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Abstract

Large Vision-Language Models often generate
hallucinated content that is not grounded in
its visual inputs. While prior work focuses on
mitigating hallucinations, we instead explore
leveraging hallucination correction as a training
objective to improve video-language alignment.
We introduce HACA, a self-training framework
learning to correct hallucinations in descrip-
tions that do not align with the video content.
By identifying and correcting inconsistencies,
HACA enhances the model’s ability to align
video and textual representations for spatio-
temporal reasoning. Our experimental results
show consistent gains in video-caption binding
and text-to-video retrieval tasks, demonstrat-
ing that hallucination correction-inspired tasks
serve as an effective strategy for improving vi-
sion and language alignment.

1 Introduction

Aligning representations across modalities involves
creating joint embeddings that map visual and
linguistic features to a shared space, enabling
the model to assess their similarity. This is cru-
cial for tasks including cross-modal retrieval (Xu
et al., 2016a), mitigating hallucinations (Jiang
et al., 2024), compositional reasoning (Cascante-
Bonilla et al., 2024), visual-to-text generation (Li
et al., 2022), visual question answering (Shen et al.,
2022), and visual-language navigation (Zhao et al.,
2021). While progress has been made in aligning
image representations with text (Li et al., 2020;
Zeng et al., 2022; Wang et al., 2023a; Lin et al.,
2025), advancements in video-language alignment
remain limited. Videos pose unique challenges due
to their rich spatio-temporal information, involv-
ing multiple entities and scenes that dynamically
interact and change over time. Video-language

*This work was partially conducted during an internship
at Honda Research Institute.

Input: Does this caption accurately describe the video?
→ Caption: Outside, a blonde-haired woman is bending down to grab an object.
Video-LLaVA output: Yes, the caption accurately describes the video. The woman 
is seen bending down to pick up an object, and she is blonde. [Pyes = 0.85 ]
HACA output: Yes. This caption accurately describes the video. [Pyes = 0.75 ]

Contrast input: Does this caption accurately describe the video?
→ Caption: Outside, a female with blonde hair is standing up, grabbing an object.
Video-LLaVA output: Yes, the caption accurately describes the video. The female 
with blonde hair is seen standing up and grabbing an object. [Pyes = 0.85 ]
HACA output: No. This caption shall be corrected as: Outside, a female with 
blonde hair is lying down, grabbing an object. [Pyes = 0.36 ]

Figure 1: Models tasked with determining whether a
given video entails a caption, where the contrast caption
closely resembles the correct one. HACA effectively
differentiates between the correct caption (top) and the
incorrect one (bottom), and corrects hallucination in
the latter. In contrast, Video-LLaVA fails to distinguish
between those captions or correct the hallucination.

models (Video-LLMs in §3.1) can compute align-
ment scores (Lin et al., 2023; Li et al., 2023b)
but struggle to distinguish between similar videos
and descriptions (Park et al., 2022; Wang et al.,
2023b; Saravanan et al., 2024), as illustrated in
Figure 1. One promising approach is to fine-tune
Video-LLMs on entailment tasks using similar cap-
tions (Bansal et al., 2024), where the model is
prompted to answer Yes or No to whether a video is
aligned with a given caption (§3.1). However, using
a single binary label as a learning signal fails to in-
dicate which parts of the description misalign with
the video. Bansal et al. (2024) generates natural
language explanations for mismatches but requires
costly dataset construction with additional models
and annotations.

To this end, we introduce HACA, a self-training
framework grounded in HAllucination Correction
for video-language Alignment (§ 3.2). Halluci-
nation (or confabulation) refers to a mismatch
between textual descriptions and the correspond-
ing factual content of an image or video (Liu
et al., 2024). HACA requires the model to pre-
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dict whether a description entails the video content.
If the description does not align, the model cor-
rects the hallucinations to better match the video.
Instead of relying solely on a binary entailment la-
bel, HACA uses hallucination correction as a finer-
grained learning signal to enhance the alignment
of video and language representations. Given that
misalignment between modalities is a key factor in
hallucination (Biten et al., 2022; Sun et al., 2024),
we hypothesize that introducing a hallucination cor-
rection task can improve video-language alignment.
HACA also requires no external models or anno-
tations beyond the ground-truth video description.
To further enhance HACA, we introduce a masking
correction task as data augmentation (§3.3).

We fine-tune two Video-LLMs with HACA,
and evaluate these fine-tuned models in a zero-
shot manner on two spatio-temporally challeng-
ing downstream tasks (§ 4): VELOCITI (Sara-
vanan et al., 2024), a video-caption binding dataset,
and SSv2-Temporal (Sevilla-Lara et al., 2021) and
SSv2-Events (Bagad et al., 2023), which are text-to-
video retrieval datasets emphasizing action recog-
nition. The models fine-tuned with HACA outper-
form baseline models by up to 17.9% accuracy and
5.7 mAP points, demonstrating that HACA effec-
tively improves video-text alignments, and gener-
alizes beyond in-domain data (§ 5). Our code and
data will be available upon acceptance.

2 Related Work

In addition to the video-language alignment ap-
proaches discussed in § 1, several methods leverage
a contrastive learning objective to learn a shared
video-language embedding space (Xue et al., 2023;
Rasheed et al., 2023; Girdhar et al., 2023; Zhu et al.,
2024), and Bagad et al. (2023) further introduces
a contrastive loss in Video-LLMs to enforce time-
order consistency. However, most of these models
lack robustness to semantically plausible manipula-
tions (Park et al., 2022). Yuksekgonul et al. (2023)
also finds that applying a contrastive objective
to video-caption datasets does not promote the
model’s ability to capture fine-grained details. In
contrast, our approach encourages Video-LLMs
to capture more nuanced semantic mismatches
by learning to correct hallucinations, extending
beyond sentence-level hallucination detection.
More discussion is provided in Appendix B.

3 HACA: Hallucination Correction for
Video-language Alignment

To investigate whether hallucination correction can
improve video-language alignment, we introduce
HACA, a fine-tuning objective for Video-LLM as
a sequence-to-sequence generation task.

3.1 Preliminaries: Video-LLMs

Video-LLMs typically consist of three parts: i) a
visual encoder to map images and videos to visual
representations; ii) an LLM that takes text instruc-
tions as inputs to generate text responses; and iii)
an adapter between visual and text representations.
Our approach finetunes (ii) the text decoder and
(iii) the adapter, freezing (i) the visual encoder.

Pre-training. A Video-LLM Mθ parameterized
by θ takes a textual question or instruction Q, a
video V as input, and generates a text response A =
(A1,A2, ...,AT ) autoregressively using a decoder-
based language model (LLM) as output, by esti-
mating a conditional distribution M(A | Q,V ).
This is achieved by training the model using the
maximum-likelihood estimation (MLE) objective:

L(θ) =
∑

Dtrain

T∑

t=1

logMθ(At | A<t,Q,V ) (1)

where At is t-th word of the text response, and A<t

are the first t−1 words of the response. The dataset
Dtrain consists of samples in the form (Q,A,V ).

Fine-tuning with entailment. Following Bansal
et al. (2024), we finetune the Video-LLM using
an entailment task, where the text input Q is for-
matted as an entailment question as Q(W ) =
Does this caption accurately describe the
video? Caption: {W }. In this task, the output
of the model A is Yes or No (Figure 2 (a)). Given a
dataset Dtrain consisting of ground-truth answers
A for Q(W ) and V , the model is fine-tuned to
have a better estimation of Mθ(Yes | Q(W ),V )
and Mθ(No |Q(W ),V ) using the MLE objective:

Lent(θ) =
∑

Dtrain

logMθ(A | Q(W ),V ) (2)

3.2 Learning from Hallucination Correction

Building on the work of Bansal et al. (2024), the
Video-LLM takes the question Q and the video V
as input to determine whether a text description W
entails the video (similar to § 3.1). However, in our
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Input: Does this caption accurately describe 
the video? → Caption: Tennis player tries 
again then serves the ball
Output: No

Input: Does this caption accurately describe 
the video? 
→ Caption: they walk off on the right before 
someone enters from frame left
Output: No. This caption shall be corrected 
as: they walk off on the right after someone 
enters from frame left

Input: Please correct this caption to 
accurately describe the video.
→ Caption: the [MASK] raises his hand 
[MASK] man [MASK] to touch top of head
Output: the man raises his hand before man 
starts to touch top of head

a) Entailment task b) Hallucination Correction (HACA) c) Masking correction task

Figure 2: Example of different finetuning objectives. The first column shows an example of the baseline entailment
task. The second column shows an example of our proposed HACA task, where we finetune the model to output
hallucination correction to justify the response. The third column shows an example of the masking correction task,
where we input a masked version of the video description and finetune the model to predict the corrected one.

setting, if W does not entail V , the model gener-
ates a corrected caption Ŵ = (w1, w2, ..., wn) to
align the description with the video content. During
fine-tuning, if W entails V , the model is trained
to generate the response as A(Yes) = Yes, the
caption accurately describes the video. If
W does not entail V , the model is trained to gen-
erate a corrected description Ŵ as its response,
formatted as A(No, Ŵ ) = No. This caption
shall be corrected as: {Ŵ }. We show
an example in Figure 2 (b). In contrast to fine-
tuning using entailment only, our hallucination
correction objective trains the model to have bet-
ter estimation of Mθ(A(Yes) | Q(W ),V ) and
Mθ(A(No, Ŵ )|Q(W ),V ).

Instead of using Eq 2, given a training dataset
Dtrain that consists of video V and ground-truth
text description Ŵ pairs, we fine-tune the Video-
LLM using the MLE objective:

Lc(θ) =
∑

Dtrain

T∑

t=1

logMθ(At | A<t,Q(W ),V )

(3)
where At is the t-th word of the text response of
A(Yes) or A(No, Ŵ ), and A<t is the first t − 1
words of the text response.

3.3 Masking Correction as Augmentation
We also incorporate a masking correction task as
data augmentation (Figure 2 (c)), where an in-
struction Q prompts the Video-LLM to make cor-
rections to a masked caption W̄ , teaching the
model to generate a corrected caption that con-
tains a sequence of words Ŵ = (w1, w2, ..., wn)
as its answer by estimating conditional probability
M(Ŵ | Q(W̄ ),V ). Specifically, Q is a func-
tion that formats the text instruction as Q(W̄ ) =
Please correct this caption to accurately
describe the video. Caption: W̄ , where W̄

is masked from Ŵ : W̄ = (w1, [MASK], ..., wn),
by randomly masking 45% of the content words in
the ground truth video description Ŵ .

We finetune the model using two objectives: the
MLE objective to estimate the probability for mask-
ing correction Mθ(Ŵ |Q(W̄ ),V ), and the HACA
objective (Eq 3). The model is tasked with provid-
ing responses corresponding to different instruc-
tions.

4 Experimental Setup

Data (detailed in §A.5). We train HACA using
videos and their ground-truth and contrastive de-
scriptions from VideoCon (Bansal et al., 2024),
generating 115,536 (video, description, correction)
triplets for training and 8,312 for validation, which
is used for model selection. Synthetic contrast
captions are also used to fine-tune the baseline en-
tailment task with the same dataset sizes.

We evaluate our trained models on text-to-video
retrieval using the temporally-challenging SSv2-
Temporal (Sevilla-Lara et al., 2021) and action-
intensive SSv2-Events (Bagad et al., 2023) datasets.
Additionally, we evaluate our models on composi-
tional ability over time using the VELOCITI bench-
mark (Saravanan et al., 2024). Each video in the
dataset includes a correct caption and an incorrect
one.

Baselines. (i) Pretrained Video-LLMs: we em-
ploy two pre-trained models with different ar-
chitectures, Video-LLaVA (Lin et al., 2023) and
VideoChat2 (Li et al., 2023b). More details in §A.4.
(ii) Entailment: we fine-tune the pretrained Video-
LLMs using the entailment task described in §3.1.
More details about the implementation are in §A.1.

Evaluation metrics. We report the accuracy on
the VELOCITI benchmark as the proportion of
examples in which the positive video-caption pair
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Figure 3: Mean Average Precision (mAP) scores for pre-
trained Video-LLaVA and models fine-tuned using vari-
ous methods on zero-shot text-to-video retrieval tasks.

Agent Tests Action Tests
Model Iden Bind Coref Adv Bind Modif Chrono Avg

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Human 94.7 93.3 96.0 100.0 92.7 91.3 93.3 94.4

CLIP-ViP B/32 75.3 52.4 55.7 70.2 53.5 51.2 48.5 58.1
ViFi-CLIP B/16 82.3 58.7 54.6 63.0 59.3 60.5 49.8 61.2

mPLUG-V 43.0 31.9 51.7 65.0 42.0 49.6 41.3 46.3
PLLaVA 68.6 43.3 60.5 62.4 46.6 56.0 49.6 55.3
VideoCon 67.4 44.6 50.0 73.0 51.1 63.2 45.6 56.4
Video-LLaVA 74.1 50.4 60.1 63.6 47.0 47.9 56.0 57.0
+ Entail 73.7 59.7 55.5 68.4 57.3 64.0 57.3 62.3
+ HACA 80.3 62.6 57.9 72.6 60.0 65.8 54.5 64.8
+ HACA+Mask 82.7 62.1 57.9 71.8 59.0 64.8 57.9 65.2
VideoChat2 76.8 54.4 53.1 56.0 46.2 59.3 54.7 57.2
+ Entail 59.7 56.9 55.5 62.2 53.0 50.1 53.9 55.9
+ HACA 77.2 60.4 56.4 65.8 55.0 61.7 53.7 61.5
+ HACA+Mask 79.1 59.7 56.9 68.2 54.6 66.9 51.1 62.4

Table 1: Zero-shot accuracy on VELOCITI for models
trained with the baseline entailment task, our proposed
HACA objective, and other contrastive (CLIP-ViP (Xue
et al., 2023), ViFi-CLIP (Rasheed et al., 2023)) and
generative (mPLUG-V (Ye et al., 2023), PLLaVA (Xu
et al., 2024)) models.

receives a higher Yes entailment probability than
the corresponding negative video-caption pair. For
SSv2, we compute Yes probabilities for each text-
video pair, rank their scores, and report mean Aver-
age Precision (mAP).

5 Analysis

Performance on text-to-video retrieval. HACA
consistently outperforms both the pretrained model
and the entailment fine-tuned model, as illustrated
in Figure 3. This demonstrates HACA’s abil-
ity to effectively capture the rich temporal infor-
mation present in videos. On the SSv2-Events
dataset, while the entailment objective yields per-
formance comparable to the pretrained Video-
LLaVA, HACA achieves better results on this
action-intensive dataset, despite being fine-tuned
on the same amount of data. Additional compar-
isons with other models are provided in §A.2.

Input: Does this caption accurately describe the video?
→ Caption: Inside an office, the man in sheriff uniform is thinking to himself, 
fondling the envelope as he does so. 
Entail + Video-LLaVA output: No. [Pyes = 0.47 ]
HACA + Video-LLaVA output: Yes. This caption accurately describes the video. 
[Pyes = 0.63 ]

Contrast input: Does this caption accurately describe the video?
→ Caption: Inside an office, the man is thinking to himself while fondling the 
envelope, and so is the woman.
Entail + Video-LLaVA output: No. [Pyes = 0.48 ]
HACA + Video-LLaVA output: No. This caption shall be corrected as: Inside an 
office, the man is thinking to himself while fondling the envelope. [Pyes = 0.50 ]

Figure 4: Success on binding and correction: HACA
effectively assigns higher entailment probability Pyes to
the correct caption (top) than the incorrect one (bottom),
unlike the entailment-finetuned model. HACA also ac-
curately corrects the incorrect caption in its output.

Performance on video-language binding. Ta-
ble 1 shows that, on average, both Video-LLaVA
and VideoChat2 fine-tuned with the HACA objec-
tive outperform the pre-trained models and those
fine-tuned with the entailment objective. Masking
correction further boosts performance through data
augmentation. The Agent Coref test evaluates a
model’s ability to link events to specific agents, a
misalignment type absent in the VideoCon dataset,
where actions are always tied to one agent. Conse-
quently, the pretrained Video-LLaVA outperforms
its fine-tuned versions, with HACA marginally ex-
ceeding the entailment baseline. The Chrono test
measures a model’s ability to detect reversed event
order. While VideoCon includes such data, our
results show that models fine-tuned on the entail-
ment objective perform similarly to the pretrained
model. Although HACA slightly underperforms
the entailment objective, it excels on SSv2-Events,
involving multiple events.

HACA consistently outperforms baseline mod-
els in all Action tests: Action Adv (replacing an
action with one not in the video), Action Bind (re-
placing an action within the same video), and Ac-
tion Modif (replacing the manner with a plausible
modifier). This highlights HACA’s robust ability
to distinguish actions in videos, requiring under-
standing of complex spatio-temporal relationships
between the video and its description. HACA also
excels in Agent Iden and Agent Bind, showcasing
its effectiveness in identifying and binding entities
through the right relationship.

Qualitative examples. Figure 4 presents an ex-
ample where HACA outperforms the entailment
baseline on the VELOCITI dataset, and delivers ac-
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curate corrections. Additional qualitative examples
are provided in §A.3.

HACA does not hinder question answering. To
assess whether fine-tuning with the HACA objec-
tive affects the multi-task capabilities of Video-
LLMs, we conduct a zero-shot evaluation on the
MSRVTT-QA dataset (Xu et al., 2016a) using
GPT-3.5-turbo. The results, presented in Table 2,
are based on a subset of 7,000 samples (10% of
the dataset) due to budget constraints. The GPT-
evaluated score for the pretrained Video-LLaVA
model aligns with previously reported values (Lin
et al., 2023). As shown in the table, the HACA-
finetuned model performs comparably to the pre-
trained Video-LLaVA model, despite not involving
explicit QA-specific finetuning. In contrast, fine-
tuning with the entailment objective alone leads to
a significant performance drop on MSRVTT-QA. A
possible explanation is that optimizing for a single
entailment label may impair the language genera-
tion capabilities of video-language models.

Model GPT Score

Video-LLaVA 3.5
+ Entail 2.8
+ HACA 3.4

Table 2: Zero-shot GPT-assessed score on MSRVTT-
QA for the model trained with the baseline entailment
task, and our proposed HACA objective. GPT-assessed
scores ranges from 0 to 5.

6 Conclusion

Video understanding through language is vital for
applications like human-robot interaction and au-
tonomous driving. We propose a novel approach to
enhance video-language alignment by connecting
it to the hallucination problem in visual-language
models, paving the way for future advancements.

Limitations

Our proposed method assumes the availability of
ground-truth video caption annotations for fine-
tuning using hallucination correction. Additionally,
the method assumes a clear separation between the
parameters of the video representations and those
of the language model, as we freeze the video en-
coder parameters during fine-tuning to align video-
language representations. Another limitation is that
our approach has not been evaluated on long videos,

due to the limitation of computational resources.
We envision future work in this direction.
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A Appendices

A.1 Implementation Details

Fine-tuning from pretrained models. We use the visual representations for video and language model
embeddings pretrained from Video-LLMs to perform instruction fine-tuning using different objectives,
including HACA (§3.2), entailment (§3.1), and masking correction (§3.3). During finetuning, visual
representations are frozen, and the embeddings from the visual-text adapter layers and LLM are learnable.

Hyperparameters and computation. For Video-LLaVA, we finetune our models for 3 epochs, using a
learning rate of 2e−4 and AdamW optimizer. We also use a LoRA adapter (Hu et al., 2022) of rank 128
and alpha 256. Since we freeze the video encoder, the number of trainable parameters is significantly
reduced to 241M for Video-LLaVA. The number of video frames processed per video is 8, with a batch
size of 8, using 2 RTXA6000 GPUs, for a total of ∼ 72 hours.

For VideoChat2, we finetune our models for 3 epochs, using a learning rate of 2e−5 and AdamW
optimizer. We use a LoRA adapter (Hu et al., 2022) of rank 16 and alpha 32. We also freeze the visual
encoders and reduce the number of trainable parameters to 193M. The number of video frames processed
per video is 8, with a batch size of 2, using 1 RTXA6000 GPU, for around ∼ 72 hours.

Tools. We implement our models with Pytorch 2.0.1, Huggingface Transformers 4.31.0, scikit-learn
1.2.2. We use SciPy 1.6.0 to find content words from ground truth video description by excluding words
with part-of-speech tags: AUX, SYM, DET, PUNCT.

A.2 Ablation studies

Performance on text-to-video retrieval. In Table 3, HACA (§ 3.2) demonstrates competitive per-
formance on SSv2 downstream tasks, surpassing the pretrained model by up to 5.7 mAP points and
outperforming the model fine-tuned with the entailment task by up to 2.0 mAP points. Masking correction
augmentation typically enhances video-language alignment when jointly trained with HACA or the
entailment task.

Effect of different mask ratios. Table 4 shows the performance when jointly finetuning Video-LLaVA
using HACA and masking correction task (§3.3) with different masking ratio. The results indicate that
using masking ratio of 45% achieves higher average accuracy.

Comparing HACA and natural language explanations. To assess the effectiveness of HACA as
a finetuning task, we compare it against natural language explanations (NLE) generated by external
natural language inference models (Bansal et al., 2024), used alongside the entailment task. We fine-tune
Video-LLaVA with both the entailment and NLE training objectives and report the results in Table 5. Our
findings show that HACA outperforms Video-LLaVA trained with entailment and NLE objectives, even
without our proposed masking objective.

Model SSv2-Temporal SSv2-Events

Random 7.3 3.3
ImageBind (Girdhar et al., 2023) 10.5 5.5
TACT (Bagad et al., 2023) - 7.8
mPLUG-V (Ye et al., 2023) 10.9 6.8
VideoCon (Bansal et al., 2024) 15.2 11.4

Video-LLaVA 13.8 7.8
+ Entail 17.5 7.5
+ Entail+Mask 18.0 9.9
+ HACA 19.5 9.1
+ HACA+Mask 15.3 10.3

Table 3: Mean Average Precision (mAP) scores for the tested models in the zero-shot text-to-video retrieval tasks.
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Model Agent Tests Action Tests Chrono Avg
Iden Bind Coref Adv Bind Modif

Video-LLaVA 74.1 50.4 60.1 63.6 47.0 47.9 56.0 57.0
+ HACA 80.3 62.6 57.9 72.6 60.0 65.8 54.5 64.8
+ HACA+Mask 15% 77.9 58.6 58.4 71.4 57.7 61.7 57.4 63.3
+ HACA+Mask 30% 81.4 60.3 54.3 70.0 58.0 65.4 59.5 64.1
+ HACA+Mask 45% 82.7 62.1 57.9 71.8 59.0 64.8 57.9 65.2
+ HACA+Mask 60% 82.7 62.1 56.5 70.6 57.8 62.3 55.7 64.0

Table 4: Accuracy of Video-LLaVA jointly finetuned with HACA and masking correction task using different
masking ratio on VELOCITI (zero-shot).

Model Agent Tests Action Tests Chrono Avg
Iden Bind Coref Adv Bind Modif

Video-LLaVA 74.1 50.4 60.1 63.6 47.0 47.9 56.0 57.0
+ Entail + NLE 77.1 60.0 58.6 66.8 55.9 66.3 57.9 63.2
+ HACA 80.3 62.6 57.9 72.6 60.0 65.8 54.5 64.8
+ HACA+Mask 82.7 62.1 57.9 71.8 59.0 64.8 57.9 65.2

Table 5: Zero-shot accuracy on VELOCITI for models trained with the baseline entailment task, mixture of
entailment and natural language explanation tasks, and our proposed HACA objective.

A.3 Additional Qualitative Analysis

Figure 5 shows additional success and failure cases of HACA and the other models we tested.

A.4 Pretrained Video-LLMs.

We use two pre-trained Video-LLMs with different model architectures.

Video-LLaVA. Video-LLaVA (Lin et al., 2023) consists of LanguageBind (Zhu et al., 2024) encoders
for the visual inputs, a large language model (Team, 2023), visual projection layers and a word embedding
layer. It is finetuned via visual instruction tuning with 665k image-text pairs from LLaVA 1.5 (Liu et al.,
2023b) and a 100k video-text instruction set from Video-ChatGPT (Maaz et al., 2023). We use this model
under their Apache License 2.0.

VideoChat2. VideoChat2 (Li et al., 2023b) performs a progressive multi-modal training for three stages.
In the first stage, it is trained to aling the visual encoder with a Querying Transformer (Q-Former) (Li
et al., 2022) which acts as an information bottleneck between the image and textual encoders and distill
relevant information to the textual context. The second stage connects the visual encoder with a pretrained
LLM. In the third stage, finetunes the model via instruction tuning, using 5 different tasks including:
captioning, conversations, visual question answering, reasoning and classification, with data coming from
LLaVA (Liu et al., 2023b), VideoChat (Li et al., 2023a), VideoChatGPT (Maaz et al., 2023), COCO
Captions (Lin et al., 2014), WebVid (Bain et al., 2021), YouCook (Das et al., 2013), OK-VQA (Marino
et al., 2019), AOK-VQA (Schwenk et al., 2022), DocVQA (Mathew et al., 2021), CLEVR (Johnson et al.,
2017), CLEVRER (Yi et al., 2020) and NExT-QA (Xiao et al., 2021) among others. We use this model
under their MIT License.

A.5 Datasets

VideoCon. VideoCon is constructed by generating contrastive video captions and explanations for
different subset of videos (Xu et al., 2016b; Wang et al., 2019; Hendricks et al., 2018). This dataset
contains seven misaligned types that include replacement of objects, actions, attributes, counts and
relations, and adds hallucinations (i.e. unrelated but plausible information). We use this dataset under
their MIT License.

VELOCITI. The duration of the video clips in the dataset is 10 seconds, and has dense text annotations
on action and role descriptions. The perception-based tests require discriminating video-caption pairs
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Input: Does this caption accurately describe the video?
→ Caption: In the kitchen, a man in a blue shirt is pushing a man in a black jacket 
back angrily.
Entail + Video-LLaVA output: No. [Pyes = 0.19 ]
HACA + Video-LLaVA output: Yes. This caption accurately describes the video. 
[Pyes = 0.71 ]

Contrast input: Does this caption accurately describe the video?
→ Caption: In the kitchen, the man in a blue shirt gently pushes the man in a black 
jacket back.
Entail + Video-LLaVA output: No. [Pyes = 0.21 ]
HACA + Video-LLaVA output: Yes. This caption accurately describes the video. 
[Pyes = 0.64 ]

(a) Success on binding, failure on correction: HACA suc-
cessfully assigns a higher entailment probability (Pyes) to
the correct caption (top) compared to the incorrect one (bot-
tom), outperforming the entailment-finetuned model in this
regard. However, HACA fails to produce a correction, as it
erroneously indicates that the incorrect caption accurately de-
scribes the video.

Input: Does this caption accurately describe the video?
→ Caption: First, At a table, the lady in blue is slowly covering her ears. Then, By a 
table, the person in white is slowly walking away.
Video-LLaVA output: Yes, the caption accurately describes the video. The lady in 
blue is covering her ears, and the person in white is walking away slowly. [Pyes =

0.75 ]
HACA + Video-LLaVA output: Yes. This caption accurately describes the video. 
[Pyes = 0.67 ]

Contrast input: Does this caption accurately describe the video?
→ Caption: First, By a table, the person in white is slowly walking away. Then, At a 
table, the lady in blue is slowly covering her ears.
Video-LLaVA output: Yes, the caption accurately describes the video. [Pyes = 0.81 ]
HACA + Video-LLaVA output: Yes. This caption accurately describes the video. 
[Pyes = 0.76 ]

(b) Failure on binding and correction: both HACA and the
pre-trained Video-LLaVA model incorrectly assign a higher
entailment probability (Pyes) to the incorrect caption (bottom)
than to the correct caption (top). Additionally, HACA fails to
provide a correction, mistakenly asserting that the incorrect
caption accurately describes the video.

Figure 5: Some successful and failure cases of HACA and the other models on the VELOCITI dataset. The red
color in text indicates the incorrect text description.

that share similar entities, and the binding tests require models to associate the correct entity to a given
situation while ignoring the different yet plausible entities that also appear in the same video. There are
1000 tests using 643 videos for Agent Iden, 1676 tests using 707 videos for Agent Bind, 418 tests using
270 videos for Agent Coref, 500 tests using 400 videos for Action Adv, 1625 tests using 590 videos for
Action Bind, 500 tests using 411 videos for Action Mod, and 1908 tests using 669 videos for Chrono. We
use this dataset under their Creative Commons Public Licenses.

SSv2-Temporal and SSv2-Events. SSv2-Temporal contains a list of 18 actions that require models to
capture rich temporal information in the video, consisting of 216 (18 ×12) candidate videos for every text
action query. SSv2-Events has 49 actions that consist two verbs in the action templates that are indicative
of multiple events in the video, consisting of 2888 (49×12) candidate videos for every text action query.

B Related Work

Alignment in Video-Language Models is fundamental for the logical integration of video and textual
information. To align both modalities, prior work has focused on pre-training models with different
objectives to capture the temporal dynamics in video. While these self-supervised correction objectives
are highly effective during pre-training (Li et al., 2023c; Wang et al., 2022; Zhu et al., 2024; Ge et al.,
2022), fine-tuning is typically required to adapt Video-LLMs to specific downstream tasks (Li et al.,
2023a; Zhang et al., 2023; Bansal et al., 2024) (e.g., classification, retrieval, or question answering).
However, these objectives rely on coarse-grained alignment labels and do not provide detailed feedback
for resolving inconsistencies between video and language.
Hallucination Correction methods aim to mitigate the generation of content that does not align with
the data a model was trained on, or the model describes content that does not exist in the provided
input (Huang et al., 2024). Orthogonal to our proposed method, LURE (Zhou et al., 2024) uses statistical
analysis to identify and rectify errors in generated descriptions, addressing co-occurrence, uncertainty, and
positional factors via masking. In our work, we randomly mask the video description so that the model is
required to output the corrected sentence, which is also conditioned in the input video via visual entailment.
Yin et al. (2023); Wang et al. (2023b) uses external models and measures to correct hallucinations to
be consistent with images or videos. Zhou et al. (2021); Liu et al. (2023a); Xiao et al. (2024); Zhao
et al. (2024) create a synthetic dataset to train a specialized model to detect and correct hallucinations.
Dale et al. (2022); Huang et al. (2024) shows promising results on correcting hallucinations without an
external model for machine translation and image captioning. In our work, we investigate leveraging
hallucination as a training objective to improve video-language alignment, by exploring the potential of
using a video-LLM model itself to correct hallucinations through fine-tuning on a synthetic dataset.
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