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Abstract

Natural language image-caption datasets,
widely used for training Large Multimodal
Models, mainly focus on natural scenarios
and overlook the intricate details of mathe-
matical figures that are critical for problem-
solving, hindering the advancement of cur-
rent LMMs in multimodal mathematical rea-
soning. To this end, we propose leverag-
ing code as supervision for cross-modal align-
ment, since code inherently encodes all in-
formation needed to generate corresponding
figures, establishing a precise connection be-
tween the two modalities. Specifically, we co-
develop our image-to-code model and dataset
with model-in-the-loop approach, resulting
in an image-to-code model, FigCodifier and
ImgCode-8.6M, the largest image-code dataset
to date. Furthermore, we utilize FigCodi-
fier to synthesize novel mathematical figures
and then construct MM-MathInstruct-3M, a
high-quality multimodal math instruction fine-
tuning dataset. Finally, we present MathCoder-
VL, trained with ImgCode-8.6M for cross-
modal alignment and subsequently fine-tuned
on MM-MathInstruct-3M for multimodal math
problem solving. Our model achieves a new
open-source state-of-the-art across all six met-
rics. Notably, it surpasses GPT-4o and Claude
3.5 Sonnet in the geometry problem-solving
subset of MathVista, achieving improvements
of 8.9% and 9.2%.

1 Introduction

Recently, Large Language Models (LLMs) have
outperformed humans in complex reasoning at the
Olympiad competition level (OpenAI et al., 2024;
DeepSeek-AI et al., 2025). However, the reason-
ing abilities of Large Multimodal Models (LMMs)
still fall short of their potential, often struggling
with even simple tasks, such as simple geometry
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problems (Wang et al., 2024b). Overcoming these
limitations is essential for advancing toward Artifi-
cial General Intelligence (AGI).

In our efforts to enhance the mathematical capa-
bilities of LMMs, we identify two key challenges
that distinguish them from LLMs: (i) Aligning
math-related visual and textual details accurately
to enable effective problem-solving. (ii) Scaling the
generation of diverse new math figures for multi-
modal math problem synthesis.

Despite significant advancements, LMMs still
struggle with effective modality alignment, es-
pecially in the math field, primarily due to the
scarcity of high-quality, error-free, math-specific
cross-modal data. Traditional image caption
datasets (Chen et al., 2023; Schuhmann et al., 2022)
often focus on natural scenarios and lose details
important for math problem-solving, and cannot
guarantee correctness, as shown in Figure 1 (a).

In contrast, code inherently contains all infor-
mation needed to render corresponding image and
establish a strict correspondence between the two
modalities. In light of this, we propose image-to-
code mid-training to enhance math-related cross-
modal alignment. We construct an image-to-code
model, FigCodifier, which converts math-related
images into detailed code capable of rendering new
images, as shown in Figure 1 (b). By pairing the
generated code with the rendered images, we cre-
ate high-quality ⟨ImageC,Code⟩ pairs that are
inherently always accurate and contain all details
for cross-modal alignment. Using this automated
data engine, we construct ImgCode-8.6M, signifi-
cantly enhancing LMMs’ cross-modal ability.

Additionally, with a higher temperature, our Fig-
Codifier can synthesize new images that are more
different from the raw images, which enables the
synthesis of new diverse images for problem-
solving dataset construction. Synthetic data have
proven effective for math reasoning (Wang et al.,
2023a; Gou et al., 2024; Huang et al., 2024), and
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...
# Draw the square
square = np.array([B, D, E, C, B])
plt.plot(square[:, 0], square[:, 1], 'k-', linewidth=2)

# Draw the circle
circle = plt.Circle((1.5, 0.5), np.sqrt(5) / 2, color='k', 
fill=False)
plt.gca().add_artist(circle)

# Draw the lines with labels
plt.plot([B[0], C[0]], [B[1], C[1]], 'k-', linewidth=2)
plt.text(0.5, 1.1, '10.0', fontsize=12, ha='center', 
va='bottom')

plt.plot([B[0], A[0]], [B[1], A[1]], 'k-', linewidth=2)
plt.text(0.1, 1.25, '10.0', fontsize=12, ha='right', 
va='bottom')

# Draw the angle
0.2, r'$30^\circ$', fontsize=12, ha='center', va='bottom')
...

The image shows a geometric figure with points 
labeled A, B, C, D, and E. Point A is at the top of a 
vertical line segment AB, which measures 10 units. 
From B, a 30° angle is formed with the line segment 
extending to D. ...

(a) Captioning example from MAVIS (b) <Code, ImageC> pair and corresponding synthetic images

ImageRaw ImageCCode

✘

Figure 1: (a) Natural language captions often struggle to convey all details in a image and guarantee correctness. (b)
Our approach uses image-translated Code and code-generated ImageC to create ⟨ImageC,Code⟩ pairs. Since
the ImageC is rendered from the Code, the cross-modal alignment is always accurate and contains all the details.
Below are four examples of new figures synthesized based on ImageRaw.

dataset quality and diversity are the most impor-
tant factors. However, the construction of multi-
modal math problem-solving datasets still relies
heavily on either question rewriting and generating
new solutions (Guo et al., 2024; Luo et al., 2025),
sourcing existing images (Shi et al., 2024; Peng
et al., 2024), or manually designed figures (Zhuang
et al., 2024; Zhang et al., 2025b). The diversity
of images lags significantly behind the diversity of
text, restricting the overall dataset variety. Unlike
these methods, with our FigCodifier, generating
new images becomes significantly easier, as shown
in Figure 1 (b). This allows us to create diverse new
math figures at low cost, which has the potential to
improve LMMs’ mathematical reasoning abilities
substantially. Our main contributions are:

1. We co-develop our image-to-code model with
model-in-the-loop approach, resulting in a FigCod-
ifier model and ImgCode-8.6M dataset, the largest
image-code dataset to date.

2. With our FigCodifier, we construct
MM-MathInstruct-3M. To our knowledge, this is
the first high-quality multi-modal problem-solving
dataset with not only new questions but also diverse
newly synthesized images.

3. We present MathCoder-VL, achieving SOTA
results across all six metrics among comparable-
size LMMs. We will open-source our models, code
and datasets.

2 Related Works

Multimodal Math Reasoning The mathemati-
cal reasoning abilities of LMMs have garnered

widespread attention (Gao et al., 2023; Li et al.,
2024; Dong et al., 2024b; Hu et al., 2024; Yang
et al., 2024c; Han et al., 2024; Guo et al., 2024;
Shao et al., 2024; Zong et al., 2024b). Unlike math-
ematical reasoning tasks in traditional large lan-
guage models (Zhou et al., 2024; Luo et al., 2023;
Yu et al., 2023; Sharma et al., 2024), multimodal
mathematical reasoning requires LMMs to extract
information from the visual domain and perform
cross-modal reasoning. Tasks such as geometric
problem-solving are particularly challenging (Chen
et al., 2021; Wang et al., 2024b). Several studies
have attempted to enhance the input of visual math-
ematical signals by enhancing visual encoders (Liu
et al., 2024a; Chen et al., 2024a). However, ensur-
ing accurate correspondence between images and
text remains a significant challenge. To address
this, we propose using code and code-generated
images, which inherently maintain precise and suf-
ficient alignment between modalities.

Data Synthesis. Methods based on data synthe-
sis are favored by academia and industry due to
their demonstrated efficiency (Sprague et al., 2024;
Lu et al., 2023b; Huang et al., 2024; Fu et al., 2024;
Zong et al., 2024a; Ma et al., 2024). Numerous fine-
tuning (Yu et al., 2024; Wang et al., 2023a; Lu et al.,
2024b) and pretraining (Gunasekar et al., 2023;
Wang et al., 2023b; Yang et al., 2024a) studies have
explored training on synthetic data generated using
language models or predefined templates. Math-
GLM (Yang et al., 2023) and InternLM-Math (Ying
et al., 2024) use templates to generate synthetic
numerical operation data, while Phi (Gunasekar
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Figure 2: (a) The iterative training pipeline of our image-to-code model. We use DaTikZ-119K as seed data to
train our first image-to-code model. We start by collecting 3 million math-related images and ultimately synthesize
8.6 million image-code pairs. Our final image-to-code model, FigCodifier, is based on InternVL2-8B (Chen et al.,
2024b), with all model parameters being fully learnable. (b) The pipeline for generating new math problems with
diverse new images. Using the final model from (a), we convert raw images into code and leverage Qwen models to
generate new questions and step-by-step solutions based on the newly synthesized images.

et al., 2023) produces textbook-quality data with
models. EntiGraph (Yang et al., 2024d) generates
diverse text by drawing connections between sam-
pled entities. However, efforts on the synthesis of
multimodal mathematical reasoning data are pri-
marily focused on the diversity and complexity
of problem or solution text. Math-LLaVA (Shi
et al., 2024) proposes the MathV360K dataset by
classifying images based on complexity and en-
hancing questions accordingly. R-CoT (Deng et al.,
2024), GeoGPT4V (Cai et al., 2024), MammoTH-
VL (Guo et al., 2024), and Multimath (Peng et al.,
2024) collect and enhance problems or solutions.
MAVIS (Zhang et al., 2025b) generates new ge-
ometry and function images with code but lacks
diversity, as the codes are design by humans and
only contain three types. Our work proposes a
novel method that can synthesize diverse new im-
ages automatically for crafting problems.

3 MathCoder-VL

We developed MathCoder-VL through a two-stage
process: image-to-code mid-training using the
ImgCode-8.6M dataset, followed by math instruc-
tion fine-tuning on MM-MathInstruct-3M. This
section details the construction of the two datasets.

3.1 Image-to-Code Model and Data

To synthesize image-code pairs and new images,
we need models that can generate code to ren-
der high-quality mathematical figures. However,
even commercial models like Claude 3.5 and GPT-
4 struggle to perform image-to-code conversion
effectively (Belouadi et al., 2024b). Addition-
ally, the largest TikZ dataset to date, DaTikZ (Be-
louadi et al., 2024a), contains only 119k TikZ
graphics. To address these limitations, we build
ImgCode-8.6M and develop our FigCodifier.

3.1.1 Collect Math-related Images
We start by collecting 3 million math-related im-
ages, of which 164K are paired with corresponding
TikZ code. The data composition is as follows.

DaTikZ Training Set. DaTikZ is designed to fa-
cilitate the development of machine learning mod-
els capable of generating or manipulating vector
graphics in LATEX. We use the 119K image-TikZ
code pairs from DaTikZ as our seed data.

K12 Problem-Solving Dataset. To diversify
our dataset, we included math problems from K12
books, exercises, and exams with permission from
the data providers. We gathered 4.6 million math
problems, of which 996K include at least one im-
age. This dataset contains 1.57 million images
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from a wide range of math problems across all K12
grades, spanning 19 subjects, including Statistics,
Probability, Algebra, Geometry, Functions, Permu-
tations, Combinations, and more. See Sec. 3.2.1
for details on the curation process.

Mathematical Textbooks. Textbooks provide
structured presentations of math concepts and are
a valuable resource. We collected 8K PDFs of
math-related textbooks from online sources, focus-
ing on titles with keywords like algebra, geometry,
and probability. These PDFs were converted into
markdown format, and the images were extracted,
resulting in 202K diverse math-related images.

ArXiv. We utilized bulk data from arXiv be-
tween September 2023 and October 2024, yielding
45K images with corresponding TikZ code and
681K images without code, many of which are
statistical visualizations.

Open-Source Datasets. MathV360K (Shi et al.,
2024) consists of 360K question-answer pairs and
40K images from 24 previous datasets. Multi-
Math (Peng et al., 2024) contains 300K newly col-
lected math problems with 280K images, mostly
consisting of geometry diagrams.

3.1.2 Iteratively Build Image-to-Code Model
We train our first image-to-code model using 119K
image-TikZ pairs sourced from DaTikZ, leveraging
InternVL-Chat-V1-2-40B (Chen et al., 2024b). As
the dataset scales beyond one million samples, we
adopt InternVL2-8B (Chen et al., 2024a) as the
base model after comprehensively weighing the
image-to-code performance and cost. The com-
plete training pipeline is illustrated in Figure 2 (a).

Synthesis of Image-Code Pairs. To scale the
size of Image-Code pairs, we used the image-to-
code model to translate the 3M collected images
into corresponding code. We then run the gen-
erated code to render new images, and only the
successfully generated ⟨ImageC,Code⟩ pairs
were included in our dataset. This iterative pro-
cess allowed us to continually generate fresh
⟨ImageC,Code⟩ pairs and refine the model with
each new version. Ultimately, we get FigCodi-
fier and the ImgCode-8.6M.

TikZ to Python Conversion. In addition to
TikZ code, we also leverage GPT-4o mini to trans-
late TikZ code into Python code, which is then
executed to generate new images. This step sig-
nificantly expands our dataset, further enhancing
the model’s capabilities. By diversifying the types
of code used, the model can generate a broader

In the given image, the curve y = 0.5x2 
is plotted from x = -1.5 to x = 0.5, and 
the curve y = -0.5x2 is plotted from x = 
0.5 to x = 1.5. The points O, N, and M 
form a triangle where O is the origin, N 
is at (-1, 0), and M is at (-1, 0.5). What 
is the area of the triangle OMN?

If the input value x is 3, what is the final 
output y according to the diagram?

If the distance between the two lines 
is 2 units, what is the vertical 
distance from point α to the top line?

On which dataset do both Algorithm A 
and Algorithm B achieve the same 
accuracy?

In the diagram, points A, B, C, D, and E 
form a rectangle and a triangle. Point M 
is the midpoint of AC, and point N is 
the midpoint of BE. If the length of AB 
is 2 units, the length of BEis 1 units and 
the length of A is 2 units, what is the 
length of segment MN?

a. (img, code) mid-training
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import matplotlib.pyplot as plt

import numpy as np

# Data for the plots

x = np.array([0, 0.02, 0.1])

y1 = np.array([70.2, 70.9, 81.1])

y2 = np.array([77.1, 78.4, 81.1])

# Set up the plot

fig, ax = plt.subplots(figsize=(8, 6))

。。。

. . .

\begin{tikzpicture}

\begin{axis}[

    ybar,

    enlargelimits=0.15,

    legend style={at={(0.5,-0.15)},

      anchor=north,legend columns=-1},

    ylabel={Avg. Metric (\%)},

    xlabel={Amount of Pretraining C  

。。。

ViT

P
roj

LLM

solutions

b. math (pro, sol) sft

Figure 3: Sample questions paired with newly synthe-
sized images, as generated in Figure 2 (b).

range of images, as different code structures pro-
duce distinct visual outputs. Through this process,
we curate 3.1 million image-Python pairs.

Data Cleaning and Deduplication. We imple-
ment a rigorous cleaning and deduplication process
to ensure data quality: 1. Code Validation: We
only retain code that generates a valid image. Over
the course of the iterative process, the code success
rate improves, rising from 46.5% for TikZ to 81.2%
for TikZ and 84.5% for Python on the DaTikZ test
set. 2. Deduplication: We apply carefully designed
rules to eliminate duplicate or highly similar code,
removing 4.4% of the dataset. 3. Quality Filter-
ing: Through keyword matching, we filter out low-
quality data, such as randomly generated or irrele-
vant images, which accounts for 3.7% of the data. 4.
Code Length: We remove code that is excessively
long, which can introduce unnecessary complexity.
5. Image Quality: Images that are almost entirely
white—identified through standard deviation and
mean pixel value analysis—are removed, account-
ing for approximately 0.5% of the data. Details
of this process can be found in Appendix A. Af-
ter cleaning, we retain 4.3M image-TikZ pairs and
4.3M image-Python pairs.

3.2 Math Instruction Fine-tuning Data

In this section, we introduce the construction of our
MM-MathInstruct-3M as shown in Figure 2 (b).
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a. Img2Code Mid-training
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import matplotlib.pyplot as plt

import numpy as np

# Data for the plots

x = np.array([0, 0.02, 0.1])

y1 = np.array([70.2, 70.9, 81.1])

y2 = np.array([77.1, 78.4, 81.1])

# Set up the plot

fig, ax = plt.subplots(figsize=(8, 6))

。。。

. . .

\begin{tikzpicture}

\begin{axis}[

    ybar,

    enlargelimits=0.15,

    legend style={at={(0.5,-0.15)},

      anchor=north,legend columns=-1},

    ylabel={Avg. Metric (\%)},

    xlabel={Amount of Pretraining C  

。。。
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b. Math Instruct Fine-tuning

Figure 4: Two training stages of MathCoder-VL.

3.2.1 Construction of K12-2M Dataset
We collected 4.6 million math problems with sim-
ple solutions, where the equations are in image
format. First, we distinguish math figures from
equations based on their size, as equations tend to
be much smaller. Next, we convert the equations
into LATEX text using MinerU (Wang et al., 2024a).
This process results in 2 million samples containing
at least one actual image. To enhance data quality,
we then use GPT-4o mini to translate the original
simple solutions into detailed, step-by-step CoT
solutions, ultimately resulting in K12-2M.

3.2.2 Synthetic Math Data with New Images
To generate new multi-modal math problems, we
follow a structured approach:

Newly Synthesized Images. We leverage the
1.57 million raw images from K12-2M, using our
FigCodifier with a temperature of 0.7 to generate
new math figures. With a higher temperature, the
model can produce images that diverge more from
the raw dataset. More examples of the newly syn-
thesized images are shown in Appendix B.5.

Questions Based on New Images. From the
1.1 million newly generated image-code pairs, we
use Qwen2.5-72B-Instruct (Team, 2024b) to craft
math reasoning questions appropriate for a K12
audience. These questions are based on the visual
elements (such as patterns, shapes, and numbers)
present in each image. The questions are designed
to be concise, self-contained, and to engage the
reasoning skills of the reader. At this stage, the
model is not required to provide answers to the

questions. Details can be found in Appendix B.5.
Synthesize Solutions. For generating so-

lutions, we employ both Qwen2.5-Math-72B-
Instruct (Yang et al., 2024b) and Qwen2.5-72B-
Instruct (Team, 2024b). Each model independently
attempts to solve the question, taking both the ques-
tion and image code as inputs. We retain a solution
only if both models produce consistent answers,
assuming that there is typically one correct answer
and multiple possible incorrect ones. The solu-
tion pass rate is 51%. Following the data cleaning
procedure outlined in Section 3.1.2, we remove du-
plicates and overly long samples. The final output
consists of 1 million new samples, some of which
are illustrated in Figure 3.

4 Experiments

In this section, we introduce our two-stage train-
ing approach: image-to-code mid-training with
ImgCode-8.6M, followed by math instruction fine-
tuning with MM-MathInstruct-3M.

4.1 Training Stages

As illustrated in Figure 4, the training process for a
single MathCoder-VL model consists of two stages
aimed at improving the model’s math-related visual
perception and multimodal reasoning capabilities.

Image-to-Code Mid-training. In this stage, we
use ImgCode-8.6M to improve cross-modal align-
ment between mathematical diagrams and language
embedding spaces. Both the vision encoder and
MLP projector are trainable during this phase. The
primary objective is to enhance the vision encoder’s
ability to extract mathematic visual features. Since
the correspondence between code and image is
highly accurate and contains all the detailed in-
formation, this stage allows the model to capture
intricate patterns, especially those related to math-
ematics. These math-related patterns, including
geometric shapes, process flows, and other math-
ematical representations, are underrepresented in
large web-scale datasets like LAION-5B (Schuh-
mann et al., 2022). Importantly, we freeze the LLM
backbone during this stage to preserve its general
language abilities, as we do not require it to gener-
ate code for downstream tasks.

Math Instruction Fine-tuning. In this stage, as
shown in Figure 4, the entire model is fine-tuned on
our high-quality multimodal math problem-solving
dataset, MM-MathInstruct-3M. This dataset in-
cludes 3 million samples, with 1 million gener-
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Model #Params MATH-Vision MathVerse MathVista GAOKAO-MM We-Math
(Test) (Testmini) (GPS) (Math) (S1) (S2) (S3)

Random Chance - 7.2 12.4 21.6 - - - -
Human - 68.8 64.9 48.4 - - - -

Closed-source LMMs

Qwen-VL-Plus (Bai et al., 2023) - 10.8 21.3 35.5 33.8
Qwen-VL-Max (Bai et al., 2023) - 15.6 35.9 46.1 - 40.8 30.3 20.6
GPT-4V (OpenAI, 2023) - 22.8 39.4 50.5 45.0 65.5 49.2 38.2
GPT-4-turbo (OpenAI, 2024a) - 30.3 43.5 58.3 50.0 - - -
GPT-4o (OpenAI, 2024b) - 30.4 50.8 64.7 - 72.8 58.1 43.6
Claude3-Opus (Anthropic, 2024) - 27.1 31.8 52.9 - - - -
Claude3.5-Sonnet (Anthropic, 2024) - 37.9 49.0 64.4 - - - -
Gemini-1.5-Pro (Team, 2024a) - 19.2 51.1 58.9 - 56.1 51.4 33.9

Open-source LMMs

LLaVA-1.5-13B (Liu et al., 2024b) 13B 11.0 12.7 22.7 16.3 35.4 30.0 32.7
SPHINX-V2-13B (Lin et al., 2023) 13B - 16.1 16.4 - - - -
IXC-2-VL (Dong et al., 2024a) 7B 14.5 25.9 63.0 - 47.0 33.1 33.3
Deepseek-VL (Lu et al., 2024a) 8B - 19.3 28.4 20.0 32.6 26.7 25.5
Qwen2-VL (Wang et al., 2024c) 8B 19.2 33.6 40.9 25.0 59.1 43.6 26.7
InternVL-Chat-2B-V1-5 (Gao et al., 2024) 2B 15.3 23.1 37.5 17.5 34.3 26.1 20.0
InternVL2-8B (Chen et al., 2024a) 8B 20.0 35.9 62.0 32.5 59.4 43.6 35.2
InternVL2-26B (Chen et al., 2024a) 26B 23.1 40.0 54.3 33.4 51.0 39.2 46.1
InternVL2-76B (Chen et al., 2024a) 76B 23.6 42.8 67.8 41.2 65.2 49.4 49.1
IXC-2.5-Reward (Zang et al., 2025) 7B 19.0 18.8 63.5 - 44.4 35.3 27.9

Open-source Math LMMs

G-LLaVA-7B (Gao et al., 2023) 7B - 16.6 48.7 - 32.4 30.6 32.7
Math-LLaVA-13B (Shi et al., 2024) 13B 15.7 22.9 57.7 - 38.7 34.2 34.6
InfiMM-Math (Han et al., 2024) 7B - 34.5 - - - - -
MathGLM-Vision-9B (Yang et al., 2024c) 9B 19.2 44.2 64.4 - - - -
Math-PUMA-Qwen2 (Zhuang et al., 2024) 8B 14.0 33.6 48.1 - 53.3 39.4 36.4
Math-PUMA-DS (Zhuang et al., 2024) 7B - 31.8 39.9 - 45.6 38.1 33.9
Multimath-7B (Peng et al., 2024) 7B 16.3 27.7 66.8 - - - -
MAVIS-7B (Zhang et al., 2025b) 7B 19.2 35.2 64.1 - 57.2 37.9 34.6

MathCoder-VL-2B 2B 21.7 35.4 66.4 37.5 52.0 42.2 38.8
∆ Over Base Model +6.4 +12.3 +28.9 +20.0 +17.7 +16.1 +18.8

MathCoder-VL-8B 8B 26.1 46.5 73.6 51.2 65.4 58.6 52.1
∆ Over Base Model +6.1 +10.6 +11.6 +18.7 +6.0 +15.0 +16.9

Table 1: Comparison of model performances across various math benchmarks. MATH-Vision (Wang et al., 2024b),
MathVerse (Zhang et al., 2025a), MathVista (Lu et al., 2023a), and We-Math (Qiao et al., 2024) are in English,
while GAOKAO-MM (Zong and Qiu, 2024) is in Chinese. The best results of closed-source LMMs are highlighted
in red . The best and second-best results of open-source LMMs are highlighted in blue and green respectively.
(GPS: geometry problem solving, S1: one-step problems, S2: two-step problems, S3: three-step problems)

ated by our image-to-code model-based data en-
gine. To the best of our knowledge, this is the first
data engine capable of generating multimodal math
problem-solving data that includes not only new
textual content but also new diverse math figures.

4.2 Experimental Setup

We use InternVL-Chat-2B-V1-5 (Gao et al., 2024)
and InternVL2-8B (Chen et al., 2024a) as the base
models for our experiments.

Implementation Details. We train the model for
one epoch across two stages. In the first stage, we
use a batch size of 1024 and a learning rate of 2e-5.
In the second stage, we use a batch size of 512
and a learning rate of 4e-5. To efficiently train the
computationally intensive models, we utilize Deep-
Speed at ZeRO-1 stage (Rajbhandari et al., 2020)
and flash attention (Dao et al., 2022). The 2B and
8B models are trained on 32 and 64 NVIDIA A800

80GB GPUs, respectively. To ensure reproducibil-
ity, we fix the random seed and employ greedy
decoding during testing.

Benchmarks. We assess our models across
a diverse set of widely recognized mathematical
benchmarks. The MATH-Vision (Wang et al.,
2024b) dataset includes 3,040 visually contextu-
alized math problems sourced from real-world
competitions. MathVista (Lu et al., 2023a) is a
well-known dataset designed for evaluating reason-
ing in visual contexts. MathVerse (Zhang et al.,
2025a) emphasizes core mathematical skills such
as plane geometry, solid geometry, and functions.
GAOKAO-MM (Zong and Qiu, 2024) is based on
the Chinese College Entrance Examination. Many
tasks in MathVista require more emphasis on natu-
ral image recognition rather than math reasoning
abilities (Wang et al., 2024b), so we only report re-
sults on the Geometry Problem Solving (GPS) sub-
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Model MATH-V Geometry Averageangle area length

Closed-source LMMs

GPT-4o 17.3 29.8 30.1 25.7
GPT-4V 22.0 22.2 20.9 21.7
Gemini-1.5-Pro 14.5 14.4 16.5 15.1

Open-source LMMs

Qwen2-VL-8B 19.1 22.4 22.5 21.3
InternVL2-8B 20.8 22.4 20.5 21.2
InternVL2.5-8B 22.0 19.4 15.4 18.9

Open-source Math LMMs

Math-LLaVA-13B 20.2 18.4 17.6 18.7
Multimath-7B 20.1 16.4 21.3 19.3
Math-PUMA-8B 11.7 15.8 12.2 13.2

MathCoder-VL-8B 48.6 32.2 32.1 37.6

Table 2: Comparison of model performances on the
three plane geometry subsets of MATH-Vision (Wang
et al., 2024b). The best and second-best results are
highlighted in red and blue respectively.

set. Collectively, these datasets cover a wide spec-
trum of mathematical challenges, ranging from ele-
mentary word problems to advanced college-level
exercises in both English and Chinese, providing a
comprehensive evaluation of model capabilities.

Baselines. We compare our approach against
a range of base models with strong mathematical
capabilities and similar sizes. Our selected base-
lines include both closed-source and open-source
LMMs. Both general LMMs and math-focused
LMMs are incorporated. For general LMMs,
we include powerful models like GPT-4o (Ope-
nAI, 2024b), Qwen2-VL (Wang et al., 2024c) and
IXC-2.5-Reward (Zang et al., 2025). For math-
focused LMMs, we choose recent models such
as MathGLM-Vision (Yang et al., 2024c), Math-
PUMA (Zhuang et al., 2024), Multimath (Peng
et al., 2024), and MAVIS (Zhang et al., 2025b).

4.3 Main Results
We evaluate MathCoder-VL across several bench-
marks, analyzing its performance from the perspec-
tives of mathematical subjects and input modalities.

Overall Performances. As shown in Table 1,
MathCoder-VL demonstrates strong performance
across multiple mathematical benchmarks, partic-
ularly in comparison to other open-source mod-
els. MathCoder-VL-8B achieves the highest accu-
racy among open-source LMMs of similar sizes,
with 26.1% on MATH-Vision, 46.5% on Math-
Verse, and an impressive 73.6% on the Math-
Vista (GPS). These results show a notable improve-

ment over its base model, InternVL2-8B, by 6.1%,
10.6%, and 11.6% on the respective benchmarks.
The smaller model also demonstrates strong ca-
pabilities, with MathCoder-VL-2B outperforming
MathGLM-Vision-9B by 2.5% and Multimath-7B
by 5.4% on MATH-Vision. MathCoder-VL-8B
significantly outperforms InternVL2-76B, with a
gap of 2.5% on MATH-Vision, 3.7% on Math-
Verse, 5.8% on MathVista (GPS), and 10.0% on
GAOKAO-MM Math. The model’s performance
in Chinese is also noteworthy, with MathCoder-
VL-8B reaching 51.2% on GAOKAO-MM, outper-
forming all other open-source LMMs.

Compared to closed-source models, MathCoder-
VL-8B remains competitive, outperforming sev-
eral proprietary models. It surpasses GPT-4V on
all four benchmarks and exceeds GPT-4-turbo by
3.0% on MathVerse. It also outperforms the newest
Claude3.5-Sonnet (64.4% vs 73.6%) and GPT-4o
(64.7% vs 73.6%) on MathVista (GPS). However,
it still falls short of top-tier closed-source LMMs
in some areas. For example, it lags behind GPT-4o
by 3.0% on MATH-Vision.

Performance on multi-step problems.
MathCoder-VL-8B exhibits robust performance
on multi-step problems, outperforming GPT-4o on
both two-step (58.6% vs 58.1%) and three-step
problems (52.1% vs 43.6%) on We-Math (Qiao
et al., 2024). Our MM-MathInstruct-3M, which
provides step-by-step solutions for every problem,
enhances the model’s Chain-of-Thought (Wei et al.,
2022) reasoning ability. Notably, MathCoder-
VL-8B surpasses InternVL2-76B by a significant
margin, achieving a 20.7% improvement on
two-step problems and a 3.0% improvement on
three-step problems, while only slightly edging it
out by 0.2% on one-step problems. This demon-
strates that, as a math-specific language model,
MathCoder-VL excels over general open-source
models, particularly on complex problems.

Outstanding Ability in Geometry. When eval-
uating MathCoder-VL’s capabilities in geometry,
its performance on the MathVista (GPS) stands
out. Additionally, we present the detailed accuracy
of the model on the plane geometry subsets from
MATH-Vision, as shown in Table 2. MathCoder-
VL excels across all three plane geometry subsets
in MATH-V, achieving an impressive average score
of 37.6%, which surpasses GPT-4o by 11.9%. No-
tably, the model scored exceptionally well in each
of the three subsets—angle, area, and length—with
scores of 48.6%, 32.2%, and 32.1%, respectively.
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Model Image-to-Code Math Instruction MATH-Vision MathVerse MathVista MathVista GAOKAO-MM
Mid-training Fine-tuning (Test) (Testmini) (Testmini) (GPS) (Math)

InternVL-Chat-2B-V1-5 ✗ ✗ 15.3 23.1 41.1 37.5 17.5

✗ K12-2M 20.3 27.2 37.0 45.7 30.0
+5.0 +4.1 -4.1 +8.2 +12.5

✓ K12-2M 22.0 33.0 39.4 64.4 33.8
+1.7 +5.8 +2.4 +18.7 +3.8

MathCoder-VL-2B ✓ K12-2M 21.7 35.4 44.4 66.4 37.5
+ New-1M -0.3 +2.4 +5.0 +2.0 +3.7

Table 3: Ablation study of image-to-code mid-training and math instruction fine-tuning dataset on MathCoder-VL-
2B. K12-2M + New-1M dataset is our MM-MathInstruct-3M.

Mid- Fine- MathVerse
training tuning TD TL VD VO All

✗ ✗ 27.5 25.8 20.1 18.1 23.1

✗ 2M 36.7 30.7 25.3 15.9 27.2
✓ 2M 40.9 34.5 31.1 26.9 33.0

+4.2 +3.8 +5.8 +11.0 +5.8

✗ 2M+1M 40.7 32.4 30.1 19.8 30.8
✓ 2M+1M 43.7 36.9 34.1 27.2 35.4

+3.0 +4.5 +4.0 +7.4 +4.6

Table 4: Effects of image-to-code mid-training on model
performances with varying degrees of input content in
multi-modality on MathVerse (Zhang et al., 2025a).

This superior performance can be attributed to
MathCoder-VL’s enhanced understanding of ge-
ometry figures, enabling it to effectively process
and interpret geometric shapes and measurements.

4.4 Ablation Study

In this session, we analyze the impact of various
components of the training pipeline.

Ablation on Impact of Image-to-Code Mid-
training. From Table 3, we can observe the impact
of image-to-code mid-training on the model’s rea-
soning ability. Comparing the results without mid-
training to those with mid-training, performance
improvements are noted in MATH-Vision (+1.7%),
MathVerse (+5.8%), MathVista (GPS) (+18.7%),
and GAOKAO-MM (Math) (+3.8%), highlighting
its contribution to enhanced multi-modal mathe-
matical reasoning. The most significant gain is ob-
served in MathVista (GPS), suggesting that image-
to-code mid-training strengthens spatial and graph-
ical problem-solving capabilities and improves un-
derstanding of geometry figures.

Ablation on Impact of Input Modality. Table 4
illustrates the impact of image-to-code mid-training
on MathVerse across different modality domi-
nance levels: Text-Dominant (TD), Text-Lite (TL),
Vision-Dominant (VD), and Vision-Only (VO).
Across all categories, mid-training with image-to-

code leads to improved performance, with an over-
all gain of 5.8% and 4.6%. Notably, the largest
improvement is seen in the VO setting, where per-
formance increases by 11.0% and 7.4%, indicat-
ing that image-to-code mid-training significantly
enhances the model’s ability to process purely vi-
sual inputs, while the smallest improvements are
observed in TD (+3.8%) and TL (+3.0%). This sug-
gests that image-to-code mid-training effectively
enhances multi-modal reasoning, particularly in
scenarios where vision plays a more dominant role.

Ablation on Impact of Newly Synthesized Im-
ages. As shown in Table 3, the MathCoder-VL-2B
model generally benefits from the math instruc-
tion fine-tuning dataset based on newly synthe-
sized images. Performance improvements are ob-
served across multiple benchmarks: MathVerse
(+2.4%), MathVista-Testmini (+5.0%), MathVista-
GPS (+2.0%), and GAOKAO-MM (Math) (+3.7%),
with only a slight decrease on MATH-Vision of
0.3%. Notably, MathVista shows a significant in-
crease of 5.0%, suggesting that the new synthetic
math problems contribute to a broader diversity
of instructions. This enhanced diversity likely im-
proves the model’s generalization capabilities, par-
ticularly as many tasks in MathVista differ substan-
tially from traditional math problem-solving.

5 Conclusion

In this paper, we propose a model-based multi-
modal data engine. Using this data engine, we
construct two datasets: ImgCode-8.6M for accurate
cross-modal alignment and MM-MathInstruct-3M,
a math problem-solving dataset featuring diverse
newly synthesized images. Leveraging these
datasets, we develop MathCoder-VL-2B and 8B
models trained with image-to-code mid-training
and math instruction fine-tuning. MathCoder-VL
achieves a new state-of-the-art among open-source
models for multi-modal mathematical reasoning.
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6 Limitations

One limitation of our work is that
MM-MathInstruct-3M focuses primarily on
mathematics and does not intentionally include
other STEM subjects, such as physics and chem-
istry. Additionally, our dataset consists entirely of
English text and does not incorporate math-related
content in other languages, such as Chinese. Due
to computational resource constraints, we only
trained 2B and 8B models. Future work could
address these limitations by expanding the dataset
to include other subjects and languages and by
training larger language models. Furthermore,
this paper primarily focuses on image-to-code
mid-training and math instruction fine-tuning, so
we did not apply reinforcement learning methods,
such as GRPO, in the post-training phase, which
could further improve performance on mathemat-
ical reasoning tasks. In the future, we plan to
explore these methods with MathCoder-VL.
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Figure 5: The pipeline for processing the K12 math problem-solving dataset.

A Details of K12 Data Process

In this section, we provide additional details about
processing the newly collected K12 math problem-
solving dataset. The overall pipeline for data pro-
cessing is illustrated in Figure 5.

A.1 Data Cleaning

The primary objective of the data cleaning pro-
cess is to curate a dataset that consists exclusively
of multi-modal math problems. These problems
should include both textual descriptions and mathe-
matical expressions represented in LATEX code and
math figures. In the raw dataset, a significant num-
ber of equations were provided solely as images, as
shown in Figure 6. To address this, we employed
the MinerU tool to convert these equation images
into LaTex-formatted equations, ensuring a consis-
tent and standardized representation of mathemati-
cal content. Furthermore, problems that contained
only equation images are excluded from the dataset.
This cleaning process ensures that the final dataset
is rich, diverse, and appropriately structured for
addressing K12 math problems that require multi-
modal reasoning.

A.2 Data Augmentation

Figure 7 presents a structured system prompt de-
signed for processing K-12 mathematical problems.
It outlines a comprehensive workflow for translat-
ing, solving, and formatting math problems from
a JSON object. The prompt includes explicit in-
structions for translation into English, step-by-step
solution generation, and concise answer presenta-
tion, ensuring clarity and correctness in the output.
One example of the GPT4o-mini’s output is shown
in Figure 8.

Figure 6: Example of a raw math problem that only
contains equation images. Such problems are filtered
out after converting the images into LATEX equations
using MinerU.

B Details of Image-to-Code

B.1 Code Ability

TikZ is a powerful and flexible package for creat-
ing vector graphics in LATEX. It is based on the
PGF (Portable Graphics Format) system and is
known for its high-quality output and extensive
customization options. TikZ allows users to cre-
ate a wide range of graphics, from simple shapes
and diagrams to complex illustrations and plots.
Its strength lies in its ability to seamlessly in-
tegrate with LATEX documents, ensuring that the
fonts, styles, and layout of the graphics match the
document’s overall design. TikZ is particularly
useful for creating precise, technical illustrations,
flowcharts, and scientific figures. The syntax of
TikZ is based on a series of commands that de-
fine paths, nodes, and styles, making it highly pro-
grammable and suitable for generating graphics
algorithmically. Some examples of images gener-
ated by TikZ are shown in Figure 10.

On the other hand, Matplotlib is a popular plot-
ting library in Python that provides a wide range
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K12 Process Prompt

System Prompt:

You are an expert in mathematical problem-solving, LaTeX formatting, and structured data extraction. Please present
all results in English and well-formatted LaTeX, converting HTML to LaTeX as needed. You will be provided with a
JSON object containing the following fields: ["question", "option_a", "option_b", "option_c", "option_d", "option_e",
"answer1", "answer2", "parse"].

User Prompt:

Please process the provided JSON object by following these steps:

1. **Translation:**
- Translate the math problem and any accompanying options into English.
- If the problem includes multiple-choice options, format them as a bulleted list.
- If no options are available, return an empty option list (‘[]‘).
- For problems with multiple sub-questions, separate each sub-question as an individual item in another list.

2. **Step-by-Step Solution:**
- Provide a detailed, step-by-step solution to the problem, referencing "answer1", "answer2", and "parse".
- Adhere to the solution process provided by "answer1", "answer2", and "parse", as they are correct.

3. **Short Answer:**
- Specify the answer(s) in a list format, where each item is a single word or phrase.
- Answer(s) should adhere to that provided by "answer1", "answer2", and "parse".
- For multiple-choice questions, return one of A, B, C, D, or E.
- For proof-based questions, return "proven".
- For problems with sub-questions, provide the answer for each sub-question in the same order as the sub-question

list.

**Input JSON:**

```json

[Raw Json Data]

```

Figure 7: Prompt for processing, solving, and formatting K-12 math problems from structured JSON input.

{
    "question": "Given that the domain of the function $f(x)$ is $[-1,5]$, and some corresponding values are shown in the 
table, the graph of the derivative $y=f^{\\\\prime}(x)$ is shown in the image. The following statements about $f(x)$ are 
made: ① The local maximum points of the function $f(x)$ are at $0$ and $4$; ② The function $f(x)$ is decreasing on the 
interval $[0,2]$; ③ If the maximum value of $f(x)$ is $2$ when $x \\\\in [-1,t]$, then the maximum value of $t$ is $4$; 
④ The function $y=f(x)$ has at most $2$ zeros. Which of the following statements are correct? (       )",
    "options": [
        "①②",
        "③④",
        "①②④",
        "②③④.",
        "[]"
    ],
    "sub_questions": [],
    "solution": "Analysis of the problem: From the graph of the derivative, we can see that the function $y=f(x)$ is 
increasing on the intervals $(-1,0)$ and $(2,4)$ where the derivative is positive. It is decreasing on the intervals 
$(0,2)$ and $(4,5)$ where the derivative is negative. Therefore, statement ① that the local maximum points of the 
function $f(x)$ are at $0$ and $4$ is correct. Statement ② that the function $f(x)$ is decreasing on the interval $[0,2]$ 
is also correct. Statement ③ is incorrect because if the maximum value of $f(x)$ is $2$ when $x \\\\in [-1,t]$, then the 
maximum value of $t$ is actually $5$, not $4$. Statement ④ is correct because the function $y=f(x)$ can have at most $2$ 
zeros, especially when $f(2)<0$, which allows for two zeros. Thus, the correct statements are ①, ②, and ④. Therefore, 
the correct answer is C.",
    "final_answers": ["C"]
}

Figure 8: Example output generated by GPT4o-mini, showcasing the translation, step-by-step solution, and short
answer extraction for a given math problem.
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. . .

\begin{tikzpicture}

\begin{axis}[

    ybar,

    enlargelimits=0.15,

    legend style={at={(0.5,-0.15)},

      anchor=north,legend columns=-1},

    ylabel={Avg. Metric (\%)},

    xlabel={Amount of Pretraining Corpus (Millions)},

    symbolic x coords={0,0.02,0.1},

    xtick=data,

    ytick={65,70,75,80,85},

    ymajorgrids=true,

    grid style=dashed,

    bar width=15pt,

    nodes near coords,

    every node near coord/.append style={font=\tiny},

    nodes near coords align={vertical},

    ]

\addplot coordinates {(0,70.2) (0.02,70.9) (0.1,81.1)};

\addplot coordinates {(0,77.1) (0.02,78.4) (0.1,81.1)};

\end{axis}

\end{tikzpicture}

. . .

import matplotlib.pyplot as plt

import numpy as np

# Data for the plots

x = np.array([0, 0.02, 0.1])

y1 = np.array([70.2, 70.9, 81.1])

y2 = np.array([77.1, 78.4, 81.1])

# Set up the plot

fig, ax = plt.subplots(figsize=(8, 6))

# Plot the bars

bar_width = 0.15

bar_positions = np.arange(len(x))

ax.bar(bar_positions - bar_width/2, y1, bar_width, label='Plot 

1')

ax.bar(bar_positions + bar_width/2, y2, bar_width, label='Plot 

2')

# Set the xticks and labels

ax.set_xticks(bar_positions)

ax.set_xticklabels(x)

# Customize the plot
. . .

# Display the values on top of the bars
. . .

# Layout so plots do not overlap

fig.tight_layout()

Figure 9: Comparison between Python code and TiKZ code.

Figure 10: Some example of images generated by TikZ.

of tools for creating static, animated, and interac-
tive visualizations. It is widely used in scientific
computing, data analysis, and machine learning for
generating publication-quality figures. Matplotlib
supports various types of plots, including line plots,
scatter plots, bar charts, histograms, and more. One
of its key strengths is its flexibility and ease of use,
allowing users to quickly generate visualizations
with a few lines of code. Matplotlib also offers
extensive customization options, enabling users to
adjust every aspect of a plot, from line styles and
colors to axis labels and legends. Additionally, it
integrates well with other Python libraries such as
NumPy and Pandas, making it a versatile tool for
data visualization in the Python ecosystem. Some
examples of images generated by Python are shown
in Figure 11.

When comparing the syntax of Python’s Mat-

plotlib and LATEX’s TikZ for creating plots and
graphics, the differences are quite pronounced as
shown in Figure 9. Matplotlib, being a Python
library, follows a procedural programming style,
where functions are called to add elements to a plot.
In contrast, TikZ, which is part of the LATEX ecosys-
tem, uses a declarative style, where user describe
the elements of the graphic in a more structured,
often nested, manner. While Matplotlib’s syntax is
more straightforward and easier to learn for those
familiar with Python, TikZ offers greater control
over the visual details of the plot, making it a
preferred choice for complex, publication-quality
graphics.

B.2 Prompt Templates

To facilitate the generation of code from images,
we designed two structured prompt templates that
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Figure 11: Some example of images generated by Python.

guide the process of converting visual elements
into executable code as shown in Figure12.

B.3 TikZ to Python

To enhance the capabilities of our image-to-code
model, we use GPT4o-mini to translate TikZ code
into Python code. Figure 13 illustrates the detailed
prompt used for this translation. The prompt in
Figure 13 is designed to guide the conversion of
LATEX TikZ code into Python code using popu-
lar plotting libraries like Matplotlib. It ensures
that the resulting Python code is executable, accu-
rately reproduces the visual details of the TikZ dia-
gram, and avoids overlaps between elements such
as points, labels, and text for better readability. The
prompt also emphasizes the correct formatting of
LATEX mathematical expressions to maintain visual
clarity and precision in the generated plots. This
structured approach helps bridge the gap between
LATEX-based graphics and Python-based visualiza-
tion.

In Figure 5, we compare images generated from
the original TikZ code with those generated from
the translated Python code. The results demonstrate
that the images produced by the Python code are
highly similar to the original images, showcasing
the effectiveness of our translation approach.

B.4 Data Cleaning

We remove low-quality image-code pairs from our
dataset. Figure 14 illustrates four types of low-
quality samples: (a) Almost blank images: We
remove images with a standard deviation (std) of
pixel values less than five. (b) Images with random
lines or shapes: These are filtered out by analyzing

(a) Image-to-TikZ Prompt:

Please generate the corresponding TikZ code that ac-
curately represents the visual elements in the image.
TikZ is a powerful tool for creating vector graph-
ics within LaTeX documents. Your generated code
should be precise, well-structured, and should recre-
ate the image as faithfully as possible.
<image>

The image can be generated using the following
TikZ code:

```tikz

[code]

```

(b) Image-to-Python Prompt:

Please provide the Python code needed to reproduce
this image.
<image>

The image can be generated using the following
Python code:

```python

[code]

```

Figure 12: Prompt templates of our Image-to-Code
Dataset.
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TikZ-to-Python Prompt

System Prompt:

You are an expert in both LaTeX (specifically TiKZ) and Python (specifically Matplotlib).

User Prompt:

Translate the provided TiKZ code into Python code using appropriate plotting libraries, such as Matplotlib. Pay close
attention to the following requirements:

1. **Avoid Overlapping**: Ensure that points, labels and text elements have different positions to avoid any overlap,
enhancing readability.

2. **LaTeX Formatting**: Accurately interpret and format any LaTeX equations or mathematical expressions to ensure
they render correctly in the image.

3. **Executable Code**: Ensure that the Python code is complete and can be executed directly without errors.

Hereś the TiKZ code:

```latex

[TiKZ Code]

```

Make sure to wrap your resulting Python code in the following format:

```python

[your python code here]

```

Figure 13: Prompt for translating LaTeX TiKZ code into Python Matplotlib code with a focus on accuracy,
readability, and executability.

and filtering the corresponding code. (c) Images
with black squares: This issue arises when images
with blank backgrounds are converted incorrectly
during preprocessing, resulting in completely black
images. We addressed this by removing the af-
fected data and optimizing the conversion logic. (d)
Images with externally loaded content: We identify
and remove such data by detecting commands in
the code that access local files.

B.5 Performance of img2code model

The img2code model aims to bridge the gap be-
tween visual data and code generation by trans-
lating images into accurate and meaningful code
representations. This section evaluates the model’s
progression through iterative training and high-
lights its ability to synthesize new, diverse images.
By comparing the performance of the initial and
final versions of the model and exploring its capa-
bilities with high-temperature synthesis, we demon-
strate its advancements in accuracy and creative
output.

Comparison Between Initial and Final Mod-
els. Our img2code model was trained iteratively,
culminating in a final version trained on 8.6 million
image-code pairs. The performance improvements
from the initial to the final model are demonstrated
in Figures 6, 7, 8, and 9. These figures highlight
the significant advancements in accuracy and the
quality of the generated code and corresponding
images as the model evolved through successive
training cycles.

Synthesize New Images with High Tempera-
ture. Using the final iteration of the Img2Code-8B
model, we synthesized new images from 1.57 mil-
lion raw images in the foundational dataset. By
setting a temperature of 0.7, the model was able to
generate more diverse and creative outputs, devi-
ating meaningfully from the original dataset. The
results of this high-temperature synthesis are illus-
trated in Figures 10, 11, 12, 13, 14, and 15. These
figures demonstrate the model’s ability to produce
innovative and varied image outputs suitable for
diverse applications.
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(a) (b) (c) (d)

Figure 14: Examples of low-quality image-code pairs removed from the dataset. (a) Almost blank images with
very low pixel variation. (b) Images containing random lines or shapes. (c) Images with black squares caused by
incorrect preprocessing. (d) Images generated using external files accessed through the code.

Synthesize New Problems Based on New im-
ages. The Problem Synthesis Prompt shown in
Figure 15 is designed to encourage creative and
meaningful engagement with visual data by craft-
ing math reasoning questions that are both acces-
sible and challenging for a K-12 audience. This
process involves analyzing patterns, shapes, and
numerical relationships present in an image, then
constructing a single, concise question that stimu-
lates analytical thinking. The prompt ensures that
the generated question is self-contained, solvable
using the visible information in the image, and
includes any essential details that may not be im-
mediately apparent. By adhering to these guide-
lines, educators and content creators can develop
visually engaging problems that promote critical
reasoning and mathematical exploration, fostering
a deeper connection between visual interpretation
and problem-solving skills.

Problem Synthesis Prompt

Please create a **math reasoning question** for a
K-12 audience based on the image generated by the
following code. The question must adhere to these
criteria:

1. **Image Engaging**: The question must utilize
visible patterns, shapes, numbers, or other elements
present in the image to engage reasoning skills.

2. **Single Question**: Write a single, standalone
question. The question should be concise and self-
contained, without any subparts. You do not need to
provide an answer to the question.

3. **Self-Sufficiency**: The recipient will only see
the image, not the code. Include any essential details
from the code (e.g., coordinates, hidden axes, specific
data points, or labels) that are necessary for solving
the question but may not be visible in the image.

4. **Solvability**: Ensure the question can be solved
using only the visible information in the image and
the question text.

Below is the code that generates the image:

```python/tikz

[Image Code]

```

### Question:

Figure 15: Prompt for synthesizing math reasoning prob-
lems based on synthesized images.
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TiKZ Python TiKZ Python TiKZ Python

Table 5: Comparison of images generated from the original TiKZ code and the translated Python code.
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Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 6: Comparison of image-to-code performance between the initial and final models.
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Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 7: Comparison of image-to-code performance between the initial and final models.

2526



Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 8: Comparison of image-to-code performance between the initial and final models.
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Origin Image Initial Model Final Model Origin Image Initial Model Final Model

Table 9: Comparison of image-to-code performance between the initial and final models.
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New Images from One Seed Image New Images from One Seed Image

Table 10: New images synthesized with seed images form K12-2M.
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New Images from One Seed Image New Images from One Seed Image

Table 11: New images synthesized with seed images form K12-2M
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New Images from One Seed Image New Images from One Seed Image

Table 12: New images synthesized with seed images form K12-2M
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New Images from One Seed Image New Images from One Seed Image

Table 13: New images synthesized with seed images form arXiv
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New Images from One Seed Image New Images from One Seed Image

Table 14: New images synthesized with seed images form MathV360k
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New Images from One Seed Image New Images from One Seed Image

Table 15: New images synthesized with seed images form MathV360k
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