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Abstract

Medical dialogue systems (MDS) have
emerged as crucial online platforms for en-
abling multi-turn, context-aware conversations
with patients. However, existing MDS often
struggle to (1) identify relevant medical
knowledge and (2) generate personalized,
medically accurate responses. To address
these challenges, we propose MedRef, a novel
MBDS that incorporates knowledge refining and
dynamic prompt adjustment. First, we employ
a knowledge refining mechanism to filter out
irrelevant medical data, improving predictions
of critical medical entities in responses.
Additionally, we design a comprehensive
prompt structure that incorporates historical
details and evident details. To enable real-time
adaptability to diverse patient conditions, we
implement two key modules, Triplet Filter
and Demo Selector, providing appropriate
knowledge and demonstrations equipped in
the system prompt. Extensive experiments
on MedDG and KaMed benchmarks show
that MedRef outperforms state-of-the-art
baselines in both generation quality and
medical entity accuracy, underscoring its
effectiveness and reliability for real-world
healthcare applications.

1 Introduction

Medical dialogue systems (MDS) have emerged
as a pivotal research spotlight, aiming to sup-
port healthcare professionals through multi-turn
and context-aware conversations with patients (Shi
et al., 2024). Unlike general dialogue systems,
MDS must understand and respond using med-
ical domain knowledge (Wei et al., 2018; Xu
et al., 2019; Xia et al., 2020), offering valuable
support for preliminary assessments and nursing
care, particularly in resource-constrained environ-
ments (Graham et al., 2014).
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I’ve been having stomach pain and vomiting after eating ... |
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Basic Information Collection (Chitchat, Inquire)
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’ This situation suggests a high possibility of gastritis =
Q%J or peptic ulcer. L

Make a diagnosis (Diagnosis)

Mﬂdicine do you recommend, doctor? ] £
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Ll You can try taking omeprazole, Daxi, and amoxicillin 5O
Q_%J capsules (but only if you're not allergic to penicillin). i
Prescribe medications (Treatment)

Figure 1: An example of medical dialogue generation.

Despite the promise of MDS, several challenges
remain in delivering accurate and contextually ap-
propriate responses. One key challenge is effec-
tively tracking a patient’s evolving health state
throughout multi-turn interactions. As displayed
in Figure 1, doctors gradually refine their under-
standing of a patient’s condition over successive
turns. Similarly, MDS must maintain coherence as
the conversation progresses. A common approach
involves retrieving relevant medical entities (e.g.,
symptoms, diagnoses, treatments) from a medical
knowledge graph (MedKG) (Li et al., 2021; Zhao
et al., 2022). However, such retrieval-augmented
generation (RAG) methods often introduce irrele-
vant knowledge, which degrades response quality.

Meanwhile, large language models (LLMs) have
greatly improved MDS fluency, but remain sensi-
tive to the prompt structure and content. Effective
prompts for MDS must (1) direct the model’s atten-
tion to critical medical entities and dialogue acts,
and (2) include relevant conversation demonstra-
tions for guidance. Crucially, these prompts should
dynamically adapt to reflect real-time patient infor-
mation, which is underexplored by existing MDS.

To address these challenges, we aim to (1) re-
fine the retrieved knowledge for more accurate re-
sponse guidance and (2) dynamically adjust system
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prompts to align with specific patient conditions.
Therefore, we propose MedRef, a novel MDS with
knowledge refining and dynamic prompt adjust-
ment. First, we explicitly represent the patient’s
condition by incorporating contextual medical en-
tities. Inspired by (Xu et al., 2023), we adopt an
entity-action joint prediction module to obtain the
expected entities and acts. To mitigate noise from
retrieved entities, we introduce a knowledge re-
fining mechanism to enable more accurate entity
prediction and knowledge-driven response gener-
ation. Building upon this, we construct a compre-
hensive prompt structure tailored to each dialogue
turn. This system prompt mainly includes the fol-
lowing key components: (1) Task instruction: A
high-level directive guiding the system’s response
generation process. (2) Historical details: A sum-
mary of the dialogue context and identified medi-
cal entities. (3) Evident details: Predicted entities
and acts, and relevant knowledge triplets to provide
medical evidence for response generation. (4) Rele-
vant demonstration: An example conversation for
response formatting. To enhance responsiveness,
we integrate a dynamic prompt adjustment strategy
that updates prompt contents in real time. Specif-
ically, we leverage the Triplet Filter and Demo
Selector to retain only the most relevant knowl-
edge and demonstrations. This enables our system
to generate accurate, contextually grounded, and
patient-specific responses throughout the dialogue.

We conduct extensive experiments on two
widely used benchmarks: MedDG (Liu et al., 2020)
and KaMed (Li et al., 2021). Experimental results
demonstrate the superiority of our MedRef com-
pared with state-of-the-art baselines in both gener-
ation quality and medical entity accuracy. Ablation
studies further validate the effectiveness of each
module in our framework.

To sum up, our contributions can be summarized
as follows:

o We propose MedRef, a novel medical dialogue
system that jointly addresses knowledge redun-
dancy and prompt adaptation for more accurate
and context-aware response generation.

e We introduce a knowledge refining mecha-
nism to filter out irrelevant information in retrieved
knowledge, enhancing medical entity prediction
and response grounding.

e We develop a dynamic prompt adjustment strat-
egy that adapts prompt components in real time to
the patient’s condition for improved personaliza-
tion and coherence.

2 Related Work

2.1 Maedical Dialogue System

Medical dialogue systems (MDS) are typically
treated as a type of task-oriented dialogue system
designed to assist in diagnosis and treatment (Val-
izadeh and Parde, 2022; Varshney et al., 2022; Sun
et al., 2022, 2024). However, progress in this area
is often limited in collecting large-scale medical
datasets due to privacy and ethical concerns. To ad-
dress this, Zeng et al. (2020) released MedDialog,
a large-scale Chinese-English medical dialogue
dataset, which features a larger number of con-
versation sessions with relatively short turns. Liu
et al. (2020) introduced MedDG with medical en-
tity annotations in each utterance, facilitating more
fine-grained analysis. Early studies on MDS rely
on template-based methods for various tasks like in-
formation extraction (Peng et al., 2024; Zhang et al.,
2020), relation prediction (Du et al., 2019; Lin
et al., 2019; Xia et al., 2021), and slot filling (Shi
et al., 2020). More recently, response generation
has gained focus, leveraging sequence-to-sequence
models (Bahdanau et al., 2014; Vaswani et al.,
2017; See et al., 2017) and pre-trained models like
BioBERT (Lee et al., 2020), MedBERT (Rasmy
et al., 2021), GPT-2 (Radford et al., 2019), and Di-
aloGPT (Zhang et al., 2019). MDS require integra-
tion of medical knowledge for accurate responses.
Building upon this, VRBot (Li et al., 2021) for-
mulates patient states and physician actions for
response generation. MedPIR (Zhao et al., 2022)
recalls pivotal information as a prefix to generate
responses. DFMed (Xu et al., 2023) uses a dual
flow enhanced framework to sequentially model
the medical entities and dialogue acts.

2.2 Knowledge-Grounded Dialogue Generation

Knowledge-grounded conversations (KGC) aim to
generate responses based on background knowl-
edge retrieved from knowledge graphs (Speer et al.,
2017; Ghazvininejad et al., 2018; Li et al., 2020;
Chen et al., 2020). The background knowledge
is generally retrieved from structured and unstruc-
tured sources. The unstructured knowledge used
in KGC is mainly documents or paragraphs (Dinan
et al., 2018; Zhang et al., 2018; Kim et al., 2020;
Zhao et al., 2020). Structured KGC, on the other
hand, relies on knowledge triplets or graphs to pre-
dict key entities (Liu et al., 2018; Tuan et al., 2019;
Xu et al., 2020). Given the dependence of medi-
cal dialogues on domain-specific knowledge, KGC
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methods have been widely applied using medical
knowledge graphs (MedKG) to support informed
responses (Li et al., 2021; Zhao et al., 2022).
However, existing approaches often retrieve ir-
relevant information from MedKG, misaligning
with a patient’s specific condition. Therefore, we
propose a knowledge refining mechanism for im-
proved entity prediction and response generation.

3 Method

3.1 Problem Formulation

Suppose a medical conversation session ¢ =
{uy,ri,u2,re,...,up,rr} lasts for a total of T’
turns of utterances, where wu; and r; represent the
patient’s utterance and the doctor’s response at the
t-th turn. The dialogue context at each turn ¢ is de-
noted as ¢, = {u1,71,...,U—1,7—1, Ut }, which
conditions the generation of the current doctor re-
sponse ;. Each utterance introduces multiple medi-
cal entities, and each doctor’s response is further an-
notated with dialogue acts. The historical medical
entities ; and dialogue acts a; within ¢; guide the
generation of the response ;. Moreover, a medical
knowledge graph G is commonly used to retrieve
relevant knowledge to aid in response generation.
Therefore, the objective of MDS is to generate the
doctor response 7 at each turn ¢, conditioned on the
dialogue context ¢;, historical entities x;, historical
acts a; and relevant knowledge from G.

3.2 Input Representation

To effectively track the patient’s health condition
and generate appropriate responses, it is essential
to encode the key components of the dialogue his-
tory in the MDS. In the context ¢;, each patient ut-
terance is denoted as u; = (w;1,ui2, U |v,|)
with |U;| tokens, and each doctor utterance as
(i1, 75,27+ s 75 R;) With | R;] tokens. To capture
their semantic content, we first apply an embedding
layer femp, yielding token-level embeddings e,
and e,; for patient and doctor utterances, respec-
tively. Given the medical nature of the task, we
adopt MedBERT , a pre-trained model specialized
in medical domains, as our encoder backbone. The
embedded utterances are processed by this encoder
fene to incorporate sequential dialogue information,
and the final output eg, serves as the contextual rep-
resentation for subsequent modules. The encoding

https://github.com/trueto/medbert

process can be formalized:

eui = femb(ui,laui,% e 7ui7‘Ui‘)a
erj = femb(rj,lvrj,Zu e 7rj,|Rj|)) (1)
€e = fenc(eumeha T 7eut)'

We then retrieve related entities from a medi-
cal knowledge graph G to guide accurate response
generation. Specifically, we construct a subgraph
GY = {G%1 fees G%m} that totally contains m
historical entities z; and their one-hop neighbors.
Then we encode these entities using f.,. and struc-
tural information via a graph attention network
(GAT) (Velickovic et al., 2018), fgq¢. This yields

the subgraph representation:

o0 = FpatlJene( G- G3, ) @)

Moreover, the dialogue acts capture the commu-
nicative intents of each response (e.g., symptom
inquiry, disease diagnosis, and treatment sugges-
tion). The historical dialogue acts are encoded
as act-level representations eg,. These enriched
representations collectively provide the contextual
information for accurate response generation.

3.3 Knowledge Refining Mechanism

Retrieved entities can be noisy or overly broad due
to deterministic retrieval. To address this, we use
a knowledge refinement mechanism that models a
latent variable z; to filter irrelevant knowledge. We
first estimate the prior distribution pg(z/|c;, G2,)
based on the dialogue context ¢; and retrieved en-
tities G%t. To guide the prior toward retaining
useful knowledge, we define a posterior distribu-
tion gy (2 ¢, G%t, x¢) by incorporating the ground-
truth entities x; from the target response r;. Both
prior and posterior are modeled as Gaussian distri-
butions and parameterized via separate encoders:

po(zi|ee, G%t) = N(po(ez,, 615.",0 ), 2o (Ct, 6%0 ))s
) . 3)

qtb(Zt'Etv G.%t’mt) = N(/J‘¢(Etv egfth)v E¢(Et» egfvxt))z

where pg, Yg, pg, and Xy are computed from
separate knowledge encoder networks. Once the
latent factor z; is sampled, it is passed through the
knowledge decoder f,.., and its output is combined
with the original entity embedding e% ° to produce
the refined representation:

€S = faec(z) + €5° )

This refined embedding e% , with reduced noise
and improved relevance, is used to better predict
the expected entities in the response.
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Figure 2: System overview of our MedRef, involving encoding dialogue history, refining retrieved knowledge, and
jointly predicting entities and acts. The triplet filter and demo selector are used to enhance the prompt for final

response generation.

3.4 Entity-Act Joint Prediction

Based on the refined knowledge, we can recon-
struct the entities in the response. To capture
the high correspondence between medical entities
(symptoms, diseases, and treatments) and dialogue
acts (symptom inquiry, disease diagnosis, and treat-
ment suggestions), we leverage a joint prediction
module to obtain the expected entities and acts in
the target response. We first model interactions be-
tween context, refined entities, and historical acts
using a cross-attention module f.,, followed by a
GRU f,, to obtain new representations:

€tOG = fca('eam eG )7

Tt
e = foalef“ ez,), (5)
E% = fgm(e% ® efG @ etCGA).
QtCA = fca(eag’eat),
ef 19 = falef ", €), 6)

€a, = forul€a, @ etc e etCAG).

We then compute prediction probabilities for enti-
ties and acts in the ¢-th turn via linear transforma-
tion layers along with sigmoid o(-) as activation
functions.

Ty = o(WyeS + by), o
Gy = 0(W,eq, + ba),

where W, € RIXIxd and b, € RIXI; W, € RIAIxd
and b, € Rl |X| and |A| are the numbers of
candidate entities and acts, and d is the hidden size.

3.5 Dynamic Prompt Adjustment
3.5.1 Prompt Design

To better motivate LLMs to generate accurate and
patient-specific responses, we design a comprehen-
sive prompt structure. As shown in Figure 2, the
system prompt P = [Z; H; K; £] contains the fol-
lowing key components:

Task instruction 7 outlines the task that re-
sponds to the patient and explains the structure
of the remaining prompts. Historical details H
summarize key elements in the dialogue history,
including the dialogue context ¢;, and sequentially
listed historical entities Z; and acts @;. Evident
details /C provide medical knowledge for gener-
ating responses, containing predicted entities and
acts, and relevant knowledge triplets from MedKG.
Relevant demonstration £ provides an in-context
example to guide response formatting.

To enable real-time adaptation for varying pa-
tient conditions, we integrate a dynamic prompt ad-
justment strategy by introducing the Triplet Filter
and Demo Selector modules to refine the equipped
knowledge and demonstrations in the prompt.

3.5.2 Triplet Filter

To obtain reliable knowledge triplets from retrieved
entities, we design an iterative filtering process.
First, the retrieved one-hop subgraph G%t is
transformed into a set of triplets Tri%t. Next,
we compute the frequency of each entity in these
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triplets and sort them in descending order. Based
on these frequencies, we dynamically adjust the
triplets retained by setting a threshold 7. Those
triplets can be kept if and only if their head and tail
entities both have frequencies not less than 7.

T”'%t = {(eheadz T, etail)l min(#eheadv #etail) > T} (8)

Initially, 7 is set to 1 and is incremented in each
iteration, gradually reducing the number of retained
triplets. The process terminates once the number
of triplets in T'riz, does not exceed a predefined
maximum M. The current T'riz, is then used as
part of the final evident details in the prompt.

3.5.3 Demo Selector

To select the most relevant demonstration for the
system prompt, we introduce a multi-step align-
ment process.

Entity alignment. We begin by organizing all
training conversations into subsets based on entity
annotations in the first patient utterance. Specif-
ically, we construct multi-entity subsets Sg =
{SE,, ..., SE}, where each subset Sg, contains
conversation cases whose first utterance includes
the same n entities £y, = {x1,...,z,}. In paral-
lel, we create single-entity subsets .S, where each
subset S,/ contains cases with first utterances that
mention the shared entity ¢’

Given a current dialogue context ¢;, we need to
check whether its first utterance u; exactly matches
any entity set in Sg. If so, we retrieve the corre-
sponding subset as the candidate demo set Sgeo.
Otherwise, we fall back to the single-entity subsets
and select all sessions from .S, that share at least
one entity with uy.

Similarity alignment. To refine the demo selec-
tion, we compute the semantic similarity between
the current first utterance uq and those in Sgepo.
We encode each candidate separately and then ap-
ply cosine similarity to identify the closest conver-
sation cy,; as the demonstration reference.

Span alignment. To improve contextual rele-
vance and reduce prompt length, we extract a fo-
cused span from cy,; using a sliding window of
size £. Let the total utterance sequence of ¢y, be
{uy,r1,u,re,...,up,r7}, and denote the start
index as i = 2t — 1, corresponding to the current
dialogue turn ¢. The final demonstration £ is inter-
cepted in three cases: (1) If i < &, we select the
first 2§ utterances from cpy; 2) If § < iy < T ¢,

we select the utterances from index is — £ to i+ &;
BT — £ <1, we select the last 2€ utterances.

3.6 Model Optimization

To optimize different modules of MedRef, we de-
sign a two-stage training objective. We first pre-
train the entity-act joint prediction module in prepa-
ration for subsequent response generation. For pre-
dicting medical entities, we compute the binary
cross-entropy (BCE) loss £, between predictions
2y and ground-truth entity labels x;. Similarly, dia-
logue act prediction is trained based on the cross-
entropy loss £,. These loss functions can be for-
mulated as:

T |X]|

Ly =— Z Z[xti IOg(ati) + (1 - 33%) log(1 — &:\ti)]V
t=1i=1
T A

La==Y_> lar;log(@;) + (1 — at,) log(1 — @, )],

t=1j=1

(C))

To ensure consistency in knowledge refining, we
minimize the Kullback-Leibler (KL) divergence
between the prior pg and posterior qs:

T

Ly =Y Dir(as(ztlug, So,)lIPo(2tl19, So,)). (10)
t=1

We assign the weights \;, A, and Ag; to each
loss, and the overall loss function for this stage is a
weighted combination:

L=XLs+ NL0+ M1 L (11D

Next, with the prediction module fixed, we fine-
tune the medical LLM responsible for response
generation. By maximizing the log-likelihood of
the system responses, the language model based
loss is given by:

T
Loen = — ZlogZpgen(rtk|rt<k,P). (12)
t=1 k

4 Experimental Setup

4.1 Datasets

We conduct experimental evaluations on two
widely used benchmarks, MedDG and Kamed.
MedDG contains over 17,000 medical dialogues
annotated with 160 medical entities across 5 cate-
gories: diseases, symptoms, medications, examina-
tions, and attributes. It is officially split into 14,862
(train), 1,999 (validation), and 999 (test) sessions.
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Table 1: Comparison results on MedDG and KaMed datasets. “B”’=BLEU, “R”’=ROUGE, “E-F1”=entity-F1.
Bold/underline numbers denote significant improvements (p-value<0.01) over the second-best.

Category  Method MedDG KaMed
B-1 B2 B4 EF1 R-1 R2 ‘ B-1 B2 B4 EF1 R-1 R2
DL-based Seq2Seq 28.55 22.85 1545 12.88 25.61 1124|2352 18.56 12.13 - 23.56 8.67
VRBot 29.69 2390 1634 1278 24.69 11.23|30.04 23.76 16.36 12.08 18.71 7.28
GPT-2 3527 28.19 19.16 16.14 28.74 13.61 | 33.76 26.58 17.82 17.26 26.80 10.56
PLM-based BART 3494 2799 19.06 16.66 29.03 14.40 |33.62 2643 17.64 19.20 2791 1143
DFMed 41.74 3293 2248 21.54 2890 13.71|39.59 30.53 20.30 21.33 27.67 11.21
DISC-MedLLM 40.72 - 22.60 10.15 20.13 6.6 |38.05 - 20.26 13.54 20.48 593
GPT-40 42.19 - 23.32 13.15 1399 347 |41.88 - 23.34 13.86 1394 3.1
LLM-based HuatuoGPT-II  39.03 32.56 23.02 8.67 1094 1.76 [40.35 32.93 2392 12.00 1384 2.74
Zhongjing 26.65 21.75 15.02 6.43 13.14 2.82 |27.48 2235 1552 644 1370 3.05
Chatglm3-6B 33.16 26.51 17.97 17.43 29.27 13.69 |32.03 2520 16.68 20.56 28.02 12.12
MedRef 43.51 33.82 23.04 22.70 30.07 14.52|40.47 31.62 21.28 21.96 28.14 1242

Kamed includes over 63,000 dialogues spanning
100+ departments. Following DFMed (Xu et al.,
2023), we remove privacy-sensitive data, result-
ing in 29,159 (train), 1,532 (validation), and 1,539
(test) sessions. Dialogue acts are labeled into 7
types: Chitchat, Inform, Inquire, Provide Daily
Precaution, State a Required Medical Test, Make a
Diagnosis, and Prescribe Medications.

4.2 Baselines

We compare MedRef against the following three
types of baselines: (1) DL-based methods:
Seq2Seq (Sutskever et al., 2014), RNN with at-
tention; VRBOT (Li et al., 2021), patient state
and physician action tracking model. (2) PLM-
based methods: GPT-2 (Radford et al., 2019),
BART (Lewis, 2019), general-purpose generative
models; DFMed (Xu et al., 2023), dual flow model
leveraging interwoven entities and acts. (3) LLM-
based methods: Chatglm3-6B (Du et al., 2022),
general LLM fine-tuned on medical dialogues;
Zhongjing (Yang et al., 2024), traditional Chinese
medicine dialogue model; HuatuoGPT-1I (Chen
et al., 2023) (Baichuan-7B), DISC-MedLLM (Bao
et al., 2023) (Baichuan-13B), specialized medi-
cal LLM; GPT-40 (Hurst et al., 2024), advanced
closed-source LLM.

4.3 Evaluation Metrics

Automatic evaluation. To evaluate the quality
of the model’s generated responses, we utilize
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) for assessing lexical similarity, and entity-F1
score to measure entity-level accuracy.

Human evaluation. We focus on three key hu-
man evaluation metrics: fluency (FLU) measures
how naturally and smoothly the conversation flows;
knowledge accuracy (KC) focuses on the correct-
ness of the medical terms; and overall quality
(OQ) considers the holistic response effectiveness.

4.4 Implementation Details

We use ChatGLM3-6B as the backbone of
our response generator, which is fine-tuned
with LoRA (Hu et al., 2021) (rank=8, «=32,
dropout=0.1) using AdamW (Ir=5e-5). Med-
BERT (Rasmy et al., 2021) is used for entity and
act prediction (Ir=3e-5, batch size=8). We retrieve
up to M =25 triplets from CMeKG (Byambasuren
et al.,, 2019). The sliding window size is £=2.
The loss weights are set to A\, = 1, A\, = 0.05,
A = 0.05.1

5 Experimental Results

5.1 Opverall Performance

As shown in Table 1, MedRef consistently outper-
forms all baselines across multiple metrics, demon-
strating its effectiveness in generating high-quality,
medically grounded responses. Compared to GPT-
40, MedRef achieves +1.32% BLEU-1, +16.08%
ROUGE-1, and +11.05% Entity-F1, demonstrating
superior lexical alignment, fluency, and medical
accuracy. This advantage stems from task-specific
fine-tuning, whereas GPT-40’s closed-source na-
ture limits its adaptability to medical dialogue nu-
ances. MedRef tends to generate fluent utterances

!Our code is available at https://github.com/
simon-p-j-r/MedReF.

25720


https://github.com/simon-p-j-r/MedReF
https://github.com/simon-p-j-r/MedReF

Table 2: Ablation results of MedRef on MedDG and KaMed datasets.

Method MedDG KaMed
B-1 B-2 B-4 E-F1 R-1 R-2 ‘ B-1 B-2 B-4 E-F1 R-1 R-2

MedRef 43.51 33.82 23.04 22.70 30.07 14.52 ‘ 40.47 31.62 21.28 21.96 28.14 12.42
w/o KRM 42.58 33.45 22.70 21.94 29.88 14.23(40.29 31.10 20.88 21.51 27.95 11.92
w/o Demo 41.80 32.87 22.31 21.84 29.69 13.93|39.07 30.34 20.46 20.09 27.35 11.90
w/o Kg 41.76 32.83 22.24 21.58 29.86 13.93|39.82 30.96 20.81 20.55 28.09 11.87
E-A&Cxtonly 41.63 32.75 2230 21.30 28.68 13.27|39.30 30.38 20.42 20.81 26.72 11.22
Cxt only 33.16 26.51 17.97 17.43 29.27 13.69|32.03 2520 16.68 20.56 28.02 12.12

that align well with human-authored responses,
contributing to its superior ROUGE and entity-F1
scores, reflecting content richness and relevance.
However, MedRef slightly underperforms
HuatuoGPT-II and GPT-40 on BLEU scores on
KaMed. This discrepancy may arise from the
dataset complexity and the response style bias of
these models. First, KaMed spans a broader range
of clinical scenarios, encompassing over 100 de-
partments, which increases the complexity of the
required medical knowledge and makes learning
high-coverage representations more challenging.
Besides, HuatuoGPT-1I and GPT-40 often gener-
ate verbose, QA-style replies. While this verbosity
can increase token-level overlap with references
(thereby inflating BLEU scores), it tends to intro-
duce irrelevant or redundant content, leading to
much lower entity-F1 scores. Second, HuatuoGPT-
IT and GPT-40 tend to adopt a QA-style approach to
addressing patient inquiries, often generating very
long text responses with redundancy and nonsense.
This response trend is not enough to the point that
it helps to slightly improve the BLEU indicator, but
significantly reduces the entity F1 score.

5.2 Ablation Study

To investigate the contribution of each module in
the proposed system, we conduct a comprehensive
ablation study that includes the following variants
for comparison: (1) w/o KRM removes knowledge
refinement mechanism. (2) w/o Demo removes
the demonstration £ matched by the demo selec-
tor. (3) w/o Kg removes the knowledge triplets
retrieved from MedKG. (4) E-A&Cxt only retains
only the predicted entities and actions along with
the dialogue context; no demonstrations or exter-
nal knowledge are provided, and the KRM is not
used. (5) Cxt only uses only the dialogue context,

without any additional guidance or knowledge.
The ablation results in Table 2 show that all vari-
ant models exhibit noticeable performance declines,
underscoring the importance of each component.
In particular, w/o KRM suffers the most significant
drop across all evaluation metrics, highlighting its
dual role in filtering out redundant knowledge and
improving entity prediction accuracy. Moreover,
the performance degradation of other model vari-
ants relative to the full model illustrates the impor-
tance of prompt integrity and also shows that the
retrieval knowledge and demonstrations selected
into our prompt are more relevant than before.

5.3 Analysis of Triplet Filter and Demo Selector

To further verify the effectiveness of our triplet
filter and demo selector modules, we introduce
two new model variants: (1) Weak Kg: Instead of
entirely removing the knowledge triplets from the
prompt (w/o Kg), this variant bypasses the filtering
rule and directly retrieves the triplets connected
to entities in the most recent utterance from the
knowledge graph, randomly selecting M triplets
from the one-hop connections. (2) Weak Demo: In
this variant, demonstration examples are selected
randomly, without any alignment process to ensure
relevance.

The results in Figure 3 show that both variants
exhibit significant performance drops across key
metrics. Notably, we observe that merely increas-
ing the quantity of knowledge triplets, without ap-
plying the triplet filter, harms the model’s perfor-
mance. This suggests that indiscriminate use of
knowledge can introduce noise, overwhelming the
model and reducing its ability to generate accu-
rate responses. Similarly, the random selection of
demonstrations also leads to a decline in generation
quality, highlighting the importance of the demo
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Figure 3: Comparison results of triplet filter and demo selector.

selector’s alignment process. These findings con-
firm that both the triplet filter and demo selector are
essential for improving the accuracy and relevance
of the generated medical dialogues.

5.4 Case Study

Figure 4 illustrates a running example from the
MedDG dataset, showcasing the dialogue across
multiple turns.

In Turn-1, MedRef demonstrates its ability to
focus on the key entities “hemorrhoids” and “pain”,
producing a response that closely matches the
Ground Truth. In comparison, both DFMed and the
Baseline models fail to fully capture these entities,
leading to incomplete responses. This highlights
MedRef’s superior entity prediction capabilities
and its ability to generate more comprehensive in-
quiries that better address patient concerns.

In Turn-2, DFMed correctly predicts the entity
“hemorrhoids” but ignores the patient’s earlier state-
ment “I’ve never had hemorrhoids”, leading to a
contradictory response. In contrast, MedRef re-
mains consistent with the patient’s current health
information, thus leading to a more accurate and
contextually appropriate diagnosis.

In Turn-5, MedRef still manages to provide a rel-
evant and informative response. This is largely due
to its effective use of the retrieved knowledge and
its ability to infer information from the overall con-
text. This example further demonstrates MedRef’s
robustness, showcasing its ability to handle situa-
tions where explicit entity cues are absent, yet still
deliver meaningful and accurate dialogue.

Overall, these cases emphasize the advantages
of MedRef in not only predicting relevant medical
entities but also in maintaining contextual coher-

ence throughout the conversation, leading to more
reliable and patient-centered interactions. This il-
lustrates how MedRef surpasses existing baselines,
which often struggle with maintaining context con-
sistency and addressing patient concerns compre-
hensively.

5.5 Human Evaluation

In addition to automatic evaluation, we conduct hu-
man evaluation experiments with a dedicated team.
The volunteers are all medical doctoral and mas-
ter’s students with extensive experience in annotat-
ing medical conversations, who have been working
on related projects for the past few years, and can
ensure the reliability of the correct judgments. The
evaluators are tasked with scoring the responses
and rating three aforementioned metrics (FLU, KC,
0Q) using a scale from 1 (poor) to 5 (excellent).

As shown in Table 3, MedRef consistently out-
performs other baseline models across all three
metrics. Notably, the scores for MedRef are the
closest to the ground-truth responses, suggesting
its higher level of alignment with expert expec-
tations. This reinforces the idea that MedRef’s
specialized design, particularly the integration of
entity-aware mechanisms and dynamic prompt ad-
justment, leads to more reliable and contextually
relevant responses.

A key insight from this evaluation is that our
framework’s prompt design and dynamic adjust-
ments significantly enhance the generation qual-
ity of large language models (LLMs). The re-
sults indicate that simply fine-tuning LL.Ms with
generic prompts is insufficient for the complex na-
ture of MDS. In contrast, MedRef leverages tai-
lored prompt strategies and knowledge refinement,
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Chinese

English

W ASRAERIRRINGEM T, 610, A, SMERARREE, WARB HHEHI
%, CARTAKEA BRI, AT B A4 SRR SEORRER N (&, 224)

Patient: "Today, | suddenly noticed blood in my stool—bright red, without any pain. The stool wasn” t particularly
hard, and I don” t have diarrhea. My bowel movements have been smooth ... What could be causing this symptom?"
(Female, 22 years old).

AN
Baseline: 7 ¥A7 Wz Bkl it .
Our Model: AT 2 (i 1% 1Bl 2L

Tum-1 | Ground Truth: KA, EHL WLE I 2 AR 1R Ground Truth: "Hello ... Do you have any pain around the anus? Any history of hemorrhoids?”
DFMed: RtF, JXFME L KR 72 LLRTA 2800 2 DFMed: "Hello, how long has this been happening? Have you had hemorrhoids before?"
Baseline: {REF, IXFi AT Z KA T2 Baseline: "Hello, how long has this been going on?"
Our Model: k17, iXFE ML KT, 50808 KET4E, I 12k, Our Model: "Hello ... Any symptoms like hemorrhoids, hard stools, or anal pain?"
B AR RO SR ORISR Patient: "No pain, and_I've never had hemorrhoids. This is the first time I've noticed this symptom today."
——x S
Turn-2 | Ground Truth: JEFEH M. T YT FALITH . 518808 Ground Truth: “Is there still bleeding? Zan you check around the anus? Hemorrhoids are a possibility."
DFMed: "Do you have hemorrhoidsoes your anus hurt during bowel movements?"

Baseline: "Have you been eating spicy or irritating foods?"
Our Model: "Is your stool dry? The bleeding could be due to hemorrhoids or an anal fissure.”

B RAT, VLR, BEBERT LAY, BIEAE IR, R SR EATRRE L
FHE.

Patient: "It” sokay. I’ min Suzhou, Jiangsu, and | can go to the hospital. I’ d like to ask, should I register for the
proctology department or the gastroenterology department?"

Turn-5 | Ground Truth: Fi#%3;: Sz Sl ek U Flo
DFMed: ii§16it. %

Baseline: ALk}

Our Model: NLJF%}.

Ground Truth: "Go directly to the emergency surgery department or the proctology department.”
DFMed: "Gastroenterology department.”

Baseline: "Proctology department.”

QOur Model: "Proctology department.”

Figure 4: A running case comparing MedRef with baselines, highlighting that MedRef predicts more accurate

medical entities and generates more relevant responses.

allowing it to generate responses that are not only
more fluent but also exhibit higher medical accu-
racy. These findings highlight the advantage of
our system, demonstrating that the combination of
entity prediction, knowledge refining, and context-
aware prompts enables the generation of higher-
quality medical dialogues compared to simple fine-
tuning strategies.

Table 3: Comparison results for human evaluation. Each
metric ranges from 1 to 5.

Method FLU KC O0Q
Ground-truth 3.70 375 3.95
DFMed 342 357 3.65
E-A&Cxtonly 291 3.05 3.14
MedRef 355 3.68 3.79

6 Conclusion

In this paper, we propose Medical dialogue sys-
tem with knowledge Refining and dynamic prompt
adjustment (MedRef). We introduce a variational
knowledge refining mechanism for more accurate
medical entity predictions and knowledge-driven
responses. We also develop a dynamic prompt ad-
justment method that adapts system prompts in real-
time to the patient’s evolving condition, ensuring
more personalized and contextually relevant multi-
turn medical dialogue generation. Extensive exper-
iments on two benchmarks verify that MedRef can
achieve the best performance in terms of both text
generation and medical entity-based metrics. These
findings underscore MedRef’s potential to improve
the quality and reliability of MDS, paving the way
for more context-aware and medically sound inter-
actions in healthcare settings.

Limitations

While our model achieves state-of-the-art perfor-
mance in medical dialogue generation, two key lim-
itations present opportunities for future improve-
ment: (1) Unlike textual medical knowledge, cross-
modal knowledge data has not been fully explored
to enhance the capture of patient conditions. (2)
The emotional support capabilities of current MDS
are still passive rather than active. Appropriate
comforting strategies are needed while maintaining
medical accuracy.

Ethical Considerations

The development and deployment of the medical
dialogue system prioritize user safety, privacy, and
the responsible use of Al in healthcare. All data
used for training is anonymized. The proposed
system is clarified to be intended as an assistive
tool, not a replacement for professional medical
advice, and should be used in conjunction with
consultation from qualified healthcare providers.
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