jupyter notebooks. In IUI Workshops.

Linyong Nan, Chiachun Hsieh, Ziming Mao, Xi Victoria
Lin, Neha Verma, Rui Zhang, Wojciech Kryściński,
Hailey Schoelkopf, Riley Kong, Xiangru Tang, et al.
2022. Fetaqa: Free-form table question answering.
Transactions of the Association for Computational
Linguistics, 10:35–49.

Jekaterina Novikova, Oliver Lemon, and Verena Rieser.
2016. Crowd-sourcing NLG data: Pictures elicit
better data. In Proceedings of the 9th International
Natural Language Generation conference, pages 265–
273, Edinburgh, UK. Association for Computational
Linguistics.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang,
and Dipanjan Das. 2020a. Totto: A controlled
table-to-text generation dataset. arXiv preprint
arXiv:2004.14373.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang,
and Dipanjan Das. 2020b. Totto: A controlled
table-to-text generation dataset. arXiv preprint
arXiv:2004.14373.

Bumjin Park and Jaesik Choi. 2024. Identifying the
source of generation for large language models.
arXiv preprint arXiv:2407.12846.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470–
1480, Beijing, China. Association for Computational
Linguistics.

Dhivyabharathi Ramasamy, Cristina Sarasua, Alberto
Bacchelli, and Abraham Bernstein. 2023. Visualising
data science workflows to support third-party note-
book comprehension: an empirical study. Empirical
Software Engineering, 28(3):58.

Kyle Richardson, Sina Zarrieß, and Jonas Kuhn. 2017.
The code2text challenge: Text generation in source
code libraries. arXiv preprint arXiv:1708.00098.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Adam Rule, Aurélien Tabard, and James D Hollan.
2018a. Exploration and explanation in computational
notebooks. In Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems, pages
1–12.

Adam Rule, Aurélien Tabard, and James D. Hollan.
2018b. Exploration and explanation in computational
notebooks. CHI ’18, page 1–12, New York, NY,
USA. Association for Computing Machinery.

Lya Hulliyyatus Suadaa, Hidetaka Kamigaito, Kotaro
Funakoshi, Manabu Okumura, and Hiroya Takamura.
2021. Towards table-to-text generation with numer-
ical reasoning. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 1451–1465, Online. Association for
Computational Linguistics.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and
Neel Sundaresan. 2020. Intellicode compose: Code
generation using transformer. ESEC/FSE 2020, page
1433–1443, New York, NY, USA. Association for
Computing Machinery.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

April Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye
Liu, Soya Park, Steve Oney, and Christopher Brooks.
2021a. What makes a well-documented notebook? a
case study of data scientists’ documentation practices
in kaggle. In Extended Abstracts of the 2021 CHI
Conference on Human Factors in Computing Systems,
pages 1–7.

26594

https://doi.org/10.18653/v1/W16-6644
https://doi.org/10.18653/v1/W16-6644
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.18653/v1/2021.acl-long.115
https://doi.org/10.18653/v1/2021.acl-long.115
https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058

April Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael
Muller, Soya Park, Justin D. Weisz, Xuye Liu,
Lingfei Wu, and Casey Dugan. 2022a. Documen-
tation matters: Human-centered ai system to assist
data science code documentation in computational
notebooks. ACM Trans. Comput.-Hum. Interact.,
29(2).

April Yi Wang, Dakuo Wang, Xuye Liu, Lingfei Wu,
et al. 2021b. Graph-augmented code summarization
in computational notebooks. In IJCAI, pages 5020–
5023.

Dakuo Wang, Lingfei Wu, Xuye Liu, Yi Wang, Chuang
Gan, Jing Xu, Xue Ying Zhang, Jun Wang, and
Jing James Xu. 2024. Learning-based automated
machine learning code annotation with graph neural
network. US Patent 11,928,156.

Dakuo Wang, Lingfei Wu, Yi Wang, Xuye Liu, Chuang
Gan, Si Er Han, Bei Chen, and Ji Hui Yang. 2022b.
Learning-based automation machine learning code
annotation in computational notebooks. US Patent
11,360,763.

Fengjie Wang, Xuye Liu, Oujing Liu, Ali Neshati,
Tengfei Ma, Min Zhu, and Jian Zhao. 2023. Slide4n:
Creating presentation slides from computational note-
books with human-ai collaboration. In Proceedings
of the 2023 CHI Conference on Human Factors in
Computing Systems, pages 1–18.

Hao Wang, Xiaodong Zhang, Shuming Ma, Xu Sun,
Houfeng Wang, and Mengxiang Wang. 2018. A
neural question answering model based on semi-
structured tables. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 1941–1951, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Yun Wang, Zhida Sun, Haidong Zhang, Weiwei Cui,
Ke Xu, Xiaojuan Ma, and Dongmei Zhang. 2020.
Datashot: Automatic generation of fact sheets from
tabular data. IEEE Transactions on Visualization and
Computer Graphics, 26(1):895–905.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Robert F Woolson. 2007. Wilcoxon signed-rank test.
Wiley encyclopedia of clinical trials, pages 1–3.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language
models are versatile decomposers: Decompose evi-
dence and questions for table-based reasoning. arXiv
preprint arXiv:2301.13808.

Shafiq Joty Steven C.H. Hoi Yue Wang, Weishi Wang.
2021. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and
generation. In Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Process-
ing, EMNLP 2021.

Amy X Zhang, Michael Muller, and Dakuo Wang.
2020. How do data science workers collabo-
rate? roles, workflows, and tools. arXiv preprint
arXiv:2001.06684.

Haowei Zhang, Shengyun Si, Yilun Zhao, Lujing Xie,
Zhijian Xu, Lyuhao Chen, Linyong Nan, Pengcheng
Wang, Xiangru Tang, and Arman Cohan. 2024.
Opent2t: An open-source toolkit for table-to-text gen-
eration. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 259–269.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Yilun Zhao, Zhenting Qi, Linyong Nan, Lorenzo
Jaime Yu Flores, and Dragomir Radev. 2023a. Loft:
enhancing faithfulness and diversity for table-to-text
generation via logic form control. arXiv preprint
arXiv:2302.02962.

Yilun Zhao, Zhenting Qi, Linyong Nan, Boyu Mi, Yixin
Liu, Weijin Zou, Simeng Han, Ruizhe Chen, Xian-
gru Tang, Yumo Xu, et al. 2023b. Qtsumm: Query-
focused summarization over tabular data. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

26595

https://doi.org/10.1145/3489465
https://doi.org/10.1145/3489465
https://doi.org/10.1145/3489465
https://doi.org/10.1145/3489465
https://aclanthology.org/C18-1165
https://aclanthology.org/C18-1165
https://aclanthology.org/C18-1165
https://doi.org/10.1109/TVCG.2019.2934398
https://doi.org/10.1109/TVCG.2019.2934398
https://doi.org/10.18653/v1/D17-1239

A Appendix: Human Evaluation

We also conduct a human evaluation to further eval-
uate whether those models can generate reasonable
and oriented text with our dataset.
Participants: Our human evaluation task involves
reading the code snippet, its output table, and a
guideline description and rating the generated docu-
mentation from them. We recruited 10 participants
(6 male, 4 female) who are fluent English speak-
ers with around six years of experience in the data
science and machine learning field. We conducted
a rigorous qualification process, evaluating their
knowledge of coding practices and data analysis,
to ensure high-quality annotations. We hired them
by sending invited emails to graduate students who
have experience in data science work. We allocated
up to 90 minutes for each participant to complete
the study, and for their valuable time and input,
each participant received a compensation of $20.
Task: We randomly selected 50 pairs of documen-
tation and code from NBDESCRIB. Note that
each pair has only one code, one table, and one
guideline description, but may have one descrip-
tive text. Each participant is assigned 50 pairs.
Each pair is evaluated by 10 individuals. In each
trial, a participant reads 8 candidate descriptions
for the same code snippet-table-guideline: one by
GPT-4o with chain-of-thought, one by GPT-4o with
in-context-learning, one as the ground truth, and
another five by five different models. The order
of these eight is also randomized, so participants
do not know which descriptive text is from which
model. The participant is asked to rate the 8 doc-
umentation texts along three dimensions using a
five-point Likert scale from -2 to 2. For the human
study, we adopted a -2 to 2 scale because it pro-
vides participants with a clear central point (0) to
indicate neutrality, while the negative and positive
ranges (-2 and 2) allow for stronger differentiation
in agreement and disagreement. This scale helps
human evaluators express nuanced opinions about
correctness, orientation, and readability, reducing
ambiguity and improving clarity during evaluation.
• Correctness: The generated description matches

the code and table content.
• Orientation: The generated description is written

in the correct guideline category.
• Readability: The generated description is in read-

able English grammar and words.
Evaluation Results: We conducted Wilcoxon tests
(Woolson, 2007) with a significance level of 0.05 to

compare the performance of Ground Truth against
CodeT5-Large, GPT-3, and GPT-4o in the Cor-
rectness, Orientation, and Readability dimensions.
The Wilcoxon test is a non-parametric statistical
test used to compare two paired groups of data.
The obtained p-values indicate the probability of
observing the reported differences if there were
no true differences between the models. The re-
sults indicate significant differences in the Correct-
ness dimension, where Ground Truth outperforms
CodeT5-Large (V = 5628, p = 1.74e-30), GPT-3
(V = 5635, p = 5.46e-31), GPT-4o (V = 5647, p =
4.79e-30), Llama3 (V = 5732, p = 3.32e-30), and
CodeLlama (V = 5948, p = 1.27e-30). It is also
worth noting that CodeT5 performs slightly better
than GPT-4o in terms of correctness from Table 5,
possibly because it handles code-containing data
sets better.

Similarly, in the Orientation dimension, Ground
Truth surpasses CodeT5-Large (V = 3567, p =
1.59e-20), GPT-3 (V = 3731, p = 1.77e-20), GPT-
4o (V = 3559, p = 1.82e-20), Llama3 (V = 3722,
p = 1.89e-20), and CodeLlama (V = 3883, p =
1.33e-20).

For the Readability dimension which considers
whether the generated description is a valid English
sentence, Ground Truth outperforms all models
once again: CodeT5-Large (V = 4363, p = 1.40e-
7), GPT-3 (V = 4030, p = 3.81e-14), GPT-4o (V =
4451, p = 3.01e-10), Llama3 (V = 4556, p = 2.38e-
13), and CodeLlama (V = 4573, p = 1.62-15). It
is also worth noting that GPT-4o with chain-of-
thought and in-context-learning have worse perfor-
mance than GPT-4o which demonstrates that guide-
lines can better assist the description generation for
code and table.

The statistically significant p-values (all below
0.05) in each dimension demonstrate it is difficult
to meet the correctness, orientation, and readability
requirements of the user due to the difficulty of the
task. Future work can be accomplished by design-
ing an innovative model to address this challenge.

26596

Model Correctness Orientation Readability

Groundtruth x = 1.19, σ=1.32 x = 1.45, σ=1.02 x = 1.61, σ=0.78
CodeT5-Large x = -0.43, σ=1.55 x = 1.27, σ=1.11 x = 0.55, σ=1.60

GPT-4o x = -0.42, σ=1.67 x = 1.18, σ=1.44 x = 0.53, σ=1.51
GPT-3 x = -0.41, σ=1.58 x = 0.98, σ=1.39 x = 0.51, σ=1.61
Llama3 x = -0.44, σ=1.41 x = 1.03, σ=1.42 x = 0.51, σ=1.82

CodeLlama x = -0.61, σ=1.39 x = 0.88, σ=1.36 x = 0.52, σ=1.69
GPT-4o with chain-of-thought x = -0.39, σ=1.54 x = 0.94, σ=1.35 x = 0.48, σ=1.66

GPT-4o with in-context-learning x = -0.35, σ=1.60 x = 0.91, σ=1.28 x = 0.46, σ=1.83

Table 5: Human Evaluation Result.

B Appendix: Guideline-Code
snippets-Table-Documentation Pair
Examples

Guideline description

Aggregation: Calculate the descriptive statistical indica-
tors (e.g., average, sum, count, etc.) based on the data
attributes

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['IsAlone'] = 0
dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1

titanic_train.head(3)

Table
PassengerId Survived Sex Ticket Cabin

0 1 0 male A/5 21171 NaN
1 2 1 female PC 17599 C85
2 3 1 female STON/O2.3101282 NaN

Documentation

ground truth Cabin feature has 2 missing values
CodeT5-Large These five passengers are in the same

cabin
GPT-4o It adds an IsAlone column to the Ti-

tanic datasets and displays the first
three rows data

GPT-3 The cabin column has many null values
Llama3 Creates a new column to indicate if

passengers are traveling alone or with
family.

CodeLlama Average fare paid by the passengers

Table 6: An example of code and its table output
pair(cabin is the Cabin number). In this case, the curated
table only keeps the cabin columns.

Guideline description

Trend: Indicates a general tendency over a period of
time

Code Cells

train[['Pclass', 'Survived']].groupby(['Pclass'],
as_index=False).mean().sort_values(by='Survived',
ascending=False)

↪→
↪→

Table

Pclass Survived

0 1 0.629630
1 2 0.472826
2 3 0.242363

Documentation

ground truth Higher class survived more
CodeT5-Large The survived rate for this new fea-

ture varies whether it is a tend to be
a higher class passengers or a very
high class passengers

GPT-4o it presents the survival rates for each
passenger class, demonstrating a
clear pattern where lower class num-
bers correspond to higher survival
rates

GPT-3 the survived rate for the pclass 1 is
higher than the pclass 2

Llama3 First-class passengers having the
highest survival rate and third-class
passengers having the lowest.

CodeLlama The most common class is 3rd class
with 24% of the survived passengers

Table 7: An example of code and its table output pair
(Pclass is the ticket level. The smaller the value, the
higher the class). In this case, the table is not curated
because ground truth have class and survived variables.

26597

Guideline description

Goal: Express user’s goal. To say what value or function
they tend to use for the later research

Code Cells

for dataset in [titanic_train,titanic_test]:
dataset['FamilySize'] = dataset['SibSp'] +

dataset['Parch'] + 1↪→
titanic_train.head(3)

Table
PassengerId Survived SibSp Parch IsAlone FamilySize

0 1 0 1 0 0 2
1 2 1 1 0 0 2
2 3 1 0 0 1 2

Documentation

ground truth Checking if the person is alone or with
a family by checking the SibSp and
Parch column in Titanic passenger data
and add a FamilySize column in ti-
tanic_train and titanic_test datasets

CodeT5-Large We can create another feature called
IsAlone

GPT-4o The goal is to create a new attribute
called family size in both the titanic
train and titanic test datasets

GPT-3 we can see that sib sp and parch are
highly correlated

Llama3 Understand the relationships between
different passenger characteristics in
the Titanic dataset

CodeLlama To predict the family size of a passen-
ger in the Titanic disaster

Table 8: An example of code and its table output pair.
In this case, the curated table only keeps the passenger,
SibSp, Parch, and FamilySize column.

Guideline description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

Tuned_rf = tune_model(rf)

Table
Model Accuracy AUC Recall ...

0 0.7895 0.8864 0.6250 ...
1 0.9474 1.000 0.8750 ...
2 0.8947 0.9318 0.8750 ...
3 0.7368 0.8523 1.0000 ...
4 0.8947 0.8667 0.8889 ...
5 0.9473 0.9444 0.8889 ...
6 0.8947 0.9111 0.7778 ...
7 0.7895 0.8333 0.6667 ...
Mean 0.8617 0.9189 0.8222 ...
SD 0.0675 0.0556 0.1348 ...

Documentation

ground truth Model 1 has the highest accuracy while
the code tune with random forest

CodeT5-Large The highest accuracy is 0.8442
GPT-4o It shows the accuracy values for differ-

ent sequence numbers where the mean
accuracy is 0 8617 and the standard
deviation is 0 0675

GPT-3 the highest accuracy is 0.7895
Llama3 Identify the most extreme data points

in relation to their corresponding data
attributes

CodeLlama The Random Forest model is the best
model for this dataset.

Table 9: An example of code and its table output pair.
In this case, the curated table only keeps the Accuracy
and Model columns.

26598

Guideline description

Extreme: Identify the data cases that are the most extreme
in relation to the data attributes or within a specific range

Code Cells

df =
pd.read_csv("../input/red-wine-quality-cortez-et-al-2009/↪→

winequality-red.csv")
df.head()

Table
Wine fixed acidity volatile acidity pH sulphates alcohol quality

0 7.4 0.70 4o1 0.56 9.4 5
1 7.8 0.88 3.20 0.68 9.8 5
2 7.8 0.76 3.26 0.65 9.8 5
3 11.2 0.28 3.16 0.58 9.8 5
4 7.4 0.70 4o1 0.56 9.4 5

Documentation

ground truth The first red wine has the highest pH
value

CodeT5-Large the biggest ph is 3.20
GPT-4o It determine how these values deviate

significantly from the normal range,
providing insights into outliers.

GPT-3 data frame sort ph values
Llama3 Identifies the top 4 most extreme data

points for each attribute.
CodeLlama The wine quality is a continuous vari-

able with a range of 3 to 9

Table 10: An example of code and its table output pair.
In this case, the curated table only keeps the Wine and
pH column.

26599

C Appendix: Kaggle competition link

We crawled highly voted notebooks from seven top
popular Kaggle competitions - House Price Predic-
tion2, Titanic Survival Prediction3, Predict Future
Sales4, Spaceship Titanic5, U.S. Patent Phrase to
Phrase Matching6, JPX Tokyo Stock Exchange Pre-
diction7, Ubiquant Market Prediction8

D Appendix: Detail of Baseline Models

CodeT5 is a large pre-trained encoder-decoder
Transformer model that better leverages the code
semantics conveyed from the developer-assigned
identifiers. Since CodeT5 is a competitive code-
related text generation model, when using this
model in our task, we converted the relevant table
and guideline category description into an inline
comment in code and then fine-tuned the model. It
has 770 million parameters and the computational
budget is around 3 hours.

GPT-3 (Generative Pre-training Transformer 3)
is an autoregressive language model with 175 bil-
lion parameters, 10x more than any previous non-
sparse language model. To use the GPT3 model for
our task, we combine guideline description, code,
and table as input text. It has 175 billion parame-
ters. The computational budget is around 1 hour.
To use the GPT-3 model, we register an account
on OpenAI and use the related API (openai api
fine_tunes.create9) to fine-tune the GPT-3 model.
Also, we built a dataset suitable for GPT-3 training,
which can shared with the public.

GPT-4o is an advanced iteration of the GPT-3
model with around 12 billion parameters and a de-
fault backend of free ChatGPT. The computational
budget is around 1 hour and 15 minutes. Its ability
to comprehend context, generate coherent and con-
textually relevant responses, and perform a wide
array of language-related tasks is further refined.
It is an easily accessible tool and has been widely

2https://www.kaggle.com/c/
house-prices-advanced-regression-techniques

3https://www.kaggle.com/c/titanic/
4https://www.kaggle.com/competitions/

competitive-data-science-predict-future-sales
5https://www.kaggle.com/competitions/

spaceship-titanic
6https://www.kaggle.com/competitions/

us-patent-phrase-to-phrase-matching
7https://www.kaggle.com/competitions/

jpx-tokyo-stock-exchange-prediction
8https://www.kaggle.com/competitions/

ubiquant-market-prediction
9https://beta.openai.com/docs/guides/fine-tuning

used in real life. So we add it as an advanced base-
line.

Llama3 (Touvron et al., 2023). We use Llama3
3.1-70B in this task. It is an advanced language
model with approximately 70 billion parameters.
Its default backend is designed for efficiency and
scalability. The computational budget for Llama3
is approximately 1 hour and 30 minutes. Its ability
to understand context, generate coherent and con-
textually relevant responses, and perform a wide
range of language-related tasks is significantly en-
hanced. Llama3 is a powerful and accessible tool,
widely used in various applications. Therefore, it
is included as an advanced baseline.

CodeLlama3 (Roziere et al., 2023) is an ad-
vanced version of the Llama3 model. We use the
13B version in this task. The model aims to handle
complex code generation and comprehension tasks
efficiently. The computational budget of CodeL-
lama3 is about 2 hours. CodeLlama3 performs well
in understanding intricate programming contexts,
generating accurate and contextually appropriate
code, and performing various code-related tasks.
Its accessibility and versatility have made it a valu-
able tool for developers and researchers, serving as
an advanced baseline for code-centric applications.

E Appendix: Guideline Categories

26600

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/titanic/
https://www.kaggle.com/competitions/competitive-data-science-predict-future-sales
https://www.kaggle.com/competitions/competitive-data-science-predict-future-sales
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/spaceship-titanic
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/us-patent-phrase-to-phrase-matching
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/jpx-tokyo-stock-exchange-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction
https://www.kaggle.com/competitions/ubiquant-market-prediction

F Appendix: Prompt for doing chain of
thought on GPT-4o

Given the 15 guidelines describing the
code cell and its table output in the
Jupyter Notebook:
1. Value(Get the exact data attribute
values for a set of criteria)
2. Difference(A comparison between at
least two distinct attributes within the
target object, or a comparison between

the target object and previously
measured values)
3. Trend(Indicates a general tendency
over a period of time)
4. Proportion(Measure the proportion of
selected data attribute(s) within a
specified set)
5. Categorization(Select the data
attribute(s) that meet the condition)
6. Distribution(Show the amount of
shared value for the selected data
attributes or present a breakdown of all
data attributes)

7. Rank(Sort data attributes by their
values and display a breakdown of
selected attributes)
8. Association (Identify the useful
relationship between two or more data
attributes)
9. Extreme(Identify the data cases that
are the most extreme in relation to the
data attributes or within a specific
range)
10. Outlier(Determine whether there are
unexpected data attributes or
statistically significant outliers)
11. Aggregation(Calculate the
descriptive statistical indicators (e.g
., average, sum, count, etc.) based on
the data attributes.)
12. Goal(Express user's goal. To say
what value or function they tend to use
for the later research)
13. Reason(Express reason using the data
from the table or explain the reasons

why certain functions are used or why a
task is performed.)
14. Feature Engineer(The process of
selecting, transforming, extracting,
combining, and manipulating raw data to
generate the desired variables for

analysis or predictive modeling)
15. Complementary
Details (Express additional contextual
elements
and supporting informa- tion to enhance
understanding of the primary content)

Q: When using Jupyter Notebook, the data
scientist wants to write a description
in the Markdown cell covering the code
cell and its table output. The
description should be less than 50
tokens.
Table Sequence:

| passengerid| survived
mean| 446.000000 | 0.383838
Code: train = pd.read_csv("../input/
titanic/train.csv")

take a quick look at the training
data
train.describe(include="all")"

A: The data scientist wants to write a
description in Extreme guideline, the
description he writes is: the mean
survived rate is 38.3 denoting most of
the passengers have not survived

Q: When using Jupyter Notebook, the data
scientist wants to write a description
in the Markdown cell covering the code
cell and its table output:
<Table>
<Code>

G Appendix: Prompt for doing in-context
learning on GPT-4o

Q: When using Jupyter Notebook, the data
scientist wants to write a description
in the Markdown cell covering the code
cell and its table output.
Table Sequence:

| passengerid| survived
mean| 446.000000| 0.383838

train = pd.read_csv("../input/titanic/
train.csv")
take a quick look at the training data
train.describe(include="all")"

26601

Guideline N Description Example

Value 286
(7.29%)

Get the exact data attribute values for a
set of criteria

The mean survived rate is 38.3 denoting
most of the passengers did not survive

Difference 138
(3.52%)

A comparison between at least two dis-
tinct attributes within the target object,
or a comparison between the target ob-
ject and previously measured values.

The difference though narrows down
considerably if we were to consider groups
of 2 woman travelers

Trend 31
(0.79%)

Indicates a general tendency over a pe-
riod of time.

table is displayed in a descending trend
in accuracy

Proportion 120
(3.06%)

Measure the proportion of selected data
attribute(s) within a specified set

8 of 10 passengers have parents

Categorization 74
(1.89%)

Select the data attribute(s) that meet the
condition.

1 denotes survived while 0 denote not
survived

Distribution 127
(3.20%)

Show the amount of shared value for
the selected data attributes or present a
breakdown of all data attributes.

Fare value range from 7 to 13

Rank 73
(1.86%)

Sort data attributes by their values and
display a breakdown of selected at-
tributes.

Selecting the top 3 classifiers for model
prediction

Association 165
(4.21%)

Identify the useful relationship between
two or more data attributes.

These two passengers are in the same
PClass

Extreme 227
(5.78%)

Identify the data cases that are the most
extreme in relation to the data attributes
or within a specific range

Model 1 has the highest accuracy

Outlier 257
(6.55%)

Determine whether there are unexpected
data attributes or statistically significant
outliers.

Age column has some missing values

Aggregation 125
(3.19%)

Calculate the descriptive statistical indi-
cators (e.g., average, sum, count, etc.)
based on the data attributes.

There are 2 classes in the Deck

Goal 771
(19.64%)

Express user’s goal. To say what value
or function they tend to use for the later
research

We use the Gaussian Process Classifier
to plot the confusion matrix

Reason 276
(7.03%)

Express reason using the data from the
table or explains the reasons why certain
functions are used or why a task is per-
formed.

We go through deleting the column for
Cabin deleting 2 rows for Emabarked and
since Age plays some role we can ...

Feature Engi-
neer

393
(10.02%)

The process of selecting, transforming,
extracting, combining, and manipulat-
ing raw data to generate the desired vari-
ables for analysis or predictive model-
ing.

Delete Name and Ticket due to it s high
cardinality

Complementary
Details

870
(22.17%)

Express additional contextual elements
and supporting informa- tion to enhance
understanding of the primary content

Column details, counts, and data types
provide supplementary technical information
about the Titanic passenger dataset structure.

Table 11: We identify 15 guideline categories based on the types of descriptions in the Markdown cells which are
below the code whose output is a table.

A: The data scientist wants to write a
description in Extreme guideline, the
description he writes is: the mean
survived rate is 38.3 denoting most of
the passengers have not survived

Q: When using Jupyter Notebook, the data
scientist wants to write a description

in the Markdown cell covering the code
cell and its table output
<Table>
<Code>

H Appendix: G-Eval in Coherence,
Consistency, Correctness, and Fluency

H.1 Definition
G-EVAL is a prompt-based evaluation system with
three main components: 1) a prompt defining the

evaluation task and criteria, 2) a chain-of-thoughts
(CoT) that includes intermediate instructions gener-
ated by the LLM to outline the detailed evaluation
steps, and 3) a scoring function that uses the LLM
to calculate scores based on the probabilities of the
returned tokens. The prompt should also contain
customized evaluation criteria for different NLG
tasks.

Coherence The overall quality of all sentences
working together. This aligns with the DUC (Dang,
2005) quality question on structure and coherence,
which states that "the summary should be well-
structured and well-organized, building from sen-
tence to sentence to form a coherent body of in-
formation about a topic." Followed by (Liu et al.,
2023a), we conduct the G-EVAL in the four dimen-
sions below:

Consistency The generated description is writ-
ten in the correct guideline category. A factually

26602

consistent summary contains only statements that
are supported by the source document. Annotators
were instructed to penalize summaries containing
hallucinated facts.

Fluency The quality of individual sentences. Ac-
cording to the DUC (Dang, 2005) quality guide-
lines, sentences in the summary "should have no
formatting problems, capitalization errors, or ob-
vious grammatical errors (e.g., fragments, missing
components) that make the text difficult to read."

Correctness Compare the actual output directly
with the expected output to verify factual accuracy.
Check if all elements specified in the expected out-
put are present and accurately represented in the ac-
tual output. Evaluate whether there are any discrep-
ancies in details, values, or information between
the two outputs.

H.2 Prompt Details for obtaining metrics

You will be given one description
written for a code, its table output,
and its guideline category description.
Your task is to rate the description on
one metric. Please make sure you read
and understand these instructions
carefully. Please keep this document
open while reviewing, and refer to it as
needed.

Evaluation Criteria:
Coherence (1-5) - the collective quality
of all sentences. We align this

dimension with the DUC quality question
of structure and coherence whereby the
description should be well-structured
and well-organized. The descripition
should not just be a heap of related
information, but should build from
sentence to sentence to a coherent body
of information about a topic.

Evaluation Steps:
1. Read the code, its table output, and
its guideline category description
carefully and identify the main topic
and key points.
2. Read the description and compare it
to the source text including the code,
its table output, and its guideline
category description. Check if the
description covers the main topic and

key points of the source text, and if it
presents them in a clear and logical
order.
3. Assign a score for coherence on a
scale of 1 to 5, where 1 is the lowest
and 5 is the highest
based on the Evaluation Criteria.

Example:
Source Text:
{{Guideline Category Description} {Code}
{Table}}
Description:
{{Description}}
Evaluation Form (scores ONLY):
- Coherence:

You will be given one description
written for a code, its table output,
and its guideline category description.
Your task is to rate the description on
one metric. Please make sure you read
and understand these instructions
carefully. Please keep this document
open while reviewing, and refer to it as
needed.

Evaluation Criteria:
Correctness (1-5) - Determine whether
the actual output is factually correct
based on the expected output.

Evaluation Steps:
1. Read the code, its table output, and
its guideline category description
carefully and identify the main topic
and key points.
2. Read the description and compare it
to the source text including the code,
its table output, and its guideline
category description. Check if the
description covers the main topic and
key points of the source text, and if it
presents them in a clear and logical
order.
3. Assign a score for correctness on a
scale of 1 to 5, where 1 is the lowest
and 5 is the highest
based on the Evaluation Criteria.
Example:
Source Text:

26603

{{Guideline Category Description} {Code}
{Table}}

Description:
{{Description}}
Evaluation Form (scores ONLY):
- Correctness:

You will be given one description
written for a code, its table output,
and its guideline category description.
Your task is to rate the description on
one metric. Please make sure you read
and understand these instructions
carefully. Please keep this document
open while reviewing, and refer to it as
needed.

Evaluation Criteria:
Consistency (1-5) - the generated
description is written in the correct
guideline category. A factually
consistent description contains only
statements that are entailed by the
source document. Annotators were also
asked to penalize descriptions that
contained hallucinated facts.

Evaluation Steps:
1. Read the code, its table output, and
its guideline category description
carefully and identify the main topic
and key points.
2. Read the description and compare it
to the source text including the code,
its table output, and its guideline
category description. Check if the
description covers the main topic and
key points of the source text, and if it
presents them in a clear and logical

order.
3. Assign a score for consistency on a
scale of 1 to 5, where 1 is the lowest
and 5 is the highest
based on the Evaluation Criteria.
Example:
Source Text:
{{Guideline Category Description} {Code}
{Table}}

Description:
{{Description}}
Evaluation Form (scores ONLY):
- Consistency:

You will be given one description
written for a code, its table output,
and its guideline category description.
Your task is to rate the description on
one metric. Please make sure you read
and understand these instructions
carefully. Please keep this document
open while reviewing, and refer to it as
needed.

Evaluation Criteria:
Fluency (1-5) - the quality of
individual sentences. Drawing again from
the DUC quality guidelines, sentences
in the summary "should have no
formatting problems, capitalization
errors or obviously ungrammatical
sentences (e.g., fragments, missing
components) that make the text difficult
to read."

Evaluation Steps:
1. Read the code, its table output, and
its guideline category description
carefully and identify the main topic
and key points.
2. Read the description and compare it
to the source text including the code,
its table output, and its guideline
category description. Check if the
description covers the main topic and
key points of the source text, and if it
presents them in a clear and logical
order.
3. Assign a score for fluency on a scale
of 1 to 5, where 1 is the lowest and 5
is the highest
based on the Evaluation Criteria.
Example:
Source Text:
{{Guideline Category Description} {Code}
{Table}}
Description:
{{Description}}
Evaluation Form (scores ONLY):tab:
example4
- Fluency:

26604

I Appendix: Table preprocess example

I.1 An example of Original Table Crawled
from Kaggle Notebooks

<div>\n
<style scoped>

\n .dataframe tbody tr th:only-
of-type {\n vertical-align:
middle;\n }\n\n .dataframe tbody
tr th {\n vertical-align: top;\
n }\n\n .dataframe thead th {\n
text-align: right;\n }\n

</style>\n
<table border=\ "1\" class=\ "
dataframe\">\n

<thead>\n
<tr style=\ "text-align:
right;\">\n

<th></th>\n
<th>count</th>\n
<th>mean</th>\n
<th>std</th>\n
<th>min</th>\n
<th>25%</th>\n
<th>50%</th>\n
<th>75%</th>\n
<th>max</th>\n </tr>\n </
thead>\n

<tbody>\n
<tr>\n

<th>PassengerId</th>\n
<td>418.0</td>\n
<td>1100.500000</td>\n
<td>120.810458</td>\n
<td>892.00</td>\n
<td>996.2500</td>\n
<td>1100.5000</td>\n
<td>1204.75</td>\n
<td>1309.0000</td>\n </tr
>\n

<tr>\n
<th>Pclass</th>\n
<td>418.0</td>\n
<td>2.265550</td>\n
<td>0.841838</td>\n
<td>1.00</td>\n
<td>1.0000</td>\n
<td>3.0000</td>\n
<td>3.00</td>\n
<td>3.0000</td>\n </tr>\n

<tr>\n

<th>Age</th>\n
<td>332.0</td>\n
<td>30.272590</td>\n
<td>14.181209</td>\n
<td>0.17</td>\n
<td>21.0000</td>\n
<td>27.0000</td>\n
<td>39.00</td>\n
<td>76.0000</td>\n </tr>\
n

<tr>\n
<th>SibSp</th>\n
<td>418.0</td>\n
<td>0.447368</td>\n
<td>0.896760</td>\n
<td>0.00</td>\n
<td>0.0000</td>\n
<td>0.0000</td>\n
<td>1.00</td>\n
<td>8.0000</td>\n </tr>\n

<tr>\n
<th>Parch</th>\n
<td>418.0</td>\n
<td>0.392344</td>\n
<td>0.981429</td>\n
<td>0.00</td>\n
<td>0.0000</td>\n
<td>0.0000</td>\n
<td>0.00</td>\n
<td>9.0000</td>\n </tr>\n

<tr>\n
<th>Fare</th>\n
<td>417.0</td>\n
<td>35.627188</td>\n
<td>55.907576</td>\n
<td>0.00</td>\n
<td>7.8958</td>\n
<td>14.4542</td>\n
<td>31.50</td>\n
<td>512.3292</td>\n </tr
>\n </tbody>\n</table>\n
</div>"

I.2 Table preprocessing from the the original
table in H.1

After table preprocessing, table is

| count | mean | std | min |
25% | 50% | 75% | max|

PassengerId |418.0 |1100.500000
|120.810458 |892.00 |996.2500 |1100.5000
|1204.75 | 1309.0000|

26605

Pclass |418.0 |2.265550 | 0.841838 |1.00
| 1.0000 |3.0000 | 3.00 3.0000|

Age |332.0 |30.272590 14.181209 | 0.17 |
21.0000 | 27.0000 | 39.00 76.0000|

SibSp |418.0 |0.447368 | 0.896760 | 0.00
| 0.0000 | 0.0000 | 1.00 | 8.0000|

Parch |418.0 |0.392344 | 0.981429 | 0.00
| 0.0000 | 0.0000 | 0.00 | 9.0000|

Fare |417.0 |35.627188 | 55.907576 |
0.00 | 7.8958 | 14.4542 | 31.50 |
512.3292|

I.3 Table Curation from the the table in H.2
In the above example, the ground truth description
is: “From the count column, we find that some vari-
ables have missing values"". Based on the Table
Curation method in Section 4.2, we extract the
“count"" keyword from the ground truth description
and extract this related column to generate the final
table.

|count |
PassengerId |418.0 |
Pclass |418.0 |
Age |332.0 |
SibSp |418.0 |
Parch |418.0 |
Fare |417.0 |

26606

