
Findings of the Association for Computational Linguistics: ACL 2025, pages 26134–26146
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

ADO: Automatic Data Optimization for Inputs in LLM Prompts

Sam Lin†∗, Wenyue Hua§∗, Lingyao Li‡, Zhenting Wang†, Yongfeng Zhang†
†Department of Computer Science, Rutgers University, New Brunswick

§Department of Computer Science, University of California, Santa Barbara
‡School of Information, University of South Florida

∗Sam Lin and Wenyue Hua contribute equally.

Abstract

This study explores a novel approach to en-
hance the performance of Large Language
Models (LLMs) through the optimization of
input data within prompts. While previous re-
search has primarily focused on refining in-
struction components and augmenting input
data with in-context examples, our work inves-
tigates the potential benefits of optimizing the
input data itself. We introduce a two-pronged
strategy for input data optimization: content en-
gineering and structural reformulation. Content
engineering involves imputing missing values,
removing irrelevant attributes, and enriching
profiles by generating additional information
inferred from existing attributes. Subsequent to
content engineering, structural reformulation
is applied to optimize the presentation of the
modified content to LLMs, given their sensitiv-
ity to input format. Our findings suggest that
these optimizations can significantly improve
the performance of LLMs in various tasks, of-
fering a promising avenue for future research
in prompt engineering. The source code is
available at https://github.com/glin2229/
Automatic-Data-Optimization.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Team et al., 2023; Touvron et al., 2023) have
demonstrated exceptional proficiency across a wide
array of tasks. They have been successfully im-
plemented in various real-world applications, in-
cluding personalized recommendations (Xu et al.,
2024; Wu et al., 2024; Hua et al., 2023), health-
care (Yu et al., 2024c,b; Li et al., 2024a), financial
decision-making (Li et al., 2023b; Wu et al., 2023),
and advanced language reasoning (Fan et al., 2023;
Sharan et al., 2023; Jin et al., 2024a; Xu et al.,
2025). In particular, LLM prompting has become
a critical research area (Chen et al., 2023, 2024).

Corresponding: gl550@scarletmail.rutgers.edu

This is because LLMs are highly sensitive to input
content and format; even slight modifications, such
as changes in word order or indentation, can sig-
nificantly influence their performance (Sclar et al.,
2023; Fang et al., 2024; Jin et al., 2024c).

When LLMs are employed for task inferencing,
a user prompt (or query) typically comprises two
primary components: a task-specific instruction
and the input data to be processed according to
that instruction. For example,when employing an
LLM for Heart Disease classification (Baccouche
et al., 2020), the task-specific instruction can be
“analyze the following user’s health profile to de-
termine the likelihood of a heart attack”, while
the input data can include the individual’s health
profile, encompassing attributes such as age, med-
ical history, and lifestyle habits. In the context of
personalized recommendations, such as for beauty
products (Geng et al., 2022), the instruction can be
“generate beauty product recommendations based
on the user’s recent interaction history with other
beauty products”, with the input data consisting of
the user’s interaction history and a set of candidate
beauty products to make recommendations from.

Various prompting methods have been proposed
to enhance the inference performance of LLMs.
For example, multiple studies have focused on
crafting manual prompting strategies (Bsharat et al.,
2023; Sahoo et al., 2024; Marvin et al., 2023), such
as Chain-of-Thought (CoT) reasoning (Wei et al.,
2022). Additionally, automated methods have been
developed to search for optimal instructions tai-
lored to specific tasks (Do et al., 2024; Li et al.,
2024b). For instance, APE (Zhou et al., 2023) in-
troduces an iterative Monte Carlo search to refine
prompt instructions. Other works focus on provid-
ing in-context demonstrations (Dong et al., 2022),
offering examples to guide the model’s responses.

Most prior works on prompt engineering have
focused on two aspects: (1) optimizing the instruc-
tion component of the prompt and (2) augmenting

26134

https://github.com/glin2229/Automatic-Data-Optimization
https://github.com/glin2229/Automatic-Data-Optimization


Task Description: Please solve the logical puzzle:

Input Data: Tom is five years older than Lily. Lily is 10

years old. Tom likes playing soccer. How old is Tom?

Task Description: Please solve the following math-based

logical puzzle involving age relationships. The puzzle 

provides a set of age-related clues between multiple 

individuals, such as comparative age rankings.

Input Data: Tom is five years older than Lily. Lily is 10

years old. Tom likes playing soccer. How old is Tom?

5 years

older

Lily: 10 years How old?Tom: Unknown

Automatic Data Optimization (ADO)

Structural 

Reformulation

Content

Engineering

Task Description: Please solve the logical puzzle:

Input Data:

<sentence>

<subject>Tom</subject>

<verb>is</verb>

<ageDifference>5 years older than

 </ageDifference>

<subject>Lily</subject>

</sentence>

 <question>How old is Tom? </question>

Tom: like soccer

Instruction Optimization Data Augmentation

An example of logical puzzle (Irrelevant) (Question) A Prompt = Task Description + Input Data

<sentence>

<subject>Lily</subject>

<verb>is</verb>

<age>10 years old</age>

</sentence>

T
ra

d
it

io
n

a
l

A
p

p
ro

a
ch

e
s

P
ro

m
p

t

F
o

rm
u

la
ti

o
n

P
ro

p
o
se

d

S
o

lu
ti

o
n

Task Description: Please solve the logical puzzle:

Input Data: Tom is five years older than Lily. Lily is 10 years old. Tom likes playing

soccer. How old is Tom?

Below are some examples to learn how to solve this type of question:

1. Bob is 4 years younger than Amy. If Bob is 8 years old, then Amy is 12 years old.

2. Sam is twice the age of Julia. If Julia is 7 years old, then Sam is 14 years old.

Figure 1: Types of prompt engineering approaches. Given an inference task, such as solving a logical puzzle (as
shown in the middle of the figure), prior works primarily focus on either optimizing instructions or augmenting the
input data with similar examples, as depicted at the top of the figure. In contrast, we propose optimizing the input
data to enhance its presentation to LLMs for more effective task inference, as illustrated at the bottom of the figure.

the input data with additional context, such as in-
context exemplars, as illustrated on the “Traditional
Approach” section of Figure 1. Nevertheless, the
role of input data optimization in enhancing LLM
performance remains underexplored.

To address this gap, we investigate whether opti-
mizing the input data portion of the prompt can also
enhance performance, as depicted on the “Proposed
Solution” section of Figure 1. Towards this goal,
we propose a new framework “Automatic Data
Optimization (ADO)” as well as a new algorithm,
“Diverse Prompt Search (DPS)”. This framework
can optimize input data through two key strategies:
content engineering and structural reformulation.
First, we apply content engineering to refine in-
put data, such as imputing missing values based
on domain knowledge and removing irrelevant at-
tributes that may hinder decision-making. Second,
we leverage structural reformulation to modify the
format of input data, aiming to optimize data pre-
sentation to LLMs. Together, our proposed frame-
work has demonstrated its effectiveness to comple-
ment conventional prompting strategies to enhance
LLM inference performance.

2 ADO Framework

This section outlines the objectives of input data op-
timization and explains the mechanisms by which
the ADO framework achieves these objectives.

2.1 Framework Objective

In this work, we conduct data optimization on
the input data part of the prompt prior to submit-
ting the prompt to a LLM for inference. Our data
optimization objectives can be categorized into two
aspects: content optimization and format optimiza-
tion. Content optimization emphasizes enhancing
the saliency of features within the data, ensuring
that the most relevant and informative attributes
are highlighted. Format optimization focuses on
structuring the data in an optimal format, such as
tables, XML, or other representations that facili-
tate efficient processing and interpretation. Let D
represents the original input data. The overall data
optimization process can be considered as a com-
bination of both content and format optimizations,
resulting in an optimized dataset D′:

D′ = fformat(fcontent(D)) = f(D) (1)

where f is the composite optimization function.
This comprehensive approach ensures that the data
not only contains salient and derived features but is
also presented in a format that maximizes its utility
for inference tasks.

Content Optimization has been a prominent
area of research across various fields and modalities
(Ahmad et al., 2018; Zhou and Aggarwal, 2004).
For example, in tabular datasets, where each in-
dividual is represented by a set of attribute-value

26135



DPS Algorithm – Bayes Search

Task description

Objective Evaluator

▪ Cosine similarity constraint

▪ Score constraint

▪ # candidate prompts Data optimization prompts Optimized data

Samples of input data

< 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑝𝑡1 >
< 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑝𝑡2 >
< 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑝𝑡3 >
< 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑟𝑜𝑚𝑝𝑡4 >

Prompt-

Generation LLM

Data Optimi-

zation LLM

Task Inference

LLM

Meta Prompt

▪ Generation instruction

▪ Task description

▪ Historical prompt-

performance pairs

Optimization

score

Guide the design

Input

Redundant

Irrelevant

Missing

Parallelized Execution

Input

Input

Combine (+) Combine (+)

Input

Input

Sample prediction pairs

< ො𝑦, 𝑦 >1

< ො𝑦, 𝑦 >2

< ො𝑦, 𝑦 >3

Content & Format Optimization

Prompt-performance score pairs

< 𝑝𝑟𝑜𝑚𝑝𝑡1 > −< 𝑠𝑐𝑜𝑟𝑒1 >
< 𝑝𝑟𝑜𝑚𝑝𝑡2 > −< 𝑠𝑐𝑜𝑟𝑒2 >
< 𝑝𝑟𝑜𝑚𝑝𝑡3 > −< 𝑠𝑐𝑜𝑟𝑒3 >
< 𝑝𝑟𝑜𝑚𝑝𝑡4 > −< 𝑠𝑐𝑜𝑟𝑒4 >

Generate

Figure 2: ADO Workflow. The Prompt-Generation LLM initially proposes task-specific instructions for optimizing
input data, which the Data Optimization LLM executes on validation set samples, generating optimized inputs.
These optimized samples are then processed by the Task Inference LLM to produce task predictions. The Objective
Evaluator compares these predictions against the expected outputs (ground truth) using task-specific metrics to
compute a score. This score represents the quality of the data optimization instructions, with prior prompt-score
pairs provided as additional context to the Prompt-Generation LLM for refining instructions in future iterations.

pairs, common content optimization procedures in-
clude feature extraction, missing value imputation,
and attribute aggregation (Zheng and Casari, 2018).
These techniques aim to enhance the quality of the
data by emphasizing salient features and reducing
noise. In another example for image inputs, content
optimization often involves transformations such
as rotation, translation, flipping, cropping, and ad-
justments to brightness and contrast (Jiao and Zhao,
2019). These procedures are employed to enhance
model performance by augmenting the dataset and
improving the representation of important features
(Barrett and Cheney, 2002; Ling et al., 2021).

Traditionally, task-specific data engineering has
relied heavily on domain expertise (Ling et al.,
2021). For example, in the medical field, ex-
perts may derive new attributes from existing
ones—such as calculating the Body Mass Index
(BMI) from weight and height measurements—to
create more informative features for analysis. Simi-
larly, for data in natural language form, such as log-
ical puzzles or mathematical problem statements,
individuals with linguistic and analytical expertise
may augment the text by identifying contextual
cues, deducing relevant implicit information, and
explicitly defining known and unknown variables
to facilitate more effective interpretation.

However, employing human experts to craft and
refine each input data can be both costly and time-
consuming. With recent advancements in LLMs,
we propose leveraging LLMs as universal domain
experts. Specifically, we investigate their ability

to propose and execute content optimization pro-
cedures across datasets from diverse fields. By au-
tomating the content optimization process, we aim
to transform the original dataset D to optimized
version D’. The objective is to reduce reliance on
human expertise while maintaining or enhancing
model performance. This approach not only accel-
erates the data preparation phase but also has the
potential to uncover novel optimization strategies
that may be overlooked by human practitioners.

Format Optimization concentrates on the au-
tomatic discovery of the optimal format for pre-
senting input data to a LLM, after the content has
been optimized. Recent studies have demonstrated
that LLMs are highly sensitive to input formatting
(Sclar et al., 2023). For example, manipulations
such as positional swapping of in-context examples
or alphabet shifting have been observed to influ-
ence an LLM’s performance. Additionally, trans-
forming attribute-value pairs in tabular data into
structured formats like XML can enhance LLM
performance on classification tasks. Similarly, con-
verting natural language inputs into non-natural
language formats using emojis, logical operators,
or other symbolic figures has been shown to im-
prove LLM performance (Lin et al., 2024a). Here,
we again leverage LLM to find an optimal format-
ting function that maximizes the performance. By
utilizing LLMs to explore various formatting strate-
gies, we aim to identify structural reformulations
that enhance the LLM’s performance without alter-
ing the underlying content of the data.

26136



2.2 Framework Workflow Design
The ADO framework employs a set of LLMs to
automatically optimize the representation of input
data D. As illustrated in Figure 2, the process ini-
tiates with a Prompt Generation LLM, which pro-
poses a data-optimization prompt Po that outlines
a set of procedures for modifying D. Specifically,
these procedures consist of two sequential compo-
nents: the first provides step-by-step instructions
for modifying the content of D, while the second
details step-by-step instructions for reformulating
the content-optimized data.

Subsequently, a Data Optimization LLM pro-
gressively executes the proposed data-optimization
prompt by processing both Po and D, instruct-
ing the model to generate the optimized data
D′ to implement the target function D′ =
fformat(fcontent(D)). The optimized data D′ is then
submitted to a Task Inference LLM for processing,
and its performance is evaluated on a reserved vali-
dation set, serving as the performance measure for
Po. Finally, Po and its corresponding performance
are fed back into the Prompt Generation LLM as
additional context, enabling it to generate improved
data-optimization prompts in future search rounds.

We now formally define the ADO framework,
which involves three instances of LLMs:

• Prompt Generation LLM (LLMG): Given a
meta-prompt Pm used to instruct generating
the data-optimization-prompt Po, LLMG gen-
erates a set of candidate Pos aiming at provid-
ing instructions on how to optimize D:

Po = LLMG(Pm) (2)

• Data Optimization LLM (LLMO): Given a
data-optimization prompt Po, LLMO opti-
mizes D to produce the optimized data D′:

D′ = LLMO(Po,D) (3)

• Task Inference LLM (LLMI): Using the op-
timized data D′ and the task-specific instruc-
tion t, LLMI generates the final result y:

y = LLMI(D′, t) (4)

In the ADO framework, the search for the opti-
mal data-optimization prompt Po is typically con-
ducted using a reserved set of data points S =
{(x, y) | x ∈ DS , y ∈ YDS

} where YDS
is the

set of ground truth corresponding to DS . Given
S, we sequentially utilize the three LLM instances
to generate candidate prompts Pos, optimize the
data D, and produce the final inference result y′.
By comparing the generated outputs y and with the
ground truth labels y′, we can evaluate the quality
of each candidate Po using some task-specific loss
function L(y, y′). The optimization of Po can be
formulated as minimizing the loss over S:

P∗
o = arg min

Po∈LLMG(Pm)∑

(xi,yi)∈S
L(LLMI(LLMO(Po, xi), t), yi) (5)

Various optimization algorithms such as Auto-
matic Prompt Engineer (APE) (Zhou et al., 2023),
Automatic Prompt Optimization (APO) (Pryzant
et al., 2023), and Optimization by PROmpting
(OPRO) (Yang et al., 2024; Liu et al., 2024; Zhou
et al., 2023) can be employed to search for a bet-
ter Po based on the loss function L. Nevertheless,
such algorithms exhibit a potential limitation in
optimizing Po. In the following subsection, we
introduce the novel Diverse Prompt Search (DPS)
algorithm to address the limitation.

2.3 DPS Algorithm for Po Optimization

Recently, various optimization algorithms (Pryzant
et al., 2023; Yang et al., 2024; Liu et al., 2024) have
been proposed that leverage LLMs for automatic
prompt optimization. Specifically, APE employs
an LLM to propose several candidate prompts and
selects the one with the best performance based on
a reserved validation set. Subsequent works, such
as OPRO, build upon this by directly utilizing an
LLM as the prompt optimizer. For instance, OPRO
instructs an LLM to iteratively propose candidate
prompts, one at a time, while providing feedback
on the performance of prior proposed prompts on a
reserved validation set. This additional context en-
ables the LLM to generate prompts with improved
performance in subsequent iterations.

Nevertheless, recent studies (Zhang et al., 2024;
Tang et al., 2024) have shown that optimizing by
augmenting a single candidate prompt as context
in each iteration, without any constraints on the re-
semblance between candidate prompts, may hinder
the discovery of an optimal prompt. Despite being
instructed to generate new candidate prompts that
differ from previous ones, the LLM may at times
converge toward semantically or lexically similar

26137



variations of prior proposed prompt(s). In our case,
instead of proposing novel data optimization pro-
cedures, the LLM may keep proposing procedures
that refine the wording or reorder the steps in the
prior proposed procedures. This behavior reduces
diversity in prompt generation, restricting explo-
ration to a narrow region of the prompt space and
yielding only marginal performance improvements.

To this end, we propose the DPS algorithm,
which also employs a LLM as the prompt opti-
mizer, while generating multiple diverse candidate
prompts for each iteration of the search process,
with both semantic and lexical diversity constraints
enforced to grant prompt diversity. Specifically,
we request LLMG to generate k distinct candi-
date prompts {P1

o, ...,P
k
o} for each iteration of the

search. For both semantic and lexical diversity
among these prompts, we propose two constraints:

• Cosine similarity constraint (c1): The cosine
similarity between any pair of prompts should
be less than c1: cos (Pi

o,P
j
o) < c1, ∀i ̸= j

• METEOR Score Constraint (c2): The ME-
TEOR score (Saadany and Orasan, 2021) be-
tween any pair of prompts should be less than
c2: METEOR(Pi

o,P
j
o) < c2, ∀i ̸= j

To dynamically control the extent of prompt
diversity tailored to specific tasks, we propose
the novel idea of incorporating Bayesian Search
(Turner et al., 2021) to automatically determine
optimal values for k, c1, and c2 based on valida-
tion set performance. Since Bayesian Search has
been widely employed for hyper-parameter tun-
ing in various deep learning models, we propose
to integrate this approach with automatic prompt
search by treating ADO as a standalone model,
with k, c1, and c2 as its hyper-parameters. The
performance metric for each Bayesian Search itera-
tion is defined as the highest performance achieved
among all data-optimization prompts proposed by
ADO with a fixed set of hyper-parameters. Such
constraints ensure that the generated prompts are
semantically and lexically diverse, encouraging ex-
ploration of different regions in the prompt space.
For Bayesian Search details, please refer to A.1.

The generation of qualifying prompts is per-
formed iteratively by repeatedly querying LLMG
until all k diverse prompts satisfying the above con-
straints are obtained. Each candidate prompt Pi

o

is evaluated on S, based on which result we batch

update the generation Po. The evaluation involves
applying the data optimization and inference steps:

• Data optimization: x′i = LLMO(Pi
o, xi)

where xi is one input data in S

• Result inference: y′i = LLMI(x′i, t) where t
is the task-specific instruction.

The performance of each candidate Pi
o is as-

sessed by computing a loss function L over S:

li =
∑

(xi,yi)∈S
L(y′i, yi) (6)

The batch of prompt-performance pairs (Pi
o, li)

is then appended to Pm to guide subsequent itera-
tions of prompt generation. This feedback mech-
anism informs LLMG about the effectiveness of
previously generated prompts, enabling it to gener-
ate more promising candidates in future iterations.

By iteratively refining the set of candidate
prompts and incorporating performance feedback
with batch update, the DPS algorithm encourages
the exploration of a broader search space. This in-
creases the likelihood of discovering more effective
data optimization procedures, ultimately enhancing
the performance of the LLM on the given task.

3 Implementation Details

This section provides key implementation details
of the ADO framework, including the structure of
meta-prompts, the execution of parallelized data
optimization tasks, and the handling of LLM hal-
lucinations through multi-agent debate with cross-
validation. By leveraging these components, the
ADO framework effectively enhances both the con-
tent and format of input data to improve perfor-
mance across diverse tasks while maintaining fac-
tual accuracy and efficiency.

Meta-Prompt In this purely text-based data opti-
mization framework, the data-optimization prompt
Po must consist of instructions that can be executed
by the LLM without relying on external tools or op-
erations. To ensure this, we incorporate a compre-
hensive set of modality-specific constraints within
the meta-prompt Pm provided to LLMG . These
constraints guide the prompt generation process,
ensuring that LLMG avoids proposing optimization
procedures that LLMO is incapable of performing.
For instance, when generating instructions for tabu-
lar data, the meta-prompt explicitly prohibits steps

26138



such as Principal Component Analysis (PCA), nor-
malization, standardization, or one-hot encoding of
categorical attributes, as these require tool-based
operations beyond the LLM’s text-based capabili-
ties. An example of Pm is shown in Listing 1.

Parallelized Execution The generated data-
optimization prompt Po typically includes mul-
tiple procedures, each addressing a specific aspect
of data engineering or reformulation (e.g., missing
data imputation, structural conversion). We parse
the number of procedures generated from Po and
employ an equivalent number of LLM instances to
execute each procedure concurrently.

Parallel execution provides two advantages: (1)
avoiding omission or redundancy – we observed
that prompting LLMO to execute a lengthy list of
detailed procedures in one go often leads to omis-
sions and repetition. By executing procedures in
parallel, we mitigate these issues by breaking down
the tasks into smaller, independent units of work for
each LLM instance. (2) improving time efficiency –
Sequential execution of a long series of procedures
can be time-consuming. Since many procedures are
independent of each other and can be directly ap-
plied to the raw input data, distributing them across
multiple LLM instances significantly reduces the
overall time required for data optimization. For
procedures that depend on sequential execution –
where the output of one serves as the input for the
next – their execution is grouped together.

Hallucination Mitigation Instructions included
Po may sometimes be implemented inaccurately
by LLMO due to hallucinations. For example, if
Po includes a directive such as “Please identify the
mathematical terminologies and provide concise
definitions, accompanied by examples for each.”
LLMO may generate incorrect or inaccurate defini-
tions for some of the terms identified. These inac-
curacies could mislead the performance of LLMI ,
potentially degrading overall output quality.

To mitigate the risk of hallucination and im-
prove factual accuracy, we adapt a cross-validation
method inspired by (Du et al., 2023). In this frame-
work, we introduce an additional LLM, denoted
as LLMF , which reviews the optimized input data
to identify factual inaccuracies and provides con-
cise explanations for any detected errors. When
errors are found, LLMF ’s feedback is passed back
to LLMO, prompting it either to justify its original
output or to agree with the corrections suggested
by LLMF . By incorporating this cross-validation

framework, we ensure a higher level of factual ac-
curacy, leveraging the complementary strengths of
multiple LLMs to reduce the likelihood of halluci-
nations and errors in the final output.

4 Experiments

In this section, we aim to evaluate: (1) the effective-
ness of ADO as a standalone approach for perfor-
mance enhancement, (2) whether DPS outperforms
existing optimization algorithms in searching for
data-optimization procedures, and (3) whether inte-
grating ADO with other prompt engineering meth-
ods can further improve their performance.

4.1 Experiment Settings

Dataset To demonstrate the wide applicability of
data optimization, we conduct experiments on nine
publicly available, real-world datasets across vari-
ous domains where LLMs are frequently applied
(Fang et al., 2024; Li et al., 2023a; Lin et al., 2024b;
Rouzegar and Makrehchi, 2024). These datasets
include Big-Bench StrategyQA (QA) 1, Fraudu-
lent Job Detection (Job) 2, Grade School Math 8k
(GSM8k) 3, Amazon Beauty (AB) 4, Amazon Toys
(AT) 5, Amazon Electronics (AE) 6, Census Income
(CI) 7, Heart Disease (HD) 8, and Financial Dis-
tress (FD) 9. For each dataset, we randomly select
1,000 samples to form the validation set S.

Modeling The evaluation modeling is twofold.
First, we evaluate the effectiveness of ADO under
zero-shot prompting, using three LLMs with dif-
ferent backbones for generalizability. To perform
data-optimization procedure search, we employ
APE, OPRO, and DPS algorithms. Second, we
assess whether ADO can be integrated with exist-
ing prompt engineering techniques (i.e., Instruction
Optimization and Data Augmentation) to further
enhance their performance, with GPT-3.5 Turbo
as the backbone. For Instruction Optimization, we

1https://github.com/google/BIG-bench/tree/
main/bigbench/benchmark_tasks/strategyqa

2https://www.kaggle.com/datasets/shivamb/
real-or-fake-fake-jobposting-prediction

3https://huggingface.co/datasets/DaertML/
gsm8k-jsonl

4https://jmcauley.ucsd.edu/data/amazon/
5https://jmcauley.ucsd.edu/data/amazon/
6https://jmcauley.ucsd.edu/data/amazon/
7https://archive.ics.uci.edu/dataset/2/adult
8https://www.kaggle.com/datasets/kamilpytlak/

personal-key-indicators-of-heart-disease
9https://www.kaggle.com/c/GiveMeSomeCredit/

data?select=cs-test.csv

26139

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/strategyqa
https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/strategyqa
https://www.kaggle.com/datasets/shivamb/real-or-fake-fake-jobposting-prediction
https://www.kaggle.com/datasets/shivamb/real-or-fake-fake-jobposting-prediction
https://huggingface.co/datasets/DaertML/gsm8k-jsonl
https://huggingface.co/datasets/DaertML/gsm8k-jsonl
https://jmcauley.ucsd.edu/data/amazon/
https://jmcauley.ucsd.edu/data/amazon/
https://jmcauley.ucsd.edu/data/amazon/
https://archive.ics.uci.edu/dataset/2/adult
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease
https://www.kaggle.com/c/GiveMeSomeCredit/data?select=cs-test.csv
https://www.kaggle.com/c/GiveMeSomeCredit/data?select=cs-test.csv


LLM for ADO Algorithm QA Job GSM AB AT AE CI HD FD Mean

GPT-3.5 Turbo

N/A 0.578 0.619 0.285 0.124 0.129 0.211 0.788 0.617 0.639 0.443
APE 0.575 0.633 0.721 0.161 0.184 0.241 0.839 0.687 0.658 0.522

OPRO 0.583 0.627 0.734 0.169 0.195 0.238 0.846 0.681 0.667 0.527
DPS 0.589 0.638 0.755 0.166 0.213 0.253 0.853 0.704 0.652 0.536

Gemini-1.5 Flash

N/A 0.569 0.607 0.299 0.137 0.115 0.197 0.791 0.625 0.612 0.439
APE 0.581 0.621 0.698 0.159 0.176 0.219 0.827 0.701 0.661 0.516

OPRO 0.589 0.624 0.704 0.173 0.183 0.238 0.841 0.709 0.672 0.526
DPS 0.595 0.643 0.729 0.198 0.201 0.225 0.838 0.722 0.699 0.539

Llama-3.1 70B

N/A 0.563 0.588 0.281 0.117 0.135 0.188 0.769 0.629 0.615 0.431
APE 0.571 0.613 0.675 0.129 0.166 0.205 0.798 0.673 0.649 0.498

OPRO 0.574 0.619 0.693 0.135 0.173 0.213 0.806 0.692 0.657 0.507
DPS 0.581 0.635 0.718 0.159 0.189 0.229 0.827 0.711 0.661 0.523

Table 1: ADO performance across all datasets. “LLM for ADO” denotes the LLM used within the ADO framework.
“Algorithm” denotes the algorithm to search for optimal data-optimization procedures. “Mean” denotes the mean
performance across all datasets. The best performance for each dataset on every LLM is highlighted in bold.

employ either Chain-of-Thought (CoT) reasoning
(Wei et al., 2022) or PE2 (Ye et al., 2023) after
ADO is applied; similarly, for Data Augmentation,
we employ In-Context Learning (ICL) (Liu et al.,
2022) subsequent to employing ADO. For CoT, we
follow (Wei et al., 2022) by appending the phrase
“Let’s think step-by-step” at the end of the task in-
struction. For PE2, we employ it to search for the
optimal task instruction. For ICL, we randomly
select ten samples per dataset and augment them to
the prompt for extra context (Liu et al., 2022). For
additional modeling details, please refer to A.2.

Evaluation metrics We employ accuracy for
classification tasks (with balanced accuracy for
datasets with imbalanced targets) and Hit@10 for
the recommendation datasets from Amazon.

Baselines To evaluate the effectiveness of ADO,
we compare LLMIs′ performance without data op-
timization to the performance achieved after ADO
is applied. To evaluate the effectiveness of the DPS
algorithm on data-optimization procedure search,
we compare it against two recent optimization al-
gorithms: APE and OPRO. It is important to high-
light that ADO represents a novel sub-direction in
the field of prompt engineering and can be com-
bined with existing prompt engineering techniques.
Unlike a competitive relationship, ADO and tech-
niques such as CoT, PE2, and ICL are in fact
complementary, enabling joint application for en-
hanced performance. Thus, we utilize CoT, PE2,
and ICL as baselines to observe whether combining
ADO with any of these techniques achieves better
performance compared to using them alone.

LLM Backbones We employ three instances of
the same LLM as LLMG , LLMO, and LLMI . For
generalizability, we test with three different LLMs,

including GPT-3.5 Turbo, Gemini-1.5 Flash, and
Llama-3.1 70B. Additionally, Gemini-1.5 Pro is
instantiated as LLMF , which will be employed
in Section 4.3. We set the temperature to 1.0 for
LLMG to encourage the generation of more cre-
ative content. For LLMO and LLMI , we set the
temperature to 0 to obtain more consistent outputs.

4.2 Result and Analysis

As demonstrated by Table 1, employing ADO for
data optimization consistently leads to compara-
ble or superior performance across all datasets on
all three LLM backbones, compared to task infer-
encing with unoptimized data. Additionally, DPS
outperforms both APE and OPRO on seven, seven,
and nine out of nine datasets for GPT-3.5 Turbo,
Gemini-1.5 Flash, and Llama-3.1 70B, respectively.
This highlights the effectiveness of batch-based
prompt search with candidates that are both seman-
tically and lexically diverse, with the degree of
diversity configured via Bayesian Search.

Furthermore, Table 2 demonstrates that integrat-
ing ADO with existing prompt engineering tech-
niques, including CoT, ICL, and PE2, consistently
results in a noticeable performance enhancement
compared to employing these techniques alone,
across all nine evaluated datasets. For instance,
ADO significantly boosts the effectiveness of CoT,
particularly in the QA, Job, and FD datasets. For
QA, applying CoT alone even results in a slight per-
formance drop compared to not applying it, while
combining CoT with ADO yields substantially bet-
ter performance (Figure 3 provides an additional
visualization of the performance gains from ADO
integration with CoT). These results demonstrate
the complementarity of ADO with both Instruction
Optimization and Data Augmentation methods.

26140



Modeling variant QA Job GSM AB AT AE CI HD FD Mean
GPT 0.578 0.619 0.285 0.124 0.129 0.211 0.788 0.617 0.639 0.443
GPT w/ CoT 0.571 0.663 0.698 0.127 0.137 0.198 0.827 0.678 0.688 0.510
GPT w/ CoT + ADO 0.679 0.807 0.851 0.185 0.219 0.257 0.879 0.751 0.789 0.602
GPT w/ ICL 0.584 0.617 0.294 0.141 0.147 0.225 0.809 0.651 0.653 0.458
GPT w/ ICL + ADO 0.597 0.641 0.778 0.199 0.223 0.262 0.851 0.728 0.668 0.549
GPT w/ PE2 0.592 0.634 0.301 0.162 0.152 0.209 0.838 0.649 0.685 0.469
GPT w/ PE2 + ADO 0.618 0.659 0.312 0.183 0.178 0.234 0.863 0.697 0.722 0.496

Table 2: Performance when ADO is combined with other prompt engineering techniques, using GPT-3.5 Turbo as
the backbone (denoted as “GPT”). “CoT + ADO” denotes applying both CoT and ADO, “ICL + ADO” denotes
applying both ICL and ADO, and “PE2 + ADO” denotes applying both PE2 and ADO. For each dataset on each
technique, any performance enhancement resulting from ADO integration is highlighted in bold.

4.3 Ablation Study

In this section, we perform a detailed ablation study
to assess the impact of different components of
the ADO framework from three perspectives: (1)
whether both content optimization and format opti-
mization are necessary, (2) whether incorporating a
factual-validation LLM (LLMF ) improves perfor-
mance, and (3) whether data-optimizing in-context
examples yields performance gains.

To examine each of these aspects, we design
three corresponding experiments: (1) we explicitly
constrain the data optimization process to operate
solely on either content or format to observe per-
formance changes; (2) we incorporate LLMF into
the ADO workflow for output cross-validation to
evaluate its impact on task performance; and (3)
we apply the same data optimization procedures to
samples within the in-context examples to assess
whether such alignment improves performance.

For more experimental details, please refer to
A.3. The results of all three experiments are pre-
sented in Table 3 in the Appendix. As the ta-
ble demonstrates, both content and format opti-
mizations are essential for performance: remov-
ing format optimization significantly reduced per-
formance on recommendation datasets and the CI
dataset, while removing content optimization led
to declines on other datasets. Moreover, incorporat-
ing LLMF for hallucination mitigation produced
comparable or improved performance across all
datasets, with most significant gains on the QA,
Job, and GSM datasets. Finally, optimizing input
data in ICL examples led to noticeable improve-
ments compared to its unoptimized counterpart,
particularly on the Job, GSM, and FD datasets.

5 Related Work

Numerous approaches have been proposed for mod-
ifying prompts to enhance LLM performance, such

as In-Context Learning and Instruction Optimiza-
tion. In-Context Learning concentrates on provid-
ing the LLM with additional in-prompt exemplars
from the same task domain, typically in the form
of input data paired with their corresponding la-
bels or outputs (Wei et al., 2023; Dong et al., 2022;
Shin et al., 2022). This method capitalizes on the
model’s ability to generalize from in-prompt exam-
ples, enabling the LLM to better comprehend the
expected output format and task-specific require-
ments based on the provided exemplars.

Instruction Optimization aims to modify the in-
struction part of the prompt to improve LLM per-
formance. For example, Si et al. (2022) points
out that composing better instructions can greatly
boost LLM’s performance on task inferencing. Wei
et al. (2022) proposes CoT reasoning, which intro-
duces immediate reasoning steps into the output
generation process. As demonstrated by (Wei et al.,
2022), employing zero-shot CoT substantially im-
prove LLM performance tasks including logical
reasoning, fraud detection, among many others. Ex-
tending beyond manually crafted instructions, vari-
ous studies have proposed automated methods to
search for optimal instructions tailored to specific
tasks (Zhou et al., 2023; Pryzant et al., 2023; Yang
et al., 2024). For instance, APE (Zhou et al., 2023)
introduces an iterative Monte Carlo search to refine
prompt instructions. It first uses an instruction-
proposing LLM to generate a set of candidate in-
structions, then evaluates each on a validation set
to select the best-performing candidates.

Despite these advances, directly optimizing the
presentation of input data has received little atten-
tion. In this work, we hypothesize that optimizing
both the data content and format may yield per-
formance improvement when employing LLM for
task inferencing. Building on the principles of au-
tomatic prompt optimization, we propose a novel

26141



framework called Automatic Data Optimization
(ADO). In ADO, an LLM, denoted as LLMG , iter-
atively proposes and searches data-optimization in-
structions aimed at maximizing LLM performance.

6 Conclusions

In this paper, we introduce a new sub-direction
of prompt engineering: input data optimization,
facilitated by the ADO framework and the DPS
algorithm. The ADO framework automates con-
tent and format optimization by leveraging LLMs
as universal domain experts, reducing the need for
manual data processing. DPS enhances this process
by generating diverse data optimization prompts,
enabling broader exploration and increasing the
likelihood of identifying optimal procedures. Em-
pirical results demonstrate that ADO not only im-
proves modeling performance when used alone but
also further enhances performance when combined
with other prompt engineering methods.

In the future, we plan to include credible task-
specific factual knowledge bases to facilitate Re-
trieval Augmented Generations (Yu et al., 2024a),
in order to further mitigate hallucination. We also
aim to perform various interpretability studies un-
der the context of input data optimization, as in-
spired by (Jin et al., 2024b, 2025; Sun et al., 2025).

7 Limitations

As we explore the novel approach of input data op-
timization within prompts, we question whether
it is possible to simultaneously search for both
the optimal instruction and the optimal procedures
for input data optimization in a specific inference
task. Currently, as detailed in the paper, we first
search for the optimal data representation using
ADO, and then for the optimal instruction using
PE2. However, this process involves two distinct
steps, and it would be more efficient to search for
both the instruction and data optimization concur-
rently. Moreover, such a greedy, two-step search
strategy may not always yield globally optimal re-
sults. Therefore, in the future, we aim to investigate
the feasibility of jointly optimizing both compo-
nents, as proposed in (Sordoni et al., 2024; Chen
et al., 2024), to further enhance LLM performance.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Awais Ahmad, Murad Khan, Anand Paul, Sadia Din,
M Mazhar Rathore, Gwanggil Jeon, and Gyu Sang
Choi. 2018. Toward modeling and optimization of
features selection in big data based social internet
of things. Future Generation Computer Systems,
82:715–726.

Asma Baccouche, Begonya Garcia-Zapirain, Cristian
Castillo Olea, and Adel Elmaghraby. 2020. Ensem-
ble deep learning models for heart disease classi-
fication: A case study from mexico. Information,
11(4):207.

William A Barrett and Alan S Cheney. 2002. Object-
based image editing. In Proceedings of the 29th
annual conference on Computer graphics and inter-
active techniques, pages 777–784.

Sondos Mahmoud Bsharat, Aidar Myrzakhan, and
Zhiqiang Shen. 2023. Principled instructions are all
you need for questioning llama-1/2, gpt-3.5/4. arXiv
preprint arXiv:2312.16171.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené,
and Shengxin Zhu. 2023. Unleashing the potential of
prompt engineering in large language models: a com-
prehensive review. arXiv preprint arXiv:2310.14735.

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang,
Nicholas Roy, and Chuchu Fan. 2024. Prompt op-
timization in multi-step tasks (promst): Integrating
human feedback and preference alignment. arXiv
preprint arXiv:2402.08702.

Viet-Tung Do, Van-Khanh Hoang, Duy-Hung Nguyen,
Shahab Sabahi, Jeff Yang, Hajime Hotta, Minh-Tien
Nguyen, and Hung Le. 2024. Automatic prompt
selection for large language models. arXiv preprint
arXiv:2404.02717.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Lizhou Fan, Wenyue Hua, Lingyao Li, Haoyang
Ling, Yongfeng Zhang, and Libby Hemphill. 2023.
Nphardeval: Dynamic benchmark on reasoning abil-
ity of large language models via complexity classes.
arXiv preprint arXiv:2312.14890.

Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang,
Ziqing Hu, Yanjun (Jane) Qi, Scott Nickleach, Diego
Socolinsky, "SHS" Srinivasan Sengamedu, and Chris-
tos Faloutsos. 2024. Large language models (llms) on
tabular data: Prediction, generation, and understand-
ing - a survey. Transactions on Machine Learning
Research.

26142

https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey
https://www.amazon.science/publications/large-language-models-llms-on-tabular-data-prediction-generation-and-understanding-a-survey


Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge,
and Yongfeng Zhang. 2022. Recommendation as
language processing (rlp): A unified pretrain, person-
alized prompt & predict paradigm (p5). In Proceed-
ings of the 16th ACM Conference on Recommender
Systems, pages 299–315.

Wenyue Hua, Lei Li, Shuyuan Xu, Li Chen, and
Yongfeng Zhang. 2023. Tutorial on large language
models for recommendation. In Proceedings of the
17th ACM Conference on Recommender Systems,
pages 1281–1283.

Licheng Jiao and Jin Zhao. 2019. A survey on the new
generation of deep learning in image processing. Ieee
Access, 7:172231–172263.

Mingyu Jin, Weidi Luo, Sitao Cheng, Xinyi Wang,
Wenyue Hua, Ruixiang Tang, William Yang Wang,
and Yongfeng Zhang. 2024a. Disentangling mem-
ory and reasoning ability in large language models.
arXiv preprint arXiv:2411.13504.

Mingyu Jin, Kai Mei, Wujiang Xu, Mingjie Sun, Ruix-
iang Tang, Mengnan Du, Zirui Liu, and Yongfeng
Zhang. 2025. Massive values in self-attention mod-
ules are the key to contextual knowledge understand-
ing. arXiv preprint arXiv:2502.01563.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng
Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao,
Kai Mei, Yanda Meng, Kaize Ding, et al. 2024b. Ex-
ploring concept depth: How large language models
acquire knowledge and concept at different layers?
arXiv preprint arXiv:2404.07066.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. 2024c. The impact of reasoning step
length on large language models. In Findings of the
Association for Computational Linguistics ACL 2024,
pages 1830–1842.

Lei Li, Yongfeng Zhang, and Li Chen. 2023a. Prompt
distillation for efficient llm-based recommendation.
In Proceedings of the 32nd ACM International Con-
ference on Information and Knowledge Management,
pages 1348–1357.

Lingyao Li, Jiayan Zhou, Zhenxiang Gao, Wenyue
Hua, Lizhou Fan, Huizi Yu, Loni Hagen, Yonfeng
Zhang, Themistocles L Assimes, Libby Hemphill,
et al. 2024a. A scoping review of using large lan-
guage models (llms) to investigate electronic health
records (ehrs). arXiv preprint arXiv:2405.03066.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen.
2023b. Large language models in finance: A sur-
vey. In Proceedings of the fourth ACM international
conference on AI in finance, pages 374–382.

Zelong Li, Jianchao Ji, Yingqiang Ge, Wenyue Hua, and
Yongfeng Zhang. 2024b. Pap-rec: Personalized auto-
matic prompt for recommendation language model.
arXiv preprint arXiv:2402.00284.

Guo Lin, Wenyue Hua, and Yongfeng Zhang. 2024a.
Promptcrypt: Prompt encryption for secure commu-
nication with large language models. arXiv preprint
arXiv:2402.05868.

Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli
Feng, Yinwei Wei, and Tat-Seng Chua. 2024b. Data-
efficient fine-tuning for llm-based recommendation.
In Proceedings of the 47th International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 365–374.

Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook
Kim, Antonio Torralba, and Sanja Fidler. 2021. Ed-
itgan: High-precision semantic image editing. Ad-
vances in Neural Information Processing Systems,
34:16331–16345.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mo-
hta, Tenghao Huang, Mohit Bansal, and Colin A Raf-
fel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems,
35:1950–1965.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang,
and Yew-Soon Ong. 2024. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE.

Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo,
and Joyce Nakatumba-Nabende. 2023. Prompt engi-
neering in large language models. In International
conference on data intelligence and cognitive infor-
matics, pages 387–402. Springer.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with" gradient descent" and
beam search. arXiv preprint arXiv:2305.03495.

Hamidreza Rouzegar and Masoud Makrehchi. 2024.
Enhancing text classification through llm-driven ac-
tive learning and human annotation. arXiv preprint
arXiv:2406.12114.

Hadeel Saadany and Constantin Orasan. 2021. Bleu,
meteor, bertscore: evaluation of metrics performance
in assessing critical translation errors in sentiment-
oriented text. arXiv preprint arXiv:2109.14250.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha,
Vinija Jain, Samrat Mondal, and Aman Chadha.
2024. A systematic survey of prompt engineering in
large language models: Techniques and applications.
arXiv preprint arXiv:2402.07927.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
arXiv preprint arXiv:2310.11324.

SP Sharan, Francesco Pittaluga, Manmohan Chandraker,
et al. 2023. Llm-assist: Enhancing closed-loop plan-
ning with language-based reasoning. arXiv preprint
arXiv:2401.00125.

26143



Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong
Kim, HyoungSeok Kim, Boseop Kim, Kyunghyun
Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha,
et al. 2022. On the effect of pretraining corpora on
in-context learning by a large-scale language model.
arXiv preprint arXiv:2204.13509.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Boyd-Graber, and Li-
juan Wang. 2022. Prompting gpt-3 to be reliable.
arXiv preprint arXiv:2210.09150.

Alessandro Sordoni, Eric Yuan, Marc-Alexandre Côté,
Matheus Pereira, Adam Trischler, Ziang Xiao, Arian
Hosseini, Friederike Niedtner, and Nicolas Le Roux.
2024. Joint prompt optimization of stacked llms
using variational inference. Advances in Neural In-
formation Processing Systems, 36.

Guangyan Sun, Mingyu Jin, Zhenting Wang, Cheng-
Long Wang, Siqi Ma, Qifan Wang, Tong Geng,
Ying Nian Wu, Yongfeng Zhang, and Dongfang Liu.
2025. Visual agents as fast and slow thinkers. In
ICLR.

Xinyu Tang, Xiaolei Wang, Wayne Xin Zhao, Siyuan
Lu, Yaliang Li, and Ji-Rong Wen. 2024. Unleashing
the potential of large language models as prompt op-
timizers: An analogical analysis with gradient-based
model optimizers. arXiv preprint arXiv:2402.17564.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ryan Turner, David Eriksson, Michael McCourt, Juha
Kiili, Eero Laaksonen, Zhen Xu, and Isabelle Guyon.
2021. Bayesian optimization is superior to random
search for machine learning hyperparameter tuning:
Analysis of the black-box optimization challenge
2020. In NeurIPS 2020 Competition and Demon-
stration Track, pages 3–26. PMLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. 2023. Larger language
models do in-context learning differently. arXiv
preprint arXiv:2303.03846.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, et al. 2024. A survey on large
language models for recommendation. World Wide
Web, 27(5):60.

Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski,
Mark Dredze, Sebastian Gehrmann, Prabhanjan Kam-
badur, David Rosenberg, and Gideon Mann. 2023.
Bloomberggpt: A large language model for finance.
arXiv preprint arXiv:2303.17564.

Wujiang Xu, Zujie Liang, Jiaojiao Han, Xuying Ning,
Wenfang Lin, Linxun Chen, Feng Wei, and Yongfeng
Zhang. 2024. Slmrec: empowering small language
models for sequential recommendation. arXiv e-
prints, pages arXiv–2405.

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Jun-
tao Tan, and Yongfeng Zhang. 2025. A-mem:
Agentic memory for llm agents. arXiv preprint
arXiv:2502.12110.

Chengrun Yang, Xuezhi Wang Wang, Yifeng Lu Lu,
Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. 2024. Large language models as optimizers.
In ICLR.

Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and
Fereshte Khani. 2023. Prompt engineering a prompt
engineer. arXiv preprint arXiv:2311.05661.

Hao Yu, Aoran Gan, Kai Zhang, Shiwei Tong, Qi Liu,
and Zhaofeng Liu. 2024a. Evaluation of retrieval-
augmented generation: A survey. In CCF Conference
on Big Data, pages 102–120. Springer.

Huizi Yu, Lizhou Fan, Lingyao Li, Jiayan Zhou, Zi-
hui Ma, Lu Xian, Wenyue Hua, Sijia He, Mingyu
Jin, Yongfeng Zhang, et al. 2024b. Large language
models in biomedical and health informatics: A bib-
liometric review. arXiv preprint arXiv:2403.16303.

Huizi Yu, Jiayan Zhou, Lingyao Li, Shan Chen, Jack
Gallifant, Anye Shi, Xiang Li, Wenyue Hua, Mingyu
Jin, Guang Chen, et al. 2024c. Aipatient: Simulating
patients with ehrs and llm powered agentic workflow.
arXiv preprint arXiv:2409.18924.

Tuo Zhang, Jinyue Yuan, and Salman Avestimehr. 2024.
Revisiting opro: The limitations of small-scale llms
as optimizers. arXiv preprint arXiv:2405.10276.

Alice Zheng and Amanda Casari. 2018. Feature engi-
neering for machine learning: principles and tech-
niques for data scientists. " O’Reilly Media, Inc.".

Michelle X Zhou and Vikram Aggarwal. 2004. An
optimization-based approach to dynamic data con-
tent selection in intelligent multimedia interfaces. In
Proceedings of the 17th annual ACM symposium on
User interface software and technology, pages 227–
236.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In ICLR.

26144



A Appendix

A.1 Bayesian Search Specifics

Bayesian Search fits a probabilistic surrogate to
the objective and chooses new hyper-parameter
settings via an acquisition function that balances
exploration and exploitation, yielding higher effi-
ciency than random search (Turner et al., 2021).
In this work, we propose to incorporate Bayesian
Search as part of the data-optimization proce-
dure search, by tuning k, c1, and c2 as “hyper-
parameters” of ADO based on performance of the
validation set S. This enables us to dynamically
control both the number of candidate prompts to be
generated per iteration for batch update, as well as
the degree of diversity among candidate prompts.

A.2 Additional Modeling Specifics

When combining ADO with zero-shot CoT prompt-
ing or ICL with fixed samples, one may choose
whether or not to integrate such methods into the
task inference LLM (via prompt augmentation) dur-
ing the search of data-optimization procedures for
enhanced alignment. While such integration could
potentially lead to improved performance, it also
introduces greater computational overhead.

As we categorize PE2 and zero-shot CoT as
two distinct prompt engineering algorithms, we
constrain PE2 from producing any procedural-
reasoning phrases when searching for instructions
on mathematical datasets (e.g., GSM), rather than
initializing the search with CoT-prompting as done
in the original paper. To stay consistent with this
constraint, for the GSM dataset in particular, we
also explicitly specify in the ADO meta-prompt
that the data optimization procedures should mini-
mize any derivation beyond the original input data,
with respect to both content and format.

Even with the constrained meta-prompt, ADO
combined with PE2 still yields better performance
than PE2 alone on the GSM dataset, as showcased
in Table 2. For completeness, we also evaluate
the standard (i.e., unconstrained) ADO paired with
PE2, which achieves an accuracy of 0.811 on GSM.

A.3 Ablation Study Specifics

All experiments reported in this section are con-
ducted with GPT-3.5 Turbo as the backbone.

Data Optimization Objectives We evaluate
the effectiveness of the two optimization objec-
tives—content optimization and format optimiza-

tion—in ADO. To this end, we constrain the data-
optimization prompt Po to focus on either data
engineering procedures (content optimization) or
structural reformulation (format optimization), us-
ing zero-shot CoT as the prompting format. Specif-
ically, we modify the meta-prompt Pm to explicitly
prohibit instructions related to the non-evaluated
aspect, ensuring Po is restricted to either content or
format optimization. These are denoted as “ADO-
Engineering” (data engineering only) and “ADO-
Reformulation” (structural reformulation only).

Factual-validation LLM We also investigate
whether integrating the factual-validation LLM
(LLMF ) into the ADO workflow as described in
Section 3 enhances performance, again with zero-
shot CoT as the prompting format for the frame-
work. Specifically, we perform cross-validation on
optimized input data, iterating between LLMF and
LLMO until a consensus is reached or a maximum
of 4 rounds is completed. If no consensus reached,
the optimized input from the final validation round
is used for prompt construction. This configuration
is referred to as “ADO w/ Factual-check.”

Optimized Input for ICL In Section 4, all in-
context examples are presented in their unopti-
mized form. Here, we examine whether optimizing
the input data of ICL examples, using the same
procedures applied to the evaluation data, leads to
improved performance. The hypothesis is that op-
timized in-context examples will better align with
the evaluation input data, facilitating easier implicit
learning for the LLM. Thus, we optimize the ICL
input data and augment the prompt with these op-
timized examples paired with their respective out-
puts, denoted as “ADO on ICL Samples.”

Table 3 presents the ablation study results. For
the first experiment: both data engineering and
structural reformulation are crucial for maintaining
performance. Limiting optimization to data engi-
neering led to a significant drop in performance
on all recommendation datasets and the CI dataset,
while restricting optimization to structural reformu-
lation resulted in performance degradation on the
other datasets. For the second experiment, incorpo-
rating LLMF for factual cross-validation yielded
similar or superior performance across all datasets,
with notable gains on datasets requiring factual rea-
soning, such as the QA, Job, and GSM. Finally,
optimizing the samples within in-context examples
led to noticeable improvements, highlighting the
effectiveness of our alignment-based approach.

26145



QA Job GSM AB AT AE CI HD FD
ADO-Engineering 0.667 0.789 0.843 0.155 0.177 0.229 0.839 0.742 0.776
ADO-Reformulation 0.602 0.719 0.734 0.189 0.208 0.253 0.868 0.684 0.705
ADO w/ Factual-check 0.691 0.823 0.864 0.187 0.221 0.262 0.884 0.747 0.795
ADO on ICL Samples 0.599 0.682 0.803 0.187 0.228 0.267 0.871 0.734 0.691

Table 3: Ablation Study Performance.

Figure 3: Performance comparison between CoT vs CoT + ADO on all datasets, with GPT-3.5 Turbo as backbone.

1 Dataset Description: <description>
2

3 Your task is to propose a creative,
4 detailed, and step-by-step algorithm
5 to enrich and then reformulate samples
6 in this dataset. The goal of the
7 algorithm is to perform thorough
8 data engineering and reformulation on
9 the sample, so that it is easier for

10 an LLM to generate the target outputs.
11

12 Below are some example dataset samples
13 with target outputs as references:
14

15 Examples:
16 - <sample input1>; Output: <sample output1>
17 - <sample input2>; Output: <sample output2>
18 - <sample input3>; Output: <sample output3>
19 - ...
20

21 Please Note:
22 - Do NOT refer to any external database.
23 - Do NOT perform vector generations.
24 - ONLY propose steps that an LLM
25 can execute on its own.
26 - ...
27

28 Below is a list of prior-proposed data
29 optimization algorithms, provided to
30 you as additional context:
31 - Algorithm 1; Score: a1
32 - Algorithm 2; Score: a2
33 - ...

Listing 1: Meta Prompt Example

26146


