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Abstract

Recently, there has been growing interest in
leveraging large language models (LLMs) to
generate symbolic world models from textual
descriptions. Although LLMs have been exten-
sively explored in the context of world mod-
eling, prior studies encountered several chal-
lenges, including evaluation randomness, de-
pendence on indirect metrics, and a limited
domain scope. To address these limitations, we
introduce a novel benchmark, TEXT2WORLD,
based on planning domain definition language
(PDDL), featuring hundreds of diverse domains
and employing multi-criteria, execution-based
metrics for a more robust evaluation. We bench-
mark current LLMs using TEXT2WORLD and
find that reasoning models trained with large-
scale reinforcement learning outperform oth-
ers. However, even the best-performing model
still demonstrates limited capabilities in world
modeling. Building on these insights, we ex-
amine several promising strategies to enhance
the world modeling capabilities of LLMs, in-
cluding test-time scaling, agent training, and
more. We hope that TEXT2WORLD can serve
as a crucial resource, laying the groundwork for
future research in leveraging LLMs as world
models.

1 Introduction

The significance of world models for intelligent be-
havior has been historically acknowledged in early
psychological theories, which posited that organ-
isms employ internal representations of the exter-
nal world for prediction and planning (Craik, 1967).
Furthermore, LeCun (2022) extends this concept
by highlighting world modeling as a core compo-
nent of autonomous machine intelligence. In this
paper, we primarily study symbolic world models
(also known as domain models), which are formal
representations of an environment’s dynamics and
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constraints. In recent years, Large Language Mod-
els (LLMs) (OpenAI, 2022; Yang et al., 2024; Meta
AI, 2024) have showcased their understanding of
common-world knowledge, making them promis-
ing candidates for generating symbolic world mod-
els, which requires inferring action dynamics and
constraints from solely natural language descrip-
tion (Qin et al., 2024; Chen et al., 2024b, 2025a).
Some works have already explored this across nu-
merous tasks, including planning (Hu et al., 2024b;
Guan et al., 2023), game design (Wang et al., 2023a,
2024), reinforcement learning (Tang et al., 2024)
among others.

Despite extensive exploration, previous work for
evaluating symbolic world model generation suf-
fers from several key limitations: (i) Limited Do-
main Scope: These studies are often confined to
a narrow set of domains (typically fewer than 20),
which limits the generalizability and applicabil-
ity of their findings (Oswald et al., 2024; Silver
et al., 2024; Wong et al., 2023). (ii) Evaluation
Randomness: Some works rely on LLM-based
evaluation methods, which may introduce addi-
tional margins of error (Wang et al., 2023a). Pre-
liminary experiments in Section 3.6 demonstrate
that the LLM-based evaluation exhibits a low inter-
annotator agreement with human annotators (Co-
hen’s κ = 0.10). (iii) Indirect Evaluation: Some
studies evaluate world models based on end-to-end
success rates in model-based planning, making it
difficult to identify specific failure modes (Guan
et al., 2023; Dainese et al., 2024).

Motivated by these issues, this paper introduces
a novel benchmark TEXT2WORLD based on the
Planning Domain Definition Language (PDDL),
as illustrated in Figure 1. Specifically, to address
the first issue, we initially gathered a broad set of
domains, which were then filtered through an au-
tomated pipeline and manually curated to ensure
their quality, ultimately resulting in a collection
of hundreds of diverse domains. Furthermore, to
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You are tasked with converting a given natural
language description of…
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Figure 1: Overview of TEXT2WORLD.

tackle the second issue, we designed multi-criteria,
execution-based metrics to ensure a more robust as-
sessment. Specifically, we not only employed struc-
tural similarity for an overall evaluation but also
designed component-wise F1 scores to assess finer-
grained aspects such as action dynamics. More-
over, to overcome the third issue, we systemati-
cally applied these metrics to assess the generated
world model directly, eliminating reliance on indi-
rect feedback mechanisms.

We also performed data contamination analysis
using n-gram matching (Touvron et al., 2023), re-
vealing a lower contamination rate (µ = 0.04) com-
pared to prior works (Guan et al., 2023; Smirnov
et al., 2024), indicating that TEXT2WORLD effec-
tively evaluates LLMs’ world modeling capabilities
rather than pattern memorization.

We used TEXT2WORLD to benchmark the world
modeling capabilities of 16 different LLMs from
9 model families. Experimental results in Table 1
highlight several key findings: (i) The most ad-
vanced LLMs still struggle with TEXT2WORLD;
(ii) large reasoning models trained by reinforce-
ment learning show stronger world modeling ca-
pabilities; and (iii) error correction significantly
improves model performance. To gain a deeper
understanding, we performed a manual error anal-
ysis and found that the majority were due to the
LLMs’ inability to include essential preconditions
or effects. We also explored several strategies to
enhance the world modeling capabilities of LLMs.
Specifically, we initially experimented with scaling

the test-time budget and observed consistent im-
provements as the test-time budget increased. Ad-
ditionally, methods like fine-tuning and in-context
learning contributed positively to model effective-
ness. Moreover, we found that supervised fine-
tuning on agent trajectory data yielded unexpected
gains, underscoring the importance of robust world
modeling for developing high-performing agents.

To facilitate further research, benchmark and
code are available at this URL.

2 Preliminary

2.1 World Model
We formally define a symbolic world model as
D = ⟨F,A⟩, where F represents the set of fluents
(state variables represented as predicates) and A
is the set of possible actions. Each fluent f ∈ F
is a predicate of the form p(x1, ..., xn), where p is
the predicate name and x1, ..., xn are typed vari-
ables. Each action a ∈ A is defined as a tuple
a = ⟨α,P, φ, E⟩ where: i) α denotes the action
signature (identifier); ii) P represents a list of typed
parameters (p1, ..., pk); iii) φ specifies the precon-
ditions: a logical formula over fluents that must
hold for the action to be applicable; and iv) E de-
fines the effects: a set of fluent literals describing
how the action changes the world state.

2.2 Task Definition
The task is formally defined as: M : N →
D,D |= N , where M is a mapping function (im-
plemented by an LLM) that generates world model
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D from the natural language description N . |=
denotes semantic satisfaction. Each N contains
the following components: i) A general descrip-
tion describing the overall objective of the domain;
ii) A set of predicates NF = {f1, ..., fn} where
each predicate is described with its signature (e.g.,
“(conn ?x ?y)”) and an explanation (e.g., “Indicates
a connection between two places ?x and ?y”); iii)
A set of actions NA = {a1, ..., am} where each
action is described with: its signature (e.g., “move
<?curpos> <?nextpos>”) and an explanation (e.g.,
“Allows the robot to move from place <?curpos> to
place <?nextpos>”). Note that to evaluate LLMs’
inherent world modeling capabilities, action de-
scriptions in NA are intentionally kept at a high
level, without explicit specifications of precondi-
tions φ and effects E . This design choice allows
us to assess how well LLMs can infer the under-
lying world dynamics and constraints from purely
descriptive text. A comparative analysis of model
performance conditioned on different description
styles is presented in Section 6.5.

2.3 Evaluation Metrics

We directly evaluated generated world models, ad-
dressing the ambiguity associated with indirect
evaluations (Guan et al., 2023; Dainese et al., 2024).
In addition, we proposed using execution-based
metrics, overcoming the randomness of LLM-
based evaluation (Wang et al., 2023a). Specifi-
cally, we established the following evaluation met-
rics: (i) Executability (EXEC.) measures whether
the generated PDDL can be successfully parsed
and validated by standard PDDL validators. (ii)
Structural Similarity (SIM.) quantifies the tex-
tual similarity between the generated and ground
truth PDDL using normalized Levenshtein ratio.
(iii) Component-wise F1 Scores: When generated
PDDL achieves executability (EXEC. = 1), we
perform fine-grained analysis by calculating the
macro-averaged F1 score for each component type
(predicates, actions, etc.). More specifically, we
compute F1 scores for predicates (F1PRED), pa-
rameters (F1PARAM), preconditions (F1PRECOND),
and effects (F1EFF) by parsing both generated and
ground truth PDDL into structured representations.

3 Benchmark Construction

The overall process of benchmark construction is
shown in Figure 2. In this section, we provide a
detailed explanation of each stage.

3.1 Data Acquisition

Our benchmark construction process began with
collecting PDDL files from various public repos-
itories and planning competitions. Through this
initial collection phase, we accumulated 1,801 raw
PDDL files. We performed several preprocessing
steps to standardize the data format (e.g., convert
files with BOM encoding to standard UTF-8). The
processed files served as the foundation for our
dataset construction.

3.2 Data Filtering and Manual Selection

To ensure the quality and reliability of
TEXT2WORLD, we implemented a compre-
hensive filtering pipeline: (i) Validation: We
employed a PDDL domain parser to perform
syntax validation on each file; (ii) Similarity
Deduplication: We eliminated duplicate entries by
computing pairwise cosine similarity on TF-IDF
vectorized PDDL content, removing files with
similarity scores exceeding 0.9; (iii) Complexity
Control: We removed domains with over 40
predicates or 20 actions to balance expressiveness
with practical utility. (iv) Token Length Filtering:
We removed files exceeding 5,000 tokens using
GPT-2 (Radford et al., 2019) tokenizer to ensure
compatibility with model context windows.
Additionally, we conducted manual selection to
eliminate domains that were not designed for
world modeling (such as blocksworld-mystery)
and low-quality cases that were not captured by
the automated filtering methods. After this process,
we obtained 264 high-quality PDDL domain
specifications.

3.3 Data Annotation

After obtaining the high-quality PDDL domains,
we manually annotated natural language descrip-
tions for each domain. To ensure the quality of
annotations, we recruited 6 computer science grad-
uates as annotators. The annotated description
followed the structured format described in Sec-
tion 2.2, and annotators were required to follow the
annotation criteria: (i) Descriptive Completeness:
Annotations must contain all required components;
(ii) Action Abstraction: Action descriptions should
avoid explicit references to formal preconditions
and effects; (iii) Inference-Enabling: Descriptions
should contain sufficient contextual information to
allow models to infer the underlying dynamics; (iv)
Natural Language Priority: Technical terminol-

26045



TSP Domain Example

(define (domain tsp)
(: predicates

(at ?x)
(visited ?x))

(: action move
:parameters (?x ?y)
:precondition (at ?x)
:effect (and (at ?y)

(visited ?y)
(not (at ?x))))

Abstract Description

General.
This domain models a simplified version of
the Traveling Salesperson Problem (TSP),
where the goal is to visit a series of locations.
The domain includes actions for moving be-
tween locations and marking locations as
visited.

Predicates.
• (at ?x): Indicates the current location.

• (lock-shape ?x ?s): Indicates that lo-
cation ?x has been visited.

Actions.
• move <?x> <?y>: Allows moving from

location ?x to location ?y.

Concrete Description

General.
This domain models a simplified version of
the Traveling Salesperson Problem (TSP),
where the goal is to visit a series of locations.
The domain includes actions for moving be-
tween locations and marking locations as
visited.

Predicates.
• (at ?x): Indicates the current location.

• (lock-shape ?x ?s): Indicates that lo-
cation ?x has been visited.

Actions.
• move <?x> <?y>: Allows moving from

location ?x to location ?y. The precondi-
tion for this action is being at location ?x.
The effect of this action is that the agent is
now at location ?y, location ?y is marked
as visited, and the agent is no longer at
location ?x.

ogy should be minimized in favor of natural lan-
guage explanations. Examples of TEXT2WORLD

can be found in Appendix A.1.

3.4 Quality Assurance

Manual Recheck To maintain rigorous quality
standards throughout the annotation process, we es-
tablished a review system supervised by two senior
experts. These experts conducted regular inspec-
tions of the annotations, ensuring accuracy and
consistency. Inspectors must verify all data twice
to determine if the annotated examples meet the
specified annotation standards. Examples are ac-
cepted only if both inspectors approve them. The
verification results showed "almost perfect agree-
ment" with a Fleiss Kappa (Landis and Koch, 1977)
score of 0.82. Through this comprehensive quality
control process, we compiled a final curated dataset
of 103 domains with gold-standard descriptions.
Data Contamination As shown by Carlini et al.

(2021), LLMs can memorize training data rather
than truly model the world. To assess potential
contamination between LLMs’ training data and
TEXT2WORLD, we generated complete PDDL do-
mains from the first 20 tokens using GPT-4 (Ope-
nAI, 2023) and calculated contamination rates
based on tokenized 10-grams with up to 4 mis-
matches (Touvron et al., 2023), excluding PDDL-
specific keywords and variables. We also com-
pared these results with previous studies (Guan
et al., 2023; Smirnov et al., 2024). Figure 3 shows
that TEXT2WORLD has a lower contamination rate
(µ = 0.04 vs. µ = 0.47), suggesting its perfor-
mance reflects domain understanding rather than
memorization. However, the complete elimina-
tion of contamination remains challenging due to
PDDL’s widespread use.
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Figure 2: Left: Dataset construction process including: (a) Data Acquisition (§3.1); (b) Data Filtering and Manual
Selection (§3.2); (c) Data Annotation and Quality Assurance (§3.3 and §3.4). Right: Key statistics of Text2World.
Tokens are counted by GPT-2 (Radford et al., 2019) tokenizer. The style is referenced from Chen et al. (2024c).
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Figure 3: n-gram contamination rate of TEXT2WORLD
and prior works.

3.5 Data Analysis

This section provides some detailed data analysis
to better understand TEXT2WORLD.
Core Statistics We designated 2 domains as in-
context exemplars (train set), with the remaining
101 samples forming our test set.
Semantic Analysis We use LLMs to extract high-
level domain characteristics to better understand
the conceptual distribution of TEXT2WORLD, As
shown in Figure 4 (Bottom), common themes such
as path planning, constraint satisfaction, and task
allocation, among others, emerge.
Requirements Analysis A PDDL requirement
specifies a formal capability needed to express a do-
main, often reflecting its complexity. For instance,
:typing stands for allowing the usage of typing for
objects. As shown in Figure 4 (Top), there are eight
different requirement type in TEXT2WORLD. We
also provide an in-depth analysis of requirement
type in Appendix A.3.

26.6%

33.5%

8.5%

1.6%
7.4%

4.8%7.4%
10.1%

:strips
:typing
:negative-
preconditions
:disjunctive-
preconditions
:equality
:conditional-
effects
:action-costs
:adl

Figure 4: Top: The frequency of requirements dis-
tribution. Bottom: Word cloud of concepts in
TEXT2WORLD.

3.6 Preliminary Experiment

In previous works, LLMs have been employed
to evaluate the action dynamics of world mod-
els generated by LLMs themselves (Wang et al.,
2023a). To further assess the ability of LLMs
to detect errors in world models, we conducted
a preliminary experiment where we first used
claude-3.5-sonnect for TEXT2WORLD. Sub-
sequently, human annotators and the LLM inde-
pendently evaluated the generated action dynamics
to identify potential errors. The inter-annotator
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agreement between human ratings and LLM rat-
ings, measured using Cohen’s κ, was 0.10, indicat-
ing a low level of agreement. This suggests that
predicting the correctness of PDDL domains using
an LLM is particularly challenging, highlighting
the need for more discriminative evaluation metrics.
Prompting examples and more results can be found
in Appendix A.2.

4 Experiments

4.1 Experimental Setup
We evaluate several state-of-the-art LLMs, in-
cluding GPT-4 (OpenAI, 2023), GPT-3.5 (Ope-
nAI, 2022), Claude-3.5 (Anthropic), and LLaMA-
3.1 (Meta AI), DeepSeek-v3 (Liu et al., 2024),
CodeLlaMA (Roziere et al., 2023), LlaMA-2 (Tou-
vron et al., 2023), etc. We also evaluated Large
Reasoning Models (LRMs) trained using reinforce-
ment learning, such as DeepSeek-R1 (DeepSeek-
AI et al., 2025), OpenAI-o1 (OpenAI, 2024) and
OpenAI-o3 (OpenAI, 2025). We set temperature
= 0 for each model for all experiments to main-
tain reproducibility. We employ tarski 1 library to
check syntactic correctness and executability. We
prompt LLMs to generate symbolic world mod-
els under a zero-shot setting with chain-of-thought
reasoning (Wei et al., 2022). In error-correction ex-
periments, LLMs refine outputs based on validator-
reported syntax errors, denoted as EC3 for k at-
tempts. Evaluation of open-sourced models were
conducted on NVIDIA A100 GPUs with 80GB
memory. We access proprietary models through
their official API platform. Prompt examples can
be found in Appendix B.2.

4.2 Experimental Results
Several conclusions can be drawn from Table 1:
(i) The most advanced LLMs still struggle with
TEXT2WORLD. For example, the best-performing
model, DeepSeek-R1, achieves F1 scores below
60% for both preconditions (F1PRECOND) and effects
(F1EFF) under the without error correction setting.
This highlights the limitations of current LLMs in
world modeling tasks. (ii) Large reasoning models
trained with reinforcement learning exhibit supe-
rior world modeling capabilities. These models,
such as DeepSeek-R1 (DeepSeek-AI et al., 2025),
outperform others in executability, structural simi-
larity, and component-wise performance, indicat-
ing that RL-based training enhances the ability of

1https://github.com/aig-upf/tarski

models to generate structured and valid world mod-
els. (iii) The ability of models to benefit from
error correction is evident. For instance, GPT-4
(gpt-4o-mini) demonstrates a notable improve-
ment in executability, increasing from 48.5% to
72.3% after three correction attempts.

5 Analysis

5.1 Statistical Analysis

We conducted a one-way ANOVA (Girden, 1992)
to evaluate the impact of correction attempts on
model performance, excluding anomalous zero val-
ues. The results showed a significant improvement
with three correction attempts (F = 27.48, p =
0.00012), indicating that correction attempts lead
to a notable enhancement in model performance.

5.2 Error Analysis

The interpretable nature of generating symbolic
world models can be utilized for a deeper man-
ual analysis of the failure modes. We select the
results from claude-3.5-sonnect under the few-
shot setting for manual error analysis. Errors are
categorized into syntax and semantic errors, where
syntax errors occur when the generated domain
cannot be validated (EXEC. = 0), and semantic
errors arise when the generated world model does
not align with action dynamics or fails to follow
the natural language description. More details and
the error analysis for deepseek-r1 are presented
in Appendix C.
Syntax Errors Figure 5 (Left) shows the dis-
tribution of syntax errors during correction.
Common errors like UndefinedConstant and
IncorrectParentheses decrease over correction
steps, indicating improvements in syntax valida-
tion, though errors like UndefinedDomainName
and UndefinedType persist.
Semantic Error Figure 5 (Right) illustrates
the distribution of semantic errors. Seman-
tic errors are categorized into four types: (i)
DisobeyDescription involves direct violations
of descriptions. (ii) IncompleteModeling, where
the world model lacks necessary components.
(iii) RedundantSpecifications refers to su-
perfluous preconditions or effects; and (iv)
SurfaceDivergence involves surface-level vari-
ations that preserve semantic equivalence to gold
domain. In addition, since a domain may encom-
pass various action dynamics, different error types
can occur simultaneously. For instance, nearly 10%
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Table 1: Performance comparison of different LLMs on TEXT2WORLD. ECk denotes the setting where models are
allowed k correction attempts (EC0: zero-shot without correction, EC3: with 3 correction attempts).

Model Family Version EXEC. ↑ SIM. ↑ F1PRED ↑ F1PARAM ↑ F1PRECOND ↑ F1EFF ↑
EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

OPENAI-O1 o1-mini 49.5 69.3 82.5 82.2 48.4 66.3 36.4 49.7 28.9 38.0 31.7 42.1

OPENAI-O3 o3-mini 54.5 84.2 83.0 81.9 53.9 81.1 43.7 63.0 36.8 50.4 39.4 53.8

GPT-4
gpt-4o 60.4 75.2 84.5 84.1 59.6 72.1 56.5 68.1 49.3 56.4 47.8 56.7

gpt-4o-mini 48.5 72.3 82.6 82.2 48.1 70.1 47.1 67.3 34.9 47.5 38.2 52.7

GPT-3.5 turbo-0125 41.6 56.4 81.9 81.6 41.2 55.8 39.6 53.8 30.2 39.2 27.5 37.7

CLAUDE-3.5 sonnet 45.5 64.4 73.2 66.8 45.5 62.5 41.5 48.8 37.4 44.0 38.4 45.0

LLAMA-2
7b-instruct 0.0 0.0 45.5 33.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 48.7 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LLAMA-3.1
8b-instruct 0.0 0.0 74.3 74.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 83.6 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEEPSEEK
deepseek-v3 56.4 79.2 84.7 84.2 55.9 75.6 53.7 74.4 45.1 58.6 46.7 61.5
deepseek-r1 72.3 89.1 84.3 84.0 71.7 86.7 64.0 76.3 57.6 65.0 58.8 67.3

CODELLAMA

7b-instruct 17.8 22.8 60.2 57.6 17.8 18.8 17.2 18.2 11.3 12.2 10.7 11.1
13b-instruct 7.9 8.9 57.6 55.0 7.9 8.9 7.9 8.9 4.9 5.9 5.2 6.1
34b-instruct 7.9 8.9 34.2 7.6 7.9 8.6 7.9 8.4 5.0 5.0 5.4 5.4
70b-instruct 16.8 16.8 54.0 14.0 16.4 16.4 16.8 16.8 10.7 10.7 14.1 14.1

     

       

                   

                    

                 

                   

             

                 

       

                   

                 

                   

             

                  

                   

       

                   

                    

                   

             

            

                   

       

                   

                 

                   

             

                  

      

Figure 5: Left: The distribution of syntax error types for claude-3.5-sonnect during the progression of correction.
Right: The distribution of semantic error types.

of cases exhibited both IncompleteModeling and
RedundantSpecifications concurrently.

6 Exploration

In addition to the zero-shot CoT evaluation in
Section 4.2, we further evaluate the models on
TEXT2WORLD with five different strategies: (1)
Test-time Scaling; (2) In-Context Learning; (3)
Fine-tuning; (4) Agent Training; (5) Inference with
Concrete Description.

6.1 Test-time Scaling

Recently, test-time scaling has demonstrated re-
markable potential (OpenAI, 2024; DeepSeek-AI
et al., 2025). We use the error information from the
syntax parser as feedback and assess whether in-
creasing the test-time compute budget can enhance

the LLM’s performance. As shown in Figure 6,
the model exhibits consistent improvement with
increased test-time computation. More advanced
test-time scaling strategies may serve as a viable
approach to enhancing the model’s world modeling
ability (Chen et al., 2025b).

6.2 In-Context Learning

We also perform a few-shot evaluation in Sec-
tion 6.2, where we carefully select demonstration
“gripper” and “blocks” that are structurally sim-
ilar but semantically distinct from the test cases
to prevent data leakage. As shown in Table 2,
we observe that different models exhibit varying
degrees of improvement from in-context learning.
For instance, claude-3.5-sonnect demonstrates
a substantial enhancement, achieving over a 20%
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Table 2: The experimental results of models under different settings: (1) In-context learning (§6.2); (2) Fine-tuning,
and fine-tuning with LoRA (Hu et al., 2021) (§6.3); (3) Agent training (§6.4).

Model Family EXEC. SIM. F1PRED F1PARAM F1PRECOND F1EFF

EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

In-Context Learning

CLAUDE-3.5-SONNET 45.5 64.4 73.2 66.8 45.5 62.5 41.5 48.8 37.4 44.0 38.4 45.0
w. 2-SHOT 78.2+32.7 88.1+23.7 83.9+10.7 82.3+15.5 77.0+31.5 86.1+23.6 75.2+33.7 82.1+33.3 65.6+28.2 71.3+27.3 67.2+28.8 73.4+28.4

DEEPSEEK-R1 72.3 89.1 84.3 84.0 71.7 86.7 64.0 76.3 57.6 65.0 58.8 67.3
w. 2-SHOT 69.3-3.0 90.1+1.0 83.8-0.5 83.5-0.5 68.4-3.3 87.7+1.0 64.6+0.6 79.1+2.8 56.0-1.6 66.9+1.9 57.6-1.2 68.9+1.6

GPT-4O-MINI 48.5 72.3 82.6 82.2 48.1 70.1 47.1 67.3 34.9 47.5 38.2 52.7
w. 2-SHOT 40.6-7.9 69.3-3 82.9+0.3 82.4+0.2 40.3-7.8 67.2-2.9 40.1-7 67.0-0.3 31.6-3.3 49.3+1.8 32.5-5.7 54.8+2.1

Fine-tuning (FT)

LLAMA-3.1-8B 0.0 0.0 74.3 74.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. FT 52.5+52.5 68.3+68.3 80.8+6.5 80.6+5.7 51.4+51.4 65.4+65.4 48.5+48.5 60.6+60.6 31.5+31.5 38.1+38.1 32.4+32.4 40.2+40.2

LLAMA-3.1-70B 0.0 0.0 83.6 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. LORA 48.5+48.5 70.3+70.3 83.8+0.2 82.3+3.1 47.9+47.9 68.5+68.5 48.5+48.5 66.4+66.4 39.9+39.9 52.8+52.8 40.6+40.6 52.1+52.1

Agent Training (AT)

LLAMA-2-70B 0.0 0.0 48.7 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. AT 7.9+7.9 9.9+9.9 65.6+16.9 47.9-0.7 7.3+7.3 8.8+8.8 7.3+7.3 9.1+9.1 6.1+6.1 6.5+6.5 5.7+5.7 6.1+6.1
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Figure 6: The performance of gpt-4o-mini (left) and
deepseek-v3 (right) under different test-time com-
pute budgets, showing consistent improvement with
increased compute.

increase in the component-wise F1 score. However,
for gpt-4o-mini, incorporating few-shot exam-
ples resulted in a decrease in model performance.

6.3 Fine-tuning

We leverage the AgentGen (Hu et al., 2024b) frame-
work to synthesize 601 PDDL domains and their
corresponding descriptions for fine-tuning LLaMA-
3.1 (Meta AI) to investigate potential improvements
in their world modeling capabilities. As shown
in Table 2, fine-tuning can lead to significant im-
provements in model performance. For instance,
the fine-tuned Llama-3.1-70B demonstrated perfor-
mance comparable to GPT-4o-mini, highlighting
that supervised fine-tuning is an effective method
for bridging the gap between open-source and pro-
prietary models. Moreover, larger models tend
to benefit more from supervised fine-tuning, with

the 70B LLaMA-3.1 showing greater improvement
than the 8B model.

6.4 Agent Training

Many studies have demonstrated that supervised
fine-tuning on agent trajectories can enhance a
model’s performance on agentic tasks (Hu et al.,
2024b; Zeng et al., 2023) (i.e., agent training).
Some previous works also discussed that a good
agent model requires a sufficiently strong internal
world representation (LeCun, 2022). Therefore, in
this section, we explore whether agent training can
improve the model’s world modeling capabilities.
More specifically, we trained LLaMA-2-70B model
on AgentInstruct (Zeng et al., 2023). As shown in
Table 2, the model’s world modeling capabilities
are enhanced post-agent training, indicating a pos-
itive correlation between performance on agentic
tasks and the model’s world modeling abilities.

6.5 Inference with Concrete Description

As is discussed in Section 2.2, we intentionally
make the natural language description of a world
model at a high level. We refer to these high-level
descriptions as "abstract descriptions," in contrast
to more detailed "concrete descriptions" that ex-
plicitly specify preconditions and effects. Exam-
ples of both description types can be found in the
Appendix A.1.2. Using concrete descriptions sim-
plifies the task by requiring the model to directly
map the provided text to a world specification, by-
passing the need to infer symbolic action dynamics.
The observed consistent improvement (as shown
in Figure 7) supports the claim that the model’s
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Figure 7: Comparison of model performance on abstract
versus concrete domain descriptions, showing the base
score for abstract descriptions (blue) and the improve-
ment gained from concrete descriptions (green).

ability to deduce action dynamics from abstract
descriptions is still lacking. We also provide more
detailed experimental results in Appendix D.1.

7 Related Work

Neural world modeling is a long-standing research
topic with widespread applications across various
fields, including reinforcement learning (Ha and
Schmidhuber, 2018b,a), robotics (Wu et al., 2023),
and autonomous driving (Guan et al., 2024), among
others. In recent years, LLMs trained on massive
datasets have demonstrated zero-shot capabilities
across a variety of tasks, including planning (Zhao
et al., 2023; Qin et al., 2024; Huang et al., 2022;
Hu et al., 2024a), robotics (Mu et al., 2024; Chen
et al., 2024a), analog design (Lai et al., 2024), and
more. Preliminary studies propose directly using
LLMs as world models (Hao et al., 2023; Wang
et al., 2024, 2023b; Li et al., 2022), by taking the
state and action as input and predicting the next
state, but the unreliability and limited interpretabil-
ity of LLM outputs can lead to accumulating errors.
Moreover, some studies have shown that autore-
gressive models perform poorly in predicting ac-
tion effects (Banerjee et al., 2020; Luo et al., 2023).
Tree-planner (Hu et al., 2023) instead proposes to
constructing the possible action space using LLMs
before executing. Another line of work focuses
on leveraging LLMs to construct symbolic world
models (Oswald et al., 2024; Silver et al., 2024;
Smirnov et al., 2024; Zhu et al., 2024; Wang et al.,
2023a; Wong et al., 2023; Vafa et al., 2024). For
example, Guan et al. (2023) uses LLMs to generate
a PDDL domain model and relies on human feed-
back to correct errors. AgentGen (Hu et al., 2024b)

synthesizes diverse PDDL domains, aiming to cre-
ate high-quality planning data. Xie et al. (2024)
propose to finetune LLMs for predicting precon-
dition and effect of actions. Despite the growing
interest in this research direction, there is currently
a lack of a comprehensive benchmark in this area.

8 Conclusion

We present TEXT2WORLD, a novel benchmark
consisting of hundreds of domains designed to
evaluate the world modeling capabilities of large
language models (LLMs). Developed through a
meticulous and thorough process, TEXT2WORLD

provides a robust foundation for analysis. Addition-
ally, we conducted an extensive evaluation involv-
ing 16 different LLMs from 9 model families based
on TEXT2WORLD. We hope that TEXT2WORLD

will inspire future research in leveraging LLMs as
world models.

Ethical Considerations

Data Access. We collected data from open-source
repositories and ensured that these repositories are
available for academic research in accordance with
our commitment to ethical data use.
Participant Recruitment. We recruited graduate
students as annotators and required all participants
to achieve an IELTS score of 6 or above. To miti-
gate potential biases stemming from participants’
geographical backgrounds, we minimized national
differences in the dataset by focusing on human
commonsense. All annotators provided informed
consent and were compensated above the local min-
imum wage—$10 per hour for standard annotators
and $20 per hour for senior annotators.
Potential Risk. We confirmed that our dataset
does not contain any personal data (e.g., names,
contacting information), and our data collection
procedures adhere to ethical guidelines.

Limitation

Due to the limited number of available domains
online, we did not construct a large-scale training
set. Future work should focus on expanding the
dataset by incorporating additional data sources,
such as synthesized data (Hu et al., 2024b), to cover
a broader range of domains. Furthermore, although
we conducted regular inspections to minimize the
introduction of subjectivity into the dataset, the
unavoidable influence of human subjectivity during
manual annotation may introduce potential biases.
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A Benchmark Construction

A.1 Example
A.1.1 Domain Example

(define (domain grid)
(: requirements :strips)
(: predicates (conn ?x ?y) (key-shape ?k ?s) (lock-shape ?x ?s)

(at ?r ?x ) (at-robot ?x) (place ?p) (key ?k) (shape ?s)
(locked ?x) (holding ?k) (open ?x) (arm-empty ))

(: action unlock
:parameters (? curpos ?lockpos ?key ?shape)
:precondition (and (place ?curpos) (place ?lockpos) (key ?key)

(shape ?shape) (conn ?curpos ?lockpos)
(key-shape ?key ?shape) (lock-shape ?lockpos ?shape)
(at-robot ?curpos) (locked ?lockpos) (holding ?key))

:effect (and (open ?lockpos) (not (locked ?lockpos))))

(: action move
:parameters (? curpos ?nextpos)
:precondition (and (place ?curpos) (place ?nextpos) (at-robot ?curpos)

(conn ?curpos ?nextpos) (open ?nextpos))
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos))))

(: action pickup
:parameters (? curpos ?key)
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos)

(at ?key ?curpos) (arm-empty ))
:effect (and (holding ?key) (not (at ?key ?curpos)) (not (arm-empty ))))

(: action pickup-and-loose
:parameters (? curpos ?newkey ?oldkey)
:precondition (and (place ?curpos) (key ?newkey) (key ?oldkey)

(at-robot ?curpos) (holding ?oldkey)
(at ?newkey ?curpos))

:effect (and (holding ?newkey) (at ?oldkey ?curpos)
(not (holding ?oldkey)) (not (at ?newkey ?curpos))))

(: action putdown
:parameters (? curpos ?key)
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos)

(holding ?key))
:effect (and (arm-empty ) (at ?key ?curpos) (not (holding ?key))))

)

Listing 1: Grid PDDL

A.1.2 Abstract Description
General. This domain models a robot navigating a grid environment with the objective of unlocking
doors and moving through the grid. The robot can carry keys that match the shape of locks to unlock
doors. The environment includes places, keys with specific shapes, and doors (locks) with corresponding
shapes that need to be unlocked.
Predicates. The following predicates are used in the domain:

• (conn ?x ?y): Indicates a connection between two places ?x and ?y, allowing movement between
them.

• (key-shape ?k ?s): Indicates that key ?k has shape ?s.

• (lock-shape ?x ?s): Indicates that lock (or door) at place ?x has shape ?s.

• (at ?r ?x): Indicates that key ?r is at place ?x.

• (at-robot ?x): Indicates that the robot is at place ?x.
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• (place ?p): Indicates that ?p is a place in the grid.

• (key ?k): Indicates that ?k is a key.

• (shape ?s): Indicates that ?s is a shape.

• (locked ?x): Indicates that the place ?x is locked.

• (holding ?k): Indicates that the robot is holding key ?k.

• (open ?x): Indicates that the place ?x is open.

• (arm-empty): Indicates that the robot’s arm is empty.

Actions. The following actions are available in the domain:

• unlock <?curpos> <?lockpos> <?key> <?shape>: Allows the robot to unlock a door at place
<?lockpos> using a key of a specific shape.

• move <?curpos> <?nextpos>: Allows the robot to move from place <?curpos> to place
<?nextpos>.

• pickup <?curpos> <?key>: Allows the robot to pick up a key at its current location.

• pickup-and-loose <?curpos> <?newkey> <?oldkey>: Allows the robot to pick up a new key
while dropping the one it was holding.

• putdown <?curpos> <?key>: Allows the robot to put down a key it is holding.

A.1.3 Concrete Description
General. This domain models a robot navigating a grid environment with the objective of unlocking
doors and moving through the grid. The robot can carry keys that match the shape of locks to unlock
doors. The environment includes places, keys with specific shapes, and doors (locks) with corresponding
shapes that need to be unlocked.
Predicates. The following predicates are used in the domain:

• (conn ?x ?y): Indicates a connection between two places ?x and ?y, allowing movement between
them.

• (key-shape ?k ?s): Indicates that key ?k has shape ?s.

• (lock-shape ?x ?s): Indicates that lock (or door) at place ?x has shape ?s.

• (at ?r ?x): Indicates that key ?r is at place ?x.

• (at-robot ?x): Indicates that the robot is at place ?x.

• (place ?p): Indicates that ?p is a place in the grid.

• (key ?k): Indicates that ?k is a key.

• (shape ?s): Indicates that ?s is a shape.

• (locked ?x): Indicates that the place ?x is locked.

• (holding ?k): Indicates that the robot is holding key ?k.

• (open ?x): Indicates that the place ?x is open.

• (arm-empty): Indicates that the robot’s arm is empty.
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Actions. The following actions are available in the domain:

• unlock <?curpos> <?lockpos> <?key> <?shape>: Allows the robot to unlock a door at place
<?lockpos> using a key of a specific shape if the robot is at place <?curpos>, the key matches the
lock’s shape, the robot is holding the key, there is a connection between <?curpos> and <?lockpos>,
and the destination is locked. After the action, the lock is no longer locked.

• move <?curpos> <?nextpos>: Allows the robot to move from place <?curpos> to place
<?nextpos> if there is a connection between them and the destination is open. After the move, the
robot is no longer at the original place.

• pickup <?curpos> <?key>: Allows the robot to pick up a key at its current location if the robot’s
arm is empty and it is at the same place as the new key. After the action, the robot is holding the key,
and the key is no longer at that location.

• pickup-and-loose <?curpos> <?newkey> <?oldkey>: Allows the robot to pick up a new key
while dropping the one it was holding if it is at the same place as the new key. After the action, the
robot is holding the new key, and the old key is at the robot’s current location.

• putdown <?curpos> <?key>: Allows the robot to put down a key it is holding if it is at a specific
place. After the action, the robot’s arm is empty, and the key is at that location.

A.2 Preliminary Experiment
The experimental results show that LLM’s effectiveness in detecting PDDL semantic errors is limited,
with an accuracy of 55.0%, a precision of 56.2%, a recall rate of 45.0%, an F1 score of 50.0%, and a ROC
AUC of 55.0. ROC AUC indicates that the model is close to random performance, making it difficult to
reliably distinguish between correct and incorrect PDDL domains. Below is the prompt used for LLMs to
detect semantic errors in generated PDDL domains:

You are an expert in automated planning systems and PDDL semantics. Your task is to
evaluate whether the LLM are physically accurate models of the world or whether
they don 't make sense by detecting semantic errors in generated PDDL domain.

You need carefully analyze the following PDDL domain by comparing it to the pddl
domain description , evaluate whether the generated pddl domain contains SEMANTIC
ERRORS in these key aspects:

1. Predicates consistency.
2. Action parameters validity.
3. Action preconditions completeness.
4. Action effects logical consistency.
5. Consistency with the description.

An example of semantic error would be:
1. Missing precondition constraints (e.g. executing "unlock -door" without holding a

key).
2. Contradictory effects (e.g. both adding and deleting the same predicate).
3. Incorrect predicate arguments (e.g. reversed parameter order).

Output Format:
{
"evaluation ": "yes/no",
"error_type ": "[ MissingPrecond|IncorrectEffect|MissingPredicate |...]" ,
"confidence ": "high/medium/low",
"evidence ": "<specific code segment >",
"justification ": "<short justification >"
}

PDDL Description:
{PDDL_DESCRIPTION}

Generated PDDL:
{PDDL_DOMAIN}
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A.3 More Details on Data Analysis

Figure 8 shows the co-occurrence of PDDL requirements across domains, highlighting that :typing and
:strips are the most prevalent features.
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Figure 8: The co-occurrence matrix of requirements of TEXT2WORLD.

B More Details on Experiments

B.1 Evaluation Metrics

Levenshtein Ratio. The Levenshtein Ratio is a value between 0 and 1 that quantifies the similarity
between two strings, such as a predicted PDDL domain and a golden PDDL domain. It is derived from the
Levenshtein distance, which calculates the minimum number of character-level operations—insertions,
deletions, or substitutions—needed to convert one string into the other. The ratio is then computed by
dividing the Levenshtein distance by the length of the longer string, providing a measure of how closely
the two strings match, where a value closer to 1 indicates high similarity and a value closer to 0 indicates
significant differences.
Component-wise F1 Scores. The F1 score is mainly used to measure the similarity between the predicted
PDDL domain and the golden PDDL domain, specifically including predicate F1 and action F1. The
range of this score is from 0 to 1, which is the harmonic mean of precision and recall.

B.2 Prompt Examples

B.2.1 Error Correction
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I would like you to serve as an expert in PDDL , assisting me in correcting erroneous
PDDL code. I will provide you with the incorrect PDDL along with the error

messages returned by the system. You should output your thought process firstly.
You MUST enclose the COMPLETE corrected PDDL within ```pddl ```.

Here are some hints to help you debug the pddl domain file:
1. You should start by checking if all the essential domain constructs or domain

definition constructs are present. Commonly included domains comprise:
a. :domain declaration to name the domain.
b. :requirements to specify the PDDL features used in the domain.
c. :types to define any object types for categorizing entities in the planning

problem.
d. :constants (if necessary) to declare any objects that remain static

throughout the planning problems.
e. :predicates to define the properties and relations between objects that can

change over time.
f. :functions (if necessary) to define numeric functions for more complex

domains.
g. :action definitions for each action that agents can perform , including

parameters , preconditions , and effects.
2. You need to check the number of parameters of each actions.
3. Having :typing in the domain indicates that it uses a hierarchy to organize

objects. Therefore , it's crucial to clearly list all object types related to the
planning task in a :types section.

4. '-' should not appear in :types.

Round 0
Incorrect PDDL:
(: action clean -up

:parameters (?robot - robot ?robotTile - tile ?tileToBeCleaned - tile)
:precondition (and

(robot -at ?robot ?robotTile)
(up ?tileToBeCleaned ?robotTile)
(clear ?tileToBeCleaned)
(not (cleaned ?tileToBeCleaned))

)
:effect (and

(cleaned ?tileToBeCleaned)
)

)

(: action clean -down
:parameters (?robot - robot ?robotTile - tile ?tileToBeCleaned - tile)
:precondition (and

(robot -at ?robot ?robotTile)
(down ?tileToBeCleaned ?robotTile)
(clear ?tileToBeCleaned)
(not (cleaned ?tileToBeCleaned))

)
:effect (and

(cleaned ?tileToBeCleaned)
)

)

(: action up
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
:precondition (and

(robot -at ?robot ?robotTile)
(up ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot -at ?robot ?robotTile))
(robot -at ?robot ?moveToNextTile)

)
)

(: action down
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
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:precondition (and
(robot -at ?robot ?robotTile)
(down ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot -at ?robot ?robotTile))
(robot -at ?robot ?moveToNextTile)

)
)

(: action right
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
:precondition (and

(robot -at ?robot ?robotTile)
(right ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot -at ?robot ?robotTile))
(robot -at ?robot ?moveToNextTile)

)
)

(: action left
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
:precondition (and

(robot -at ?robot ?robotTile)
(left ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot -at ?robot ?robotTile))
(robot -at ?robot ?moveToNextTile)

)
)
Error Information:
ParsingError: line 1:1 mismatched input ':action ' expecting 'define '
Corrected PDDL:

B.2.2 Zero-Shot Prompt
You are tasked with converting a given Planning Domain Definition Language (PDDL)

domain description into its corresponding formal PDDL domain. The description
will outline the essential components of the domains.

Your output should be a well -structured PDDL domain that accurately represents the
given description , adhering to the syntax and semantics of PDDL.

Your output pddl domain must be enclosed in ```pddl ```.

You need to generate the corresponding domain pddl for the following description.

PDDL Domain Description:
### General
This domain is designed for a robot tasked with cleaning floor tiles. The robot can

move in four directions (up, down , right , left) relative to its current position
on a grid of tiles. The goal is to clean all the specified tiles by moving to

them and performing a cleaning action.

### Types
- ** robot **: Represents the robot that performs the cleaning.
- **tile **: Represents the individual tiles on the floor that may need to be cleaned

.

### Predicates
- **(robot -at ?robot - robot ?robotTile - tile)**: Indicates that the robot is

currently at a specific tile.
- **(up ?tileAbove - tile ?tileBelow - tile)**: Indicates that one tile is directly

above another.
- **( down ?tileBelow - tile ?tileAbove - tile)**: Indicates that one tile is

directly below another.
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- **( right ?tileOnRight - tile ?tileOnLeft - tile)**: Indicates that one tile is
directly to the right of another.

- **( left ?tileOnLeft - tile ?tileOnRight - tile)**: Indicates that one tile is
directly to the left of another.

- **( clear ?clearedTile - tile)**: Indicates that a tile is clear and robot can move
there.

- **( cleaned ?cleanedTile - tile)**: Indicates that a tile has been cleaned.

### Actions
- **clean -up <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot)

to clean a tile (? tileToBeCleaned) that is directly above its current position
(? robotTile).

- **clean -down <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot)
to clean a tile (? tileToBeCleaned) that is directly below its current position

(? robotTile).

- **up <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a tile
(? moveToNextTile) directly above its current position (? robotTile).

- **down <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (? robot) to a
tile (? moveToNextTile) directly below its current position (? robotTile).

- ** right <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a
tile (? moveToNextTile) directly to the right of its current position (? robotTile
).

- **left <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (? robot) to a
tile (? moveToNextTile) directly to the left of its current position (? robotTile)
.

PDDL Domain:
Let 's think step by step.

B.2.3 Few-Shot Prompt
You are tasked with converting a given Planning Domain Definition Language (PDDL)

domain description into its corresponding formal PDDL domain. The description
will outline the essential components of the domains. Your output should be a
well -structured PDDL domain that accurately represents the given description ,
adhering to the syntax and semantics of PDDL.

Your output must strictly adhere to the format exemplified below.
Here are some examples:

Example 0:
## PDDL Domain Description
### General
You are a robot equipped with a gripper mechanism , designed to move and manipulate

balls between different rooms. The domain focuses on the robot 's ability to
navigate rooms , pick up balls , and drop them in designated locations.

### Types
- **room **: Represents the different rooms within the environment.
- **ball **: Represents the objects that the robot can pick up and move.
- ** gripper **: Represents the robot 's mechanism for holding balls.
### Predicates
- **(at-robby ?r - room)**: Indicates that Robby , the robot , is currently in room ?r

.
- **(at ?b - ball ?r - room)**: Indicates that ball ?b is located in room ?r.
- **( free ?g - gripper)**: Indicates that the gripper ?g is not currently holding

any ball.
- **( carry ?o - ball ?g - gripper)**: Indicates that the gripper ?g is carrying ball

?o.
### Actions
- **move <?from > <?to >**: Allows Robby to move from one room to another.
- **pick <?obj > <?room > <?gripper >**: Enables Robby to pick up a ball in a room

using its gripper.
- **drop <?obj > <?room > <?gripper >**: Allows Robby to drop a ball it is carrying

into a room.

## PDDL Domain
```pddl
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(define (domain gripper -strips)
(: types

room - object
ball - object
gripper - object
)

(: predicates
(at-robby ?r - room)
(at ?b - ball ?r - room)
(free ?g - gripper)
(carry ?o - ball ?g - gripper))

(: action move
:parameters (?from - room ?to - room)
:precondition (and (at-robby ?from))
:effect (and (at-robby ?to)

(not (at-robby ?from))))
(: action pick

:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and

(at ?obj ?room) (at -robby ?room) (free ?gripper))
:effect (and (carry ?obj ?gripper)

(not (at ?obj ?room))
(not (free ?gripper))))

(: action drop
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and

(carry ?obj ?gripper) (at-robby ?room))
:effect (and (at ?obj ?room)

(free ?gripper)
(not (carry ?obj ?gripper)))))

```

Example 1:
## PDDL Domain Description
### General
This domain represents a simplified version of the classic "blocks world" problem ,

where a robot arm can stack and unstack blocks. The domain includes actions for
picking up blocks from the table , putting down blocks onto the table , stacking
blocks on top of each other , and unstacking them. The goal is to manipulate the
blocks to achieve a specified configuration.

### Predicates
(clear ?x): Indicates that there is no block on top of block ?x, making it

accessible for stacking or picking up.
(on -table ?x): Indicates that block ?x is directly on the table.
(arm -empty): Indicates that the robot 's arm is not holding any block.
(holding ?x): Indicates that the robot 's arm is currently holding block ?x.
(on ?x ?y): Indicates that block ?x is directly on top of block ?y.
### Actions
- ** pickup <?ob >**: Picks up an object (?ob) from the table.
- ** putdown <?ob >**: Puts down an object (?ob) onto the table.
- ** stack <?ob> <?underob >**: Stacks an object (?ob) on top of another object (?

underob), making the robot arm empty.
- ** unstack <?ob> <?underob >**: Unstacks an object (?ob) from another object (?

underob), making the robot arm no longer empty.

## PDDL Domain:
```pddl
(define (domain blocksworld)

(: requirements :strips)
(: predicates (clear ?x)

(on-table ?x)
(arm -empty)
(holding ?x)
(on ?x ?y))

(: action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm -empty))
:effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))
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(not (arm -empty))))

(: action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect (and (clear ?ob) (arm -empty) (on -table ?ob)

(not (holding ?ob))))

(: action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (arm -empty) (clear ?ob) (on ?ob ?underob)

(not (clear ?underob)) (not (holding ?ob))))

(: action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (arm -empty))
:effect (and (holding ?ob) (clear ?underob)

(not (on ?ob ?underob)) (not (clear ?ob)) (not (arm -empty)))))
```

You need to generate the corresponding domain pddl for the following description.

## PDDL Domain Description
### General
This domain is designed for a robot tasked with cleaning floor tiles. The robot can

move in four directions (up, down , right , left) relative to its current position
on a grid of tiles. The goal is to clean all the specified tiles by moving to

them and performing a cleaning action.

### Types
- ** robot **: Represents the robot that performs the cleaning.
- **tile **: Represents the individual tiles on the floor that may need to be cleaned

.

### Predicates
- **(robot -at ?robot - robot ?robotTile - tile)**: Indicates that the robot is

currently at a specific tile.
- **(up ?tileAbove - tile ?tileBelow - tile)**: Indicates that one tile is directly

above another.
- **( down ?tileBelow - tile ?tileAbove - tile)**: Indicates that one tile is

directly below another.
- **( right ?tileOnRight - tile ?tileOnLeft - tile)**: Indicates that one tile is

directly to the right of another.
- **( left ?tileOnLeft - tile ?tileOnRight - tile)**: Indicates that one tile is

directly to the left of another.
- **( clear ?clearedTile - tile)**: Indicates that a tile is clear and robot can move

there.
- **( cleaned ?cleanedTile - tile)**: Indicates that a tile has been cleaned.

### Actions
- **clean -up <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot)

to clean a tile (? tileToBeCleaned) that is directly above its current position
(? robotTile).

- **clean -down <?robot > <?robotTile > <?tileToBeCleaned >**: Allows the robot (?robot)
to clean a tile (? tileToBeCleaned) that is directly below its current position

(? robotTile).

- **up <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a tile
(? moveToNextTile) directly above its current position (? robotTile).

- **down <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (? robot) to a
tile (? moveToNextTile) directly below its current position (? robotTile).

- ** right <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (?robot) to a
tile (? moveToNextTile) directly to the right of its current position (? robotTile
).

- **left <?robot > <?robotTile > <?moveToNextTile >**: Moves the robot (? robot) to a
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tile (? moveToNextTile) directly to the left of its current position (? robotTile)
.

## PDDL Domain

C More Details on Analysis

C.1 Overall

Table 3: Distribution of error types for claude-3.5-sonnect and deepseek-r1 on TEXT2WORLD under few-shot
setting.

Claude-3.5-sonnect Deepseek-r1
Error Type Proportion (%) Number Proportion (%) Number

Correct 23.76 24 15.84 16
Syntax Error 11.88 12 9.90 10
Semantic Error 64.36 65 74.26 75

All 100.00 101 100.00 101

The overall distribution for syntax errors and semantic errors is presented in Table 3.

C.2 Syntax Error

Table 4: Distribution of Syntax Errors for claude-3.5-sonnect in PDDL Generation (Total Samples: 66, a task
may have 1 to 4 samples.)

Syntax Error Explanation Proportion (%)

UndefinedDomainName Missing mandatory (define (domain ...)) declaration in PDDL header 33.33
IncorrectParentheses Invalid empty/mismatched parentheses 3.03
UndefinedConstant Reference to undeclared constants in predicates or actions 13.64
MissingRequirements Absence of required PDDL extension declarations (e.g., :action-costs) 22.73
UndefinedType Undeclared parent type in hierarchical type definitions 18.18
UnsupportedFeature Use of parser-incompatible language features (e.g., either types) 3.03
TypeMismatch Parameter type conflict with declared type constraints 1.52
UndefinedVariable Undeclared variables in action preconditions/effects 1.52
DuplicateDefinition Multiple declarations of identical domain elements 3.03

Table 5: Distribution of Syntax Errors for deepseek-r1 in PDDL Generation (Total Samples: 77, a task may have 1
to 4 samples.)

Syntax Error Explanation Proportion (%)

UndefinedDomainName Missing mandatory (define (domain ...)) declaration in PDDL header 0.00
IncorrectParentheses Invalid empty/mismatched parentheses 33.77
UndefinedConstant Reference to undeclared constants in predicates or actions 6.49
MissingRequirements Absence of required PDDL extension declarations (e.g., :action-costs) 23.38
UndefinedType Undeclared parent type in hierarchical type definitions 20.78
UnsupportedFeature Use of parser-incompatible language features (e.g., either types) 3.90
TypeMismatch Parameter type conflict with declared type constraints 1.30
UndefinedVariable Undeclared variables in action preconditions/effects 5.19
DuplicateDefinition Multiple declarations of identical domain elements 5.19

The distribution and detailed explanation of each syntax error type are presented in Table 4 and Table 5.

C.3 Semantic Error

The distribution and detailed explanation of each semantic error type are presented in Table 6 and Table 7.
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Table 6: Distribution of Semantic Errors for claude-3.5-sonnect in PDDL Generation (Total Samples: 91, a task
may have multiple semantic errors.)

Semantic Error Explanation Proportion (%)

DisobeyDescription Direct violation of semantic requirements explicitly stated in the task description. 14.29
IncorrectPredicate Incorrect or missing the declaration of predicates. 6.59
IncorrectAction Incorrect or missing the declaration of actions. 7.69

IncompleteModeling Incomplete world modeling compared to basic requirements. 58.24
IncorrectPrecondition The precondition of the action is deficient or incorrect. 29.67
IncorrectEffect The effect of the action is deficient or incorrect. 28.57

RedundantSpecifications Predicted domain includes superfluous preconditions or effects. 17.58
RedundantPrecondition Predicted domain includes superfluous preconditions. 10.99
RedundantEffect Predicted domain includes superfluous effects. 6.59

SurfaceDivergence Surface variations preserving semantic equivalence with ground truth. 9.89

Table 7: Distribution of Semantic Errors for deepseek-r1 in PDDL Generation (Total Samples: 105, a task may
have multiple semantic errors.)

Semantic Error Explanation Proportion (%)

DisobeyDescription Direct violation of semantic requirements explicitly stated in the task description. 12.38
IncorrectPredicate Incorrect or missing the declaration of predicates. 6.67
IncorrectAction Incorrect or missing the declaration of actions. 5.71

IncompleteModeling Incomplete world modeling compared to basic requirements. 66.67
IncorrectPrecondition The precondition of the action is deficient or incorrect. 34.29
IncorrectEffect The effect of the action is deficient or incorrect. 32.38

RedundantSpecifications Predicted domain includes superfluous preconditions or effects. 14.29
RedundantPrecondition Predicted domain includes superfluous preconditions. 10.48
RedundantEffect Predicted domain includes superfluous effects. 3.81

SurfaceDivergence Surface variations preserving semantic equivalence with ground truth. 6.67

     

       

                    

                 

                   

             

                  

                 

                   

       

                    

                 

                   

             

                  

                 

                   

       

                    

                 

                   

             

                 

       

                    

                   

             

                 

      

Figure 9: Left: The distribution of syntax error types for deepseek-r1 during the progression of correction. Right:
The distribution of semantic error types.
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D More Experimental Results

D.1 Experimental Results with Concrete Description

Table 8: Performance comparison of different LLMs on TEXT2WORLD using concrete domain description. ECk
denotes the setting where models are allowed k correction attempts (EC0: zero-shot without correction, EC3: with 3
correction attempts).

Model Family Version EXEC. ↑ SIM. ↑ F1PRED ↑ F1PARAM ↑ F1PRECOND ↑ F1EFF ↑
EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

GPT-4 gpt-4o 60.4 75.2 90.7 90.3 59.4 71.8 57.1 69.1 55.3 65.1 54.1 65.2

GPT-3.5 turbo-0125 53.5 68.3 89.0 88.7 52.9 66.7 50.3 64.6 45.1 58.0 46.5 59.9

CLAUDE-3.5 sonnet 64.4 84.2 84.7 77.6 64.4 80.7 55.0 67.5 53.3 65.0 53.3 64.8

LLAMA-2
7b-instruct 0.0 0.0 48.4 32.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 53.5 52.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LLAMA-3.1
8b-instruct 0.0 1.0 84.1 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 1.0 1.0 89.7 85.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DEEPSEEK deepseek-v3 58.4 80.2 90.1 89.3 58.1 76.4 56.2 73.5 53.4 66.0 53.5 67.6
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