IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator

Yusuke Sakai, Takumi Goto, Taro Watanabe


Abstract
We propose IMPARA-GED, a novel reference-free automatic grammatical error correction (GEC) evaluation method with grammatical error detection (GED) capabilities. We focus on the quality estimator of IMPARA, an existing automatic GEC evaluation method, and construct that of IMPARA-GED using a pre-trained language model with enhanced GED capabilities. Experimental results on SEEDA, a meta-evaluation dataset for automatic GEC evaluation methods, demonstrate that IMPARA-GED achieves the highest correlation with human sentence-level evaluations.
Anthology ID:
2025.findings-acl.1315
Volume:
Findings of the Association for Computational Linguistics: ACL 2025
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venues:
Findings | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
25647–25654
Language:
URL:
https://preview.aclanthology.org/ingestion-acl-25/2025.findings-acl.1315/
DOI:
Bibkey:
Cite (ACL):
Yusuke Sakai, Takumi Goto, and Taro Watanabe. 2025. IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator. In Findings of the Association for Computational Linguistics: ACL 2025, pages 25647–25654, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
IMPARA-GED: Grammatical Error Detection is Boosting Reference-free Grammatical Error Quality Estimator (Sakai et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/ingestion-acl-25/2025.findings-acl.1315.pdf