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Abstract

Generative Error Correction (GEC) has
emerged as a powerful post-processing method
to boost the performance of Automatic Speech
Recognition (ASR) systems. In this paper, we
first show that GEC models struggle to gen-
eralize beyond the specific types of errors en-
countered during training, limiting their abil-
ity to correct new, unseen errors at test time,
particularly in out-of-domain (OOD) scenarios.
This phenomenon amplifies with named enti-
ties (NEs), where, in addition to insufficient
contextual information or knowledge about the
NEs, novel NEs keep emerging. To address
these issues, we propose DARAG (Data- and
Retrieval-Augmented Generative Error Correc-
tion), a novel approach designed to improve
GEC for ASR in in-domain (ID) and OOD
scenarios. First, we augment the GEC train-
ing dataset with synthetic data generated using
foundational generative models, thereby simu-
lating additional errors from which the model
can learn from. For out-of-domain scenarios,
we simulate test-time errors from new domains
similarly and in an unsupervised fashion. Ad-
ditionally, to better handle NEs, we introduce
retrieval-augmented correction wherein we aug-
ment the model input with entities retrieved
from a datastore of NEs. Our approach is sim-
ple, scalable, and both domain- and language-
agnostic. We experiment on multiple datasets
and settings, showing that DARAG outper-
forms all our baselines, achieving 8%–30% rel-
ative WER improvements in ID and 10%–33%
improvements in OOD settings. 1

1 Introduction

Automatic Speech Recognition (ASR) is the foun-
dational task of converting spoken language into
text. As a fundamental goal in computational lan-
guage processing (Jurafsky, 2000), ASR has fa-
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Figure 1: Comparison of traditional GEC and DARAG. We
augment the training dataset with synthetic data generated
using our algorithm and named entities retrieved from a datas-
tore to improve in-domain and out-of-domain ASR.

cilitated communication across diverse fields, in-
cluding education (Caballero et al., 2017), health-
care (Latif et al., 2020), and others (den Bogaert
et al., 2022). Advances in deep learning have driven
significant progress in ASR, with end-to-end mod-
els achieving impressive results on various tasks (Li
et al., 2022). However, one of the key challenges
in real-world ASR applications (Li et al., 2015)
is handling variations in speech due to factors like
background noise (Chen et al., 2022), speaker ac-
cents (Turan et al., 2022), and different speaking
styles (Syed et al., 2021). These factors lead to a
significant reduction in the accuracy of ASR.

Humans demonstrate exceptional resilience to
challenging speech conditions due to our inherent
linguistic knowledge. Traditional ASR systems
mimic this by incorporating a separate language
model (LM) to rescore hypotheses during decod-
ing (Toshniwal et al., 2018; Kannan et al., 2018).
The LM evaluates the fluency of the N-best hy-
potheses generated by the ASR model, and the
scores are combined with the ASR’s own scores in
a weighted fashion. The hypothesis with the high-
est combined score is then selected as the final tran-
script. However, the rise of large language models
(LLMs) with advanced reasoning capabilities has
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opened possibilities beyond simple rescoring. This
has led to the development of Generative Error Cor-
rection (GEC) (Chen et al., 2024), where models
are trained to correct errors in the best hypothesis
by leveraging information from other hypotheses,
ultimately improving transcription accuracy.

GEC models are commonly trained on
hypothesis-transcription pairs generated by ASR
models using the training sets from a diverse
range of ASR datasets. Recent approaches favor
strong open-access ASR models for hypothesis
generation (Chen et al., 2024; Hu et al., 2024a;
Ghosh et al., 2024b) with the aim to generalize
well across diverse datasets at test-time. In this
paper, we investigate, for the first time, how
the quality of training errors—specifically their
nature, density, and distribution—impacts test-time
performance across various settings. Through
single-domain, single-dataset experiments (see
Section 3), where GEC models are trained on
the same datasets as their ASR counterparts, we
observed minimal improvements in Word Error
Rate (WER) for in-domain (ID) tests and no
improvements for out-of-domain (OOD) tests.
Upon closer examination, we attribute these
shortcomings to three main factors:

1. ASR models generate too few errors on their
training data for GEC models to effectively
learn error correction.

2. GEC models are unable to generalize to the
novel types of errors it sees at test time. This
problem is exacerbated in OOD scenarios,
where there is a significant shift in the nature
of errors encountered during training versus
those at test time.

3. GEC models continue to struggle with accu-
rately correcting novel named entities (NEs)
in transcriptions. While LLMs possess exten-
sive linguistic knowledge, NEs often do not
follow general language patterns. We attribute
this challenge to insufficient context and a lack
of knowledge about emerging NEs.

These observations lead us to a central hypoth-
esis: The generalization ability of GEC models is
limited by the diversity and nature of error types
encountered during training. Improving perfor-
mance requires training GEC models on a broader
and diverse set of errors (for richer training signals)
that are consistent in their characteristics with the
types the ASR model generates on the test set. To

better generalize to OOD, GEC models need to be
trained to correct errors that the ID ASR model
might plausibly make on the OOD test set.
Our Contributions. To this end, we propose
DARAG (Data- and Retrieval-Augmented Gen-
erative Error Correction), a simple, scalable, and
domain-agnostic approach designed to boost GEC
performance in ID and OOD scenarios. Our pro-
posed approach is driven by the hypothesis that
GEC models perform better when trained to cor-
rect errors they are likely to encounter at test
time. To achieve this, DARAG generates domain-
specific synthetic speech-transcript pairs using
foundational generative models (LLMs and TTS
models). The generated speech is then used to
generate hypothesis-transcription pairs for train-
ing the GEC model. This process simulates errors
that are specific to the target-domain vocabulary
and also imitates the phonetic confusions that the
ID ASR model would make in the target domain.
Additionally, to improve named entity correction,
inspired by RAG (Lewis et al., 2020), we introduce
retrieval augmented correction (RAC). Specifically,
we extract and store all named entities from the
training dataset in a datastore and retrieve the top-k
most similar entities during GEC. Our proposed
method is scalable, with the datastore being easily
extendable at test time to incorporate new entities
as they are encountered. To summarize, our main
contributions are as follows:

1. We conduct a first thorough investigation into
the generalization limitations of LLM-based
GEC, demonstrating that its performance can
be improved by exposing it to diverse but con-
sistent errors that ASR models are likely to
produce at test time.

2. To address these challenges, we propose
DARAG, a novel method for enhancing GEC
in both ID and OOD scenarios. DARAG aug-
ments GEC training datasets with synthetic
data and decouples named entity correction
from the error correction learning process
through RAG. DARAG significantly outper-
forms traditional GEC methods, improving
ASR performance by 8%-33%.

2 Related Work
Generative Error Correction. Post-ASR error
correction using language models (LMs) has been
widely studied (Ma et al., 2023b,a; Zhang et al.,
2023; Yang et al., 2023; Guo et al., 2019). Re-
cently, large language models (LLMs) have been
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applied to this task, and the task has been known as
generative error correction (Hu et al., 2024a; Ghosh
et al., 2024b; Gu et al., 2024). While LLMs excel
due to their advanced language comprehension, it
remains unclear which errors they effectively cor-
rect, which they miss, and how well they handle
unknown NEs that they lack prior knowledge of.

Domain Generalization and Named Entity in
ASR. Transcribing NEs is a persistent challenge
for ASR models (Das et al., 2022). Techniques
such as memorization (Bekal et al., 2021) and bi-
asing (Jayanthi et al., 2023) have been widely re-
searched to improve NE transcription. However,
these methods typically focus on known NEs seen
during training and struggle with unseen entities,
as autoregressive models tend to memorize NEs
but generalize poorly to new ones (Heinzerling
and Inui, 2020). Improving NE transcription using
post-ASR processing or GEC has not been well ex-
plored. A parallel line of work also explores NER
for ASR (Kumar et al., 2024; Yadav et al., 2020).
ASR models often fail under distribution shifts,
such as domain, accent, or dialect changes (Singhal
et al., 2023). However, the robustness of GEC to
domain shifts remains underexplored.

3 Preliminary

3.1 Problem Formulation
Let Did

train = {(ai, ti), 1 ≤ i ≤ n} represent a
human-annotated, in-domain dataset containing n
pairs of speech and corresponding transcripts for
training an ASR system (Did

train is sourced from
a single dataset and not pooled from multiple
datasets unless otherwise mentioned). Consider
Aθ as an encoder-decoder ASR model trained on
Dgold. For GEC, our goal is to generate a list of N-
best hypotheses hi for each instance in Did

train using
beam search decoding. Next, using the hypothe-
ses and corresponding gold transcripts, denoted
by Hid

train = {(hi, ti), 1 ≤ i ≤ n}, we fine-tune
a language model to correct the errors in the best
hypothesis by leveraging cues from the other N-1
hypotheses to directly produce an accurate tran-
scription. During training, the true transcription
ti serves as the target. At inference time, for each
instance in the test set Did

test, we generate a list of hy-
potheses and prompt the fine-tuned model to output
a corrected transcript.

Our objective is to create a synthetic dataset,
Did

syn = {(âi, t̂i), 1 ≤ j ≤ nsyn}, generate N-
best hypotheses for each instance in it (Ĥid

train =

Test ASR Train Mismat. WER (↓) Mat. WER (↓)

LS
LS (960) (No GEC) 4.6 4.6

(Clean)
LS (960) 4.4 4.4
Vox 7.4 3.9
SPGI 8.8 4.0

Vox

Vox (No GEC) 10.1 10.1

Vox 9.4 9.4
LS (960) 14.5 6.9
SPGI 11.8 7.7

SPGI

SPGI (No GEC) 7.5 7.5

SPGI 7.3 7.3
LS (960) 14.2 4.8
Vox 10.5 4.9

Table 1: Performance comparison of GEC across three differ-
ent ASR benchmarks from three different domains. We evalu-
ate and compare across two scenarios: (i) Matched Scenario:
In this case, the hypotheses-transcription pairs for training
our GEC model are derived from the Train split of the Test
dataset (and not from the dataset the ASR model is trained
on) (ii) Mismatched Scenario: In this case, the hypotheses-
transcription pairs are derived from the same dataset the ASR
model is trained on. We show that (a) For domain shifts,
i.e., in cases where both the hypotheses and the ASR training
dataset are from a domain different from the test, GEC leads
to little to no improvement, and (b) For in-domain scenarios
where only the hypotheses are derived from the same domain
as the test, employing an ASR model trained on a different
domain to derive the hypothesis boosts performance.

{(ĥi, t̂i), 1 ≤ j ≤ nsyn}), and augment the original
set H with Ĥ to improve error correction on the test
set Did

test. Alternatively, for an out-of-domain test
set Dood

test , we assume the availability of a small train
set from the same domain Dood

train = {(ai, ti), 1 ≤
i ≤ nsmall} where nsmall ≪ n and the accompa-
nying transcripts ti may be human-annotated or
generated from Aθ.

3.2 What do Error Correction Models Learn
to Correct?

Most prior work on GEC models relies on foun-
dational open-access ASR models, like Whisper,
to generate hypotheses from various datasets and
then trains GEC models on these hypotheses-
transcription pairs, denoted as Hid

train. However,
because the training data used for such ASR mod-
els is often undisclosed, there is limited insight
into the nature of errors present in the hypothe-
ses and, consequently, the types of errors that the
GEC models learn to correct. In this work, we aim
to study error correction from a more transparent
perspective. Table 1 presents experiments where
we train an ASR model on a single dataset (Lib-
riSpeech (LS) (Panayotov et al., 2015), VoxPop-
uli (Wang et al., 2021) (Vox), SPGIspeech (O’Neill
et al., 2021)), then derive hypotheses from either
the same or a different dataset, and use these pairs
to train a GEC model. This experimental setup
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proves to be more practical and reflective of real-
world use-cases where users have the knowledge
of errors and NEs learned during training and the
test instances that are truely OOD.Our key findings
are as follows: (i) When GEC models are trained
on a dataset in a different domain (i.e., both Did

train
and Hid

train come from a domain that is different
from Did

test), no performance improvements are ob-
served. We hypothesize this is due to the GEC
model encountering errors at test time that differ
significantly from those it saw during training. For
instance, a hypothesis (HP)-transcription (GT) pair
generated from the LibriSpeech train set using an
ASR model trained on LibriSpeech is as follows:

GT: biscuits with sugar on the top preserved
ginger hams brawn under glass everything in
fact that makes life worth living
HP 1: biscuits with sugar on the top preserved
ginger hams brawn under glass everything in
fact that makes life worth living
HP 2: biscuits with sugar on the top preserved
ginger hams bran under glass everything in
fact that makes life worth living

An error by the same ASR model on the Vox-
Populi test set, is as follows:

GT: spyware allows a third party to access the
same data as the user.
HP 1: spygware allows a third party to possess
the same data as the user
HP 2: spygware allows a third party to occupy
the same data as the user

As we can see, it introduces semantic and lexical
errors that are out of the domain knowledge learned
during training. (ii) When GEC models are trained
on a dataset in a similar domain (i.e., both Did

train
and Hid

train come from a domain identical to Did
test),

improvements are minimal. We attribute this to
the ASR model making fewer errors during infer-
ence, providing limited opportunities for the GEC
model to learn effective corrections. For example,
an ASR model trained on LibriSpeech and VoxPop-
uli have WERs of 2.2 and 5.1 on their respective
train sets. (iii) To examine whether a higher error
rate in hypotheses enhances GEC training, we use
an ASR model trained on a different domain to gen-
erate hypotheses on our in-domain dataset Did

train for
GEC model training (the same ASR model is also
used for test inference). Surprisingly, this setup
consistently yields the most significant improve-

Test ASR Train Mismat. F1 (↑) Mat. F1 (↑)

Vox

Vox (No GEC) 87.8 87.8

Vox 87.8 87.8
LS (960) 80.9 83.2
SPGI 81.4 84.0

Table 2: Performance comparison of GEC on VoxPopuli, an
entity-rich dataset. The Matched Scenario and Mismatched
Scenarios are defined as in Table 1. We show that (a) For
domain shifts, model performance degrades significantly on
NEs. (b) For in-domain scenarios, GEC does not prove to be
effective in correcting NEs.

ments, likely because the GEC model learns from
a broader range of errors, enhancing its corrective
abilities. These findings highlight (i) the need for a
large and diverse set of errors and (ii) the need for
consistency in error characteristics with those that
GEC models will encounter at test time.

3.3 How Well do they Fair on Named
Entities?

To assess the ability of GEC models to correct
named entities (NEs), we analyze their perfor-
mance in various settings. As mentioned earlier,
transcribing NEs is a major challenge in ASR,
particularly in knowledge-rich domains. Table 2
compares GEC performance on VoxPopuli using
models trained under different conditions. For this
experiment, we leverage annotated NEs from the
MSNER dataset (Meeus et al., 2024) for VoxPopuli.
Our key findings are: (i) GEC models struggle to
correct NEs, likely due to insufficient prior knowl-
edge or context. (ii) In domain-shift scenarios,
where ASR or GEC models have not encountered
the target NEs during training, NE transcription
accuracy declines sharply. These results emphasize
the importance of incorporating explicit knowledge
of NEs to improve correction performance.

4 Methodology
Fig. 2 illustrates our proposed method. We pro-
pose two simple extensions to improve conven-
tional GEC. First, we propose training the GEC
model on additional synthetic data generated us-
ing generative models. Additionally, instead of
memorizing the named entities, we propose decou-
pling them from the learning process with RAG.
To achieve this, we first extract named entities and
store them in a datastore. During training and in-
ference, we retrieve them from the datastore and
augment them to the instruction with the best hy-
pothesis and other hypotheses. In the following
subsections, we explain our methodology in detail.
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Figure 2: Illustration of DARAG. 1⃝ We generate synthetic data with LLMs and TTS models that are then used to generate
hypotheses with diverse errors consistent with the types the ASR model generates on the test set. 2⃝ We extract the NEs and store
them in a datastore. During training, for every instance, we retrieve the top-k most similar NEs to the best hypothesis and use it
to construct an instruction-response pair. Note that in OOD settings we only assume the availability of only a few unsupervised
speech samples in the original train set, and pseudo-transcripts for prompting are generated using the in-domain ASR model.

4.1 Synthetic Training Data Augmentation

For In-Domain Scenarios. As discussed in Sec-
tion 3.2, GEC models fail to learn effective error
correction due to the low number of errors in ASR
training data. We hypothesize that generating novel
spoken utterances not seen during ASR training
will introduce more errors that can provide rich
training signals for learning error correction. Our
goal is to generate spoken utterances that closely
mimic the speech characteristics of speakers in the
same domain, replicating the style as if spoken by
similar speakers in similar contexts. These utter-
ances can then be used to generate new hypotheses,
Ĥid

train, which we augment into the original dataset
Hid

train. We achieve this through a 3-step process:

Step 1. We prompt an LLM (LLaMa-2.0-
Instruct (Touvron et al., 2023)) with in-context ex-
amples sampled from Did

train to generate in-domain
transcripts (prompt in Appendix B).

Step 2. Using voice cloning via TTS, we generate
spoken utterances from the transcripts. The TTS
model (Parler-TTS Mini (Lacombe et al., 2024)) is

conditioned on randomly selected utterances from
Did

train to replicate the domain’s speech style. Steps
1 and 2 ensure the generated utterances align with
the domain and produce error patterns similar to
those expected at test time.

Step 3. We generate hypotheses for these utter-
ances using the ASR model Aθ. The resulting hy-
potheses, Ĥid

train, are then added to Hid
train to improve

GEC model training.
For Out-of-Domain Scenarios. In OOD settings,
we follow the same steps using Dood

train. If annotated
transcripts are unavailable, we first transcribe the ut-
terances with the ASR model Aθ. Recall that in our
setting Dood

train only has a few utterances (nsmall ≤
50) and is unsuitable for adaptation of Aθ.

4.2 Retrieval Augmented Correction

To enhance the correction of NEs, we decouple
NE correction from the main GEC process and in-
troduce a Retrieval-Augmented Correction (RAC)
approach (more in Appendix H). Inspired by RAG,
we retrieve the most relevant NEs during both train-
ing and inference. Our method follows three steps:
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Step 1. We apply NER on all transcriptions in the
train-set, including those generated synthetically
during the previous data augmentation step. We
use SpaCy’s en-core-web-sm model to extract all
available NE types supported. The extracted NEs
are stored in a datastore, DS = {(st), 1 ≤ t ≤ d}
where d is the total number of extracted NEs.
Step 2. During GEC training and inference, we
use SentenceBERT (Reimers, 2019) to retrieve the
top-k NEs, s, from DS based on their similarity to
the best hypothesis (discussion on why Sentence-
BERT works can be found in Appendix F.). This
is formally defined as:

s = top-k1≤t≤d

(
sim

(
ei · et

∥ei∥∥et∥

))
(1)

where ei is the SentenceBERT embedding for the
best hypothesis, et is the embedding for an NE in
DS , and sim(.) is the cosine similarity between em-
beddings. We calculate similarity for each NE in
DS and select the top-k most similar NEs. This
simple method proves to be extremely effective in
our case, as most errors in named entities belong to
misspelled characters due to phonemes misrecog-
nized by the ASR model. However, real-world
datasets may contain multiple similarly spelled
NEs, and retrieving all such NEs might make it
difficult for error correction. We further discuss
this in the limitations section.
Step 3. The retrieved NEs are then added to the
input prompt during training and inference as a sim-
ple comma-separated list. We found that different
prompt formats yielded similar results.

4.3 Fine-tuning
To train the LLM for error correction, we create
instruction-response pairs and fine-tune our LLM
on them. We employ the following template with
the transcription as the target for fine-tuning:

Below is the best hypothesis transcribed from
a speech recognition system. Please try to
revise it using the words that are only included
in the other hypotheses and a list of named
entities from a database, both of which will be
provided to you.
Best-hypothesis:
Other-hypothesis:
Named-Entities:
Response:

Following prior work (Hu et al., 2021), we fine-
tune only LoRA adapters.

5 Experimental Setup

Models and Hyper-Parameters. For our ASR
model, we employ an encoder-decoder model with
a 12-layer transformer-based encoder and a 6-layer
conformer-based decoder. We train all datasets
for 100 epochs with Adam optimizer, a learning
rate of 1e-3, and an effective batch size of 128.
For learning GEC, we train the LLaMa-2 7B (non-
instruct) for 10 epochs with Adam optimizer, a
learning rate of 5e-5, and an effective batch size of
32. We used a LoRA rank of 8, and we did not find
a substantial change in performance by decreasing
or increasing it. We generate nsyn = n or as many
synthetic augmentations as the size of the original
training set. For top-k NE retrieval, we set k=5.
For N-best hypotheses, we set N=5. For OOD, we
set nsmall=100 and assume gold transcripts are not
available. All results are averaged over 3 runs for 3
random seeds.
Datasets. We evaluated DARAG on 5 bench-
mark ASR datasets, including LibriSpeech-960
(LS), SPGISpeech (SPGI), VoxPopulien(Vox), Gi-
gaspeech (Chen et al., 2021) (Giga) and TED-
LIUM (Rousseau et al., 2012) (TED). Our OOD
evaluation setup differs from prior works, and we
explain our rationale in Appendix G.
Comparison Methods and Ablations. For com-
parison with DARAG, we employ (i) Baseline –
Only ASR, and we perform no post-processing. (ii)
Synth. Adap. – For ID, we add the synthetic data
to the original ASR training data. For OOD, we
do adapter-based continual fine-tuning of the ASR
model (full-fine-tuning gave us worse performance)
(iii) GER (Chen et al., 2024) – Vanilla GER, can
also be considered as DARAG without data our
retrieval augmentation (iv) RobustGER (Radford
et al., 2023) (v) LMrank – We use the same LLM
(continually fine-tuned on the text from training
and synthetic dataset) as GER for re-scoring the
N -best hypotheses and finally take the hypothesis
with the best score averaged across the LLM and
ASR model scores. (vi) Enhance – we also employ
a speech enhancement front-end, a HiFi-GAN (Su
et al., 2020), to denoise the noisy speech before
passing it to the ASR model. For ablations, we
employ (i) w/o RAC: DARAG without retrieval-
augmented correction. (ii) w/o Aug.: DARAG
without synthetic data augmentation but only re-
trieval augmentation based error correction. (iii)
only Synth.: The GEC model is trained only on
pairs from the synthetically generated data.
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Table 3: Performance comparison (WER) of DARAG with other methods on various in-domain and out-of-domain settings (the
Test is OOD w.r.t. the Train). We assume all 5 datasets are from different domains. We also report the absolute improvements
w.r.t. the ASR-only Baseline. DARAG outperforms other methods by 8%–30% in in-domain and 10%–33% in OOD settings.

Test Train Baseline Synth. Adapt. +LMrank +Enhance +GER +RobustGER
+DARAG w/o RAC w/o Aug. only Synth.

(ours) (ours) (ours) (ours)

In-Domain LS 4.6 4.6+0% 4.4−4.3% 4.5−2.2% 4.4−4.3% 4.4−4.3% 4.0−13.0% 4.2−8.7% 4.1−10.9% 4.6+0.0%

Vox 8.2 8.8+7.3% 8.1−1.2% 8.3−1.2% 7.4−9.8% 7.4−9.8% 6.1−25.6% 5.9−28.0% 6.8−17.1%

SPGI 8.9 9.0+1.1% 8.8−1.1% 8.8−1.1% 8.8−1.1% 8.6−3.4% 8.0−10.1% 7.8−12.4% 8.0−10.1% 16.8+44.8%LS (Clean)
Out-of-Domain

TED 11.6 11.5−0.9% 11.1−4.3% 11.4−4.3% 11.3−2.6% 11.3−2.6% 10.2−12.1% 9.9−14.7% 10.9−6.0%

In-Domain LS 8.4 8.3−1.2% 7.7−8.3% 7.2−14.3% 7.2−14.3% 6.9−17.9% 6.4−23.8% 7.0−16.7% 6.6−21.4% 8.0−4.8%

Vox 13.7 14.0+2.2% 13.5−1.5% 13.2−1.5% 13.5−1.5% 13.5−1.5% 11.9−13.1% 13.0−5.1% 13.0−5.1%

SPGI 14.2 15.5+9.2% 14.0−1.4% 13.5−1.4% 13.8−2.8% 13.8−2.8% 12.6−11.3% 13.4−5.6% 13.4−5.6% 19.2+7.2%LS (Other)
Out-of-Domain

TED 17.9 18.6+3.9% 17.9+0.0% 17.5+0.0% 17.4−2.8% 17.4−2.8% 15.3−14.5% 15.8−11.7% 16.0−10.6%

In-Domain Vox 10.1 9.9−2.0% 9.5−5.9% 9.9−2.0% 9.4−6.9% 9.4−6.9% 8.6−14.9% 9.4−6.9% 8.9−11.9% 9.5−5.9%

LS 14.9 15.2+2.0% 14.9+0.0% 14.9+0.0% 14.5−2.7% 14.5−2.7% 10.0−32.9% 9.8−34.2% 12.1−18.8%

SPGI 11.8 13.4+13.6% 11.4−3.4% 11.8−3.4% 11.8+0.0% 11.6−1.7% 8.1−31.4% 8.4−28.8% 10.3−12.7% 19.8+16.5%Vox
Out-of-Domain

TED 17.0 18.6+9.4% 17.0+0.0% 17.2+0.0% 17.3+1.8% 17.3+1.8% 14.4−15.3% 14.7−13.5% 15.9−6.5%

In-Domain TED 6.7 6.5−3.0% 6.6−1.5% 6.7+0.0% 6.6−1.5% 6.8+1.5% 6.2−7.5% 6.3−6.0% 6.6−1.5% 7.0+4.5%

SPGI 10.4 10.0−3.8% 10.2−1.9% 10.4−1.9% 10.8+3.8% 10.8+3.8% 8.8−15.4% 8.1−22.1% 10.1−2.9%

LS 9.1 9.0−1.1% 8.8−3.3% 9.1−3.3% 8.5−6.6% 8.5−6.6% 8.2−9.9% 8.7−4.4% 8.2−9.9% 15.8+51.9%TED
Out-of-Domain

Vox 9.9 10.8+9.1% 9.9+0.0% 9.9+0.0% 10.2+3.0% 10.2+3.0% 9.0−9.1% 8.9−10.1% 10.1+2.0%

In-Domain Giga 11.5 14.8+28.7% 10.8−6.1% 10.6−7.8% 11.0−4.3% 10.6−7.8% 9.1−20.9% 10.2−11.3% 9.5−17.4% 11.0−4.3%

TED 22.7 24.3+7.0% 21.5−5.3% 21.8−5.3% 22.3−1.8% 22.3−1.8% 18.5−18.5% 18.5−18.5% 21.3−6.2%

LS 18.0 23.4+30.0% 17.7−1.7% 17.5−1.7% 17.8−1.1% 17.8−1.1% 14.7−18.3% 14.4−20.0% 16.9−6.1% 26.2+15.4%Giga
Out-of-Domain

Vox 16.3 20.2+23.9% 16.2−0.6% 16.2−0.6% 16.6+1.8% 16.6+1.8% 14.5−11.0% 15.0−8.0% 16.4+0.6%

In-Domain SPGI 7.5 11.0+46.7% 7.1−5.3% 7.4−1.3% 7.3−2.7% 7.4−1.3% 5.2−30.7% 6.0−20.0% 6.4−14.7% 7.6+1.3%

TED 17.7 24.6+39.0% 17.4−1.7% 17.6−1.7% 17.7+0.0% 17.7+0.0% 13.9−21.5% 14.4−18.6% 17.0−4.0%

LS 14.4 18.1+25.7% 14.4+0.0% 14.4+0.0% 14.2−1.4% 14.2−1.4% 12.0−16.7% 11.6−19.4% 13.4−6.9% 24.9+40.7%SPGI
Out-of-Domain

Vox 11.3 14.7+30.1% 10.9−3.5% 11.0−3.5% 10.5−7.1% 10.4−7.9% 8.2−27.4% 8.0−29.2% 10.1−10.6%

6 Results and Analysis

Main Results. Table 3 presents our main results,
comparing performance across five datasets in both
ID and OOD scenarios. Our baseline results are
analogous to those originally reported by ESPnet.
In the ID setting, the training and test sets come
from the same dataset, whereas in the OOD setting,
the training set is sourced from a different dataset,
making the test set OOD for both the ASR and GEC
models. For the OOD experiments, we randomly
selected three datasets for training without any par-
ticular preference. Furthermore, we did not assume
the availability of ground-truth transcripts in Dood

train
and instead used our ASR model to generate tran-
scripts. Unlike previous experiments, we did not
assume a separate dataset for ASR training; both
the ASR model and the hypotheses were gener-
ated from the same training data. Our key findings
can be summarized as follows: (i) DARAG sub-
stantially improves ASR performance for both ID
(8%-30%) and OOD (10%-33%) settings. (ii) In
ID settings, both RAC and synthetic augmentation
prove essential, as ablating either component leads
to decreased performance. (iii) In OOD settings,
augmentation is more beneficial than RAC, likely
because most NEs in the datastore do not match
the NEs encountered during testing. (iv) DARAG
proves to be a better way to use synthetic data to

improve ASR as an adaptation with synthetic data
leads to performance decrease over baseline.(v) In
some OOD cases, removing RAC improves per-
formance, which we attribute to mismatched OOD
NEs, causing the GEC model to adjust certain NEs
incorrectly. (vi) Relying solely on synthetic data
is not effective for OOD scenarios, consistent with
prior research indicating that human-annotated data
remains crucial for optimal performance (Ghosh
et al., 2024a). Appendix C experiments show that
DARAG does not replicate the original training
data due to LLM memorization.

6.1 Does Retrieval Augmentation Improve
Transcription of Named Entities?

Table 4 presents a comparison of F1-micro scores
for DARAG and various baselines in both ID and
OOD settings. The results reveal several key in-
sights: (i) DARAG consistently outperforms the
baseline and conventional GEC approaches, with
particularly large gains in OOD scenarios, demon-
strating its robustness to domain shifts. (ii) In-
corporating a datastore containing NEs from the
in-domain dataset significantly improves OOD per-
formance, in some cases matching the results of
GEC models trained on ID datasets. This highlights
the effectiveness of retrieval-augmented correction
in enhancing ASR performance, including practi-
cal applications like meeting applications, where a
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Test Method OOD F1 (↑) ID F1 (↑)

Vox

Baseline 79.5 87.8

+GEC 80.9 87.8
+DARAG 82.3 90.0

+synth. NE 82.8 92.3
+DARAG w/ ID NE 89.9 -

+synth. NE 90.7 -

LS

Baseline 82.5 93.2

(Other)

+GEC 82.0 93.5
+DARAG 83.1 96.0

+synth. NE 84.9 96.4
+DARAG w/ ID NE 93.1 -

+synth. NE 93.4 -

Table 4: Performance comparison of DARAG with other
methods on the NE transcription. For ID, we employ the train
set of the dataset as the test. For OOD, we employ LS for
Vox and Vox for LS. w/ ID NE refers to DARAG, where the
NE datastore is from the ID train set. w/ synth NE refers to
additional synthetic NEs we add to the NE datastore.

datastore can be constructed with a list of relevant
NEs and not necessarily included during training.
(iii) Augmenting the datastore with synthetically
generated NEs also shows promise in boosting
DARAG’s performance, indicating the potential
to dynamically add emerging NEs to the datastore.
This approach reduces the reliance on continual
fine-tuning for ASR adaptation, which is typically
required in other methods (Das et al., 2022).

6.2 DARAG for Source-Free UDA
Most Unsupervised Domain Adaptation (UDA)
methods for ASR assume the presence of the entire
unlabeled dataset from the target domain (Hu et al.,
2024b). On the other hand, DARAG assumes the
presence of only a few unlabeled instances. Fig. 3
shows DARAG proves to be effective for extreme
low-resource UDA and outperforms STAR and con-
tinual fine-tuning with pseudo-labeling.

6.3 Real Data Outperforms Synthetic
Table 5 shows a comparison between DARAG and
various baseline configurations where the synthetic
dataset is replaced with the original training set
of the target domain. The results clearly demon-
strate that using real training data to generate GEC
hypotheses significantly boosts performance, of-
ten surpassing complete ID settings. We attribute
this improvement to two main factors: (i) the ASR
model produces more errors on the GEC training
dataset due to domain mismatch, providing richer
training signals, and (ii) the datastore is enriched
with real NEs from the original training set, offer-
ing more accurate context for corrections.

Extra Results. We present extra results in the
Appendix, including ones for key hyper-parameter

Test Method ASR Train GEC Train WER (↓)

Vox

Baseline Vox - 10.1
+DARAG Vox Vox 8.6

Baseline LS - 14.9
Baseline LS + Vox - 10.3

+DARAG LS LS 10.0
+DARAG LS Vox 6.9

Baseline TED - 17.0
Baseline TED + Vox - 10.0

+DARAG TED TED 14.4
+DARAG TED Vox 7.5

SPGI

Baseline SPGI - 7.5
+DARAG SPGI SPGI 5.2

Baseline LS - 13.3
Baseline LS + SPGI - 7.7

+DARAG LS LS 12.0
+DARAG LS SPGI 4.8

Baseline TED - 17.7
Baseline TED + SPGI - 7.9

+DARAG TED TED 13.9
+DARAG TED SPGI 5.0

Table 5: Performance comparison of DARAG in OOD set-
tings with the baseline. We replace the generated augmenta-
tions with the original target domain training dataset (and do
not generate extra augmentations). Training on hypotheses
from the target domain train set leads to superior performance.
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Figure 3: Comparison of DARAG with other methods on low-
resource source-free UDA (LS → Vox). DARAG outperforms
other methods with significant improvements.

tuning, the importance of the voice cloning module,
and the performance of open-access models like
Whisper and Canary with DARAG. Additionally,
we provide examples of generated augmentations
in Table 13 and DARAG corrections in Table 14.

7 Conclusion

We introduce DARAG, a novel approach to im-
prove GEC for ASR. Our findings show that GEC
models struggle to generalize in various ID and
OOD cases. To address this, DARAG employs
(i) synthetic data augmentation to simulate real-
istic test-time errors and (ii) retrieval-augmented
NE correction. DARAG outperforms all compared
methods, demonstrating its effectiveness.
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Limitations

As part of future work, we would like to work on
the following limitations of our proposed DARAG
approach:

1. When the NE database is large, semantic sim-
ilarity may result in the retrieval of multiple
phonetically similar named entities, poten-
tially causing confusion for the GEC model
in choosing the correct entity. To address this,
we plan to develop phoneme-aware NE re-
trieval methods to enhance retrieval accuracy.

2. The use of synthetic data generated by LLMs
could introduce biases inherent to the lan-
guage models, potentially affecting the GEC
model’s performance. In future work, we aim
to explore strategies for mitigating such biases
to ensure more robust error correction.

3. Although DARAG involves additional com-
putational overhead for generating synthetic
data, we anticipate that as model efficiency im-
proves and lighter architectures become avail-
able, the overhead will be reduced, leading
to even greater gains in performance. Addi-
tionally, our computational overhead is anal-
ogous to most prior synthetic data methods
in speech (Gao et al., 2024a), vision (Azizi
et al., 2023) or language (Ghosh et al., 2024c)
and comparable to self-supervised learning,
a well-known area of research for improving
ASR performance.

4. We only study ASR datasets in the English
language. Future work includes evaluating
DARAG’s performance in low-resource lan-
guages beyond English.
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1. Section B: Prompts
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2. Section C: Analysis of LLMs copying the
training data

3. Section D: Performance of DARAG w/o Voice
Cloning

4. Section E: Results of DARAG with Founda-
tional ASR Models

5. Section F: Why is SentenceBERT an effective
NE Retriever?

6. Section G: Rationale behind our OOD setup

7. Section H: Why generating synthetic tran-
scripts from noisy hypothesis proves to be
effective?

8. Section I: In-Domain Performance After Out-
of-Domain Adaptation

9. Section J: Key Hyper-Parameter Tuning Re-
sults

10. Section K: Examples of DARAG Generations

B Prompts

We prompt LLaMa-2-Instruct in batched mode
with a temperature of 0.7 and top-p of 1. We use
this setting throughout all our experiments for gen-
eration and correction. We use the below prompt
to generate synthetic transcripts using LLaMa-2-
Instruct:

You need to act as a synthetic data genera-
tor. I will provide you with some example
transcripts from a speech recognition dataset
that I have transcribed using an ASR model.
The transcripts are not related to each other.
You need to first understand the nature of the
spoken utterances from the transcripts and an-
alyze their distinct features, like domain, style,
length, etc. Next, with what you understood,
you need to generate 2 short and diverse ut-
terances with the same properties but diverse
content. Each utterance should be a single sen-
tence. Please include named entities as and
when possible, but it is not necessary. Keep
the utterances short and in line with the ex-
amples. Your generated transcripts should be
coherent. Here are the example transcripts,
one in each line:{}. Return a JSON with 2
keys named "First Transcript" and "Second
Transcript" with the values as the generated
transcripts.

C Are LLMs Just Replicating the
Original Training Data?

Previous research has suggested that LLMs
may memorize open-domain ASR training tran-
scripts (Liu and Niehues, 2024; Team et al., 2023),
raising the risk of replicating training data while
generating synthetic data. To evaluate whether this
occurs with DARAG, we perform two checks: (i)
We use SentenceBERT to calculate the cosine sim-
ilarity between each generated transcript and all
transcripts in the original training set, reporting
the average semantic similarity across instances in
Table 6 ii) We compute the BLEU score for each
generated transcript, using the transcript with the
highest cosine similarity from the previous step
as a reference. Table 6 shows the average BLEU
scores across BLEU1, BLEU2, and BLEU3. The
low BLEU scores indicate that DARAG does not
simply replicate the training data. The semantic
similarity indicates that DARAG generates tran-
scripts that are consistent with the domain.

Dataset Similarity BLEU

LS 0.32 0.12
Vox 0.29 0.10
SPGI 0.25 0.06
Giga 0.22 0.13
TED 0.26 0.14

Table 6: Semantic similarity and BLEU scores between orig-
inal and generated transcripts across all datasets.

D DARAG w/o Voice Cloning

Table 7 compares the performance of DARAG in
both ID and OOD scenarios, with and without voice
cloning. As discussed in Section 4.1, voice cloning
via TTS allows the model to generate synthetic
speech that, when transcribed, produces hypothe-
ses containing errors similar to those encountered
during testing in that domain. As shown in the table,
DARAG experiences a performance drop without
voice cloning, with a more significant decline in
OOD scenarios.

E Results of DARAG with Foundational
ASR Models

Table 8 compares the performance of DARAG on
5 datasets for 3 foundational ASR models, Whis-
per Large-v3, OWSM (Peng et al., 2024), Large and
Canary (Puvvada et al., 2024). For ID settings
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Test Method Train WER (↓)

Vox

Baseline Vox 10.1
+DARAG Vox 8.6
+DARAG w/o Voice Cloning Vox 8.8

Baseline LS 14.9
+DARAG LS 10.0
+DARAG w/o Voice Cloning LS 12.2

LS

Baseline LS 8.4

(Other)

+DARAG LS 6.4
+DARAG w/o Voice Cloning LS 7.3

Baseline Vox 13.7
+DARAG Vox 11.9
+DARAG w/o Voice Cloning Vox 14.5

Table 7: Performance comparison of DARAG with and with-
out voice cloning. Performance drops sharply without voice
cloning, especially in OOD scenrios, thereby confirming the
importance of the voice cloning for generating augmentations.

where the ASR model is already trained on one
of the datasets, we adhere to our ID experimen-
tal setup as mentioned in Section 4. For OOD,
we adhere to our OOD experimental setup as men-
tioned in Section 4. As we can clearly see, DARAG
improves the performance of foundational ASR
models by significant margins, thereby showing
promise in applications with foundational ASR
models trained on multiple datasets.

LS Clean VOX TED GIGA SPGI
Whisper Large 2.0OOD 9.8OOD 3.9OOD 10.4OOD 3.0OOD

Whisper Large + DARAG 1.9ID 9.2OOD 3.4OOD 10.0OOD 2.7OOD

OWSM 2.7ID 7.2ID 4.8ID 11.2OOD -
OWSM + DARAG 2.4ID 6.9ID 4.3ID 10.5OOD -
Canary 1.9ID 5.8ID 3.6OOD 10.1OOD 2.1OOD

Canary + DARAG 1.8ID 5.5ID 3.2OOD 9.8OOD 1.9OOD

Table 8: Results for DARAG when coupled with foundational
ASR models. For a model already trained on a respective
dataset, we label it with ID and OOD otherwise.

Why is the comparison not made in the main pa-
per? We do not compare with foundational open-
access models like Whisper as it contradicts the
primary motivation of our work. Such models do
not disclose the datasets used for training, making
it impossible to determine which datasets are ID
and which are out-OOD. Our work focuses on im-
proving the performance of GEC models in OOD
scenarios. Specifically, we show that GEC models
struggle in OOD settings because the errors they
learn to correct during training do not generalize
to new domains. NEs, due to their long-tail na-
ture, are easily memorized by ASR models. For
Whisper-like open-access models, we do not know
what NEs were seen during training and whether an
NE encountered during inference is unseen by the
model. One of the primary motivations of DARAG
is to improve on named entities never seen before
(which is also challenging as they cannot be cor-

rected with linguistic knowledge). Table 4 shows
some compelling results for this, where ASR mod-
els trained on OOD datasets show significant per-
formance boosts with DARAG-based NE retrieval.
These issues are outlined in the Introduction and
discussed in detail in Section 3.2.

Furthermore, as highlighted in our paper, using
open-access models limits our ability to understand
how GEC models operate, what they learn, and
where they fail. The primary contribution of our
work is to conduct controlled experiments on single
datasets and OOD scenarios to identify and address
the limitations of GEC methods. This approach re-
flects realistic industrial use cases, where ASR sys-
tems often encounter OOD data, and open-access
models like Whisper are not typically employed.

F Why is SentenceBERT an effective NE
Retriever?

Our choice of using SentenceBERT as a NE re-
triever is driven by the observation that NEs are
often included in the best hypothesis generated by
the ASR model but with incorrect spellings (Guo
et al., 2019). This issue commonly arises due to
phonetically similar or confused sounds generated
by the ASR system. For example, as shown in Ta-
ble 14, "Phillip" was transcribed without the "l,"
and "Sharon" was transcribed as "Shared." Sen-
tenceBERT excels at retrieving semantically simi-
lar words from a corpus, making it highly effective
at identifying the correct NEs. It achieves a re-
trieval accuracy of ≥92% for the top k retrieved
NEs.

G Rationale behind our OOD setup

Previous works on ASR OOD evaluation employ
a variety of settings (Hu et al., 2024b; Seth et al.,
2024). However, our primary focus is not on OOD
adaptation or evaluation itself; rather, we aim to
demonstrate that DARAG enhances performance in
typical OOD scenarios. To this end, we have cho-
sen to use widely recognized benchmark datasets
for both ID and OOD evaluations. These datasets
not only feature standard train-dev-test splits but
also represent fundamentally different domains.
Furthermore, while some prior works rely on syn-
thetic datasets for their experimental setups (Hu
et al., 2024b), our approach uses real-world data
for evaluation, aligning more closely with the prac-
tical motivations of our study.
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H Why does generating synthetic
transcripts from noisy hypothesis
prove to be effective?

Our hypothesis for this step is simple: We generate
synthetic transcripts to capture in-domain linguistic
features. These transcripts are then used to generate
audios that are used to train ASR models to learn
such linguistic features and domain-specific words
and entities. LLMs are robust to noisy in-context
exemplar (Gao et al., 2024b; Zhu et al., 2023), and
the majority of the errors that arise in hypothesis
only arise from spelling mistakes or mistakes in
transcribing named entities. Thus, generating syn-
thetic transcripts from LLMs proves to be a simple
and robust solution for bridging the domain gap.

I In-Domain Performance in
Out-of-Domain Settings

Table 9 presents the performance of DARAG on
in-domain tests after augmenting the hypotheses
dataset with OOD hypotheses-transcription pairs.
The results demonstrate that DARAG maintains
its performance on the in-domain test with only a
negligible drop.

Test Method Train OOD Adapt. WER (↓)

Vox

Baseline - - 10.1
+DARAG Vox - 8.6
+DARAG Vox LS 8.9
+DARAG Vox SPGI 9.0
+DARAG Vox TED 9.0

LS

Baseline - - 8.4

(Other)

+DARAG LS - 6.4
+DARAG LS Vox 7.5
+DARAG LS SPGI 7.8
+DARAG LS TED 6.9

Table 9: Performance comparison of DARAG across different
settings. OOD Adapt. refers to the dataset for which synthetic
data was generated and augmented to the original hypotheses
for GEC training. Our results show that, even with the addition
of synthetically generated training data, DARAG maintains
its in-domain performance. Furthermore, improvements in
a specific domain occur only when the augmentations are
consistent with that domain. This approach ensures that the
errors used for training match the characteristics of those the
ASR model will encounter during testing.

J Hyper-parameter Tuning

J.1 Effect of k for NE retrieval
Table 10 compares the performance of DARAG
across various values of k for NE retrieval. We
choose two in-domain settings as our main exper-
iments show NE retrieval is most effective in in-
domain scenarios. We show both higher and lower

values of k can lead to a drop in performance and
find 5 as the most optimal value. Higher values of
k can retrieve irrelevant NEs and confuse the GEC
model. Lower values of k can lead to cases where
the GT NE is not retrieved.

Test k=1 k=2 k=5 k=7 k=9

Vox 87.8 88.7 90.0 87.9 87.8
LS (Other) 94.5 94.5 96.4 93.9 93.3

Table 10: Performance comparison of DARAG on two in-
domain settings with various values of k for NE retrieval.

J.2 Effect of nsmall in OOD settings
Table 11 compares the performance of DARAG
across various values of nsmall. Larger nsmall can
lead to more diverse and consistent augmentations,
improving performance. For our primary experi-
ments, we stick to 100 to keep our setting ultra-low-
resource.

Test 10 50 100 500

Vox 15.2 11.3 10.0 9.5
SPGI 17.9 14.1 12.0 11.7

Table 11: Performance comparison of DARAG on two OOD
settings (with LS as training set) with various values of nsmall.
Larger values can lead to improved performance.

J.3 Effect of nsyn

Table 12 compares the performance of DARAG us-
ing different values of nsyn, represented as a factor
of n (the size of the original training set for the tar-
get dataset in an OOD setting). Increasing the num-
ber of synthetic samples (higher nsyn) can provide
more diverse and consistent augmentations in OOD
settings, resulting in better performance. However,
the improvements plateau beyond a certain point.
For our main experiments, we use nsyn = 1 due to
resource limitations.

Test 0.5× 1× 2× 5×
Vox 13.1 10.0 9.6 9.7
SPGI 14.2 12.0 11.3 11.3

Table 12: Performance comparison of DARAG on two OOD
settings (with LS as training set) across different scaling fac-
tors of nsyn relative to n. More synthetic samples can lead to
improved performance, but plateaus beyond a certain point.

K Examples of Generated Transcripts

Table 13 provides examples of synthetically gener-
ated transcripts for each dataset from our evaluation

2479



setup. The transcripts are coherent and consistent
with the characteristics of the domain.

L Examples of DARAG Corrections

Table 14 qualitatively compares DARAG with tra-
ditional GEC on various instances from benchmark
datasets. We show that DARAG is able to accu-
rately correct NEs which traditional GEC cannot.
Additionally, DARAG shows superior performance
in OOD scenarios.

M Additional Details

Compute details. For all our pre-training and fine-
tuning experiments, we used four NVIDIA A6000-
48GB GPUs. Each training requires 4-24 hours.

Potential Risk. As mentioned in the limitations
section of the paper, DARAG might encode biases
inherent to the LLM. This might lead to unsafe
generations and corrections. Additionally, voice
cloning systems used as part of our method can be
employed to create deep fake voices.
Software and Packages details. We implement all
our models in PyTorch 2 and use Parler-TTS 3 and
LLaMa-2 4. We employ ESPnet (Watanabe et al.,
2018) for training our ASR models.
Use of AI models. We used GPT-4 for rephrasing
certain parts of the writing.
Datasets. Dataset details, together with statistics
are provided below:
LibriSpeech 5 The LibriSpeech dataset is a large-
scale corpus of approximately 1,000 hours of
16kHz English speech derived from audiobooks
in the LibriVox project, with text sourced primarily
from Project Gutenberg. It is split into training
sets (100hr, 360hr, and 500hr) and dev/test sets
categorized as dev clean(5hr), dev other(5hr), test
clean(5hr), and test other(5hr) based on transcrip-
tion difficulty. The dataset also includes n-gram
language models and texts with 803 million tokens
and 977,000 unique words, making it valuable for
Automatic Speech Recognition (ASR) research.
SPGISpeech 6 SPGISpeech is a large-scale speech
transcription dataset containing 5,000 hours of pro-
fessionally transcribed financial audio, including
company earnings calls with a variety of L1 and L2

2https://pytorch.org/
3https://github.com/huggingface/parler-tts
4https://huggingface.co/meta-llama
5https://www.openslr.org/12
6https://datasets.kensho.com/datasets/spgispeech

English accents. It features approximately 50,000
speakers and offers high-quality transcripts that
have been thoroughly edited for accuracy, includ-
ing proper punctuation, capitalization, and denor-
malization of non-standard words. The audio is
split into 5 to 15-second slices, formatted as single-
channel, 16kHz, 16-bit WAV files, making it ideal
for training advanced speech recognition models.
VoxPopuli 7 VoxPopuli is a large-scale multilin-
gual speech corpus designed for tasks like repre-
sentation learning, semi-supervised learning, and
interpretation. It offers 400,000 hours of unla-
beled speech in 23 languages, resulting in 8K-24K
hours of data for each language, 1,800 hours of
transcribed speech in 16 languages, and 17,300
hours of speech-to-speech interpretation across 15
language pairs. In transcribed speech, the filtered
utterances are split into train, development and test
sets with disjoint speakers and target duration ra-
tio (18:1:1). We only use the English language
split which has 543 hours of transcribed speech.
Additionally, it includes 29 hours of transcribed
non-native English speech for research on accented
speech in ASR.
GigaSpeech 8 GigaSpeech is a large-scale English
speech recognition corpus with 10,000 hours of
training set of high-quality human-transcribed au-
dio for supervised learning, 12 hours of dev set, and
40 hours of test set. It is designed for both super-
vised and unsupervised/semi-supervised learning
tasks, covering a wide range of domains. It is par-
ticularly suited for large-scale speech recognition
model training and adaptation.
TED-LIUM (v1) 9 The TED-LIUM corpus is a
dataset of English-language TED talks, featuring
transcriptions of talks sampled at 16kHz. It con-
tains approximately 118 to 452 hours of transcribed
speech data, with 56,803 examples in the training
set, 1,469 in the test set, and 591 in the valida-
tion set. This dataset is widely used for Automatic
Speech Recognition (ASR) research and model
training.

All datasets used in our paper are openly avail-
able for download and free to use to academic re-
search.

7https://github.com/facebookresearch/voxpopuli
8https://github.com/SpeechColab/GigaSpeech
9https://www.openslr.org/7/
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Dataset Synthetic Transcripts

LibriSpeech the duke entered the grand hall as the musicians began playing a lively gavotte
LibriSpeech her highness attended the gala wearing the renowned emerald necklace from the

royal collection

SPGI Sarah, can we reassess the projected growth for the third quarter and adjust our
targets accordingly?

SPGI Our current expectation is to maintain a minimum margin of 40%, though market
conditions may lead to some adjustments.

GigaSpeech please navigate to the settings page to update your api key and configure the
callback url.

GigaSpeech she served as the vice chair of the european data protection board for three years
before joining the united nations privacy task force.

VoxPopuli as the smoke cleared the battered zeppelin drifted slowly back towards the
enemy’s encampment

VoxPopuli yet i shall not yield to their demands but will defend my honor just as young
frederick once did in times of great peril

TED we are often overwhelmed by too many options and that can make even simple
decisions difficult to navigate

TED i must admit that my journey has had its ups and downs but in the end i found
exactly what i was looking for

Table 13: Examples of generated transcripts by the DARAG methodology.
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Dataset ASR Transcription Traditional GEC DARAG

LibriSpeech
Other

how eye wish you could get me
a coffee of that pitcher phillip
laura said in treating lee

how i wish you could get me
a coffee of that pitcher phillip
laura said in treatingly

how i wish you could get me a
copy of that picture philip laura
said treatingly

LibriSpeech
Other (OOD on
Vox)

but she fixed up on a pitcher
which she said she preferred too
anything she had scene in the
galley

but she fixed up on a pitcher
which she said she preferred too
anything she had scene in the
galley

but she fixed upon a picture
which she said she preferred to
anything she had seen in the
gallery

SPGI and we expect once the Sharon
Nation Credit gets taken care of,
we’re in a arrange where we will
be managing in flows and out
flows on a normal

and we expect once the Sharon
Nation Credit gets taken care of,
we’re in a arrange where we will
be managing in flows and out
flows on a normal

and we expect once the Shared
National Credit gets taken care
of, we’re in a range where we
will be managing inflows and
outflows on a normal

SPGI (OOD on
Vox)

obviously, the confidence level
on future and growing explo-
ration in the Golf of Mexico, in
South East Asia. So

obviously, the confidence level
on future and growing explo-
ration in the Golf of Mexico, in
South East Asia. So

obviously, the confidence level
on future and growing explo-
ration in the Gulf of Mexico, in
Southeast Asia. So

GigaSpeech TRULY THE EIGHT WON-
DER OF THE WORLD SEAN
ELLIOT. THANK YOU SO
MUCH.

TRULY THE EIGHT WON-
DER OF THE WORLD SEAN
ELLIOT. THANK YOU SO
MUCH.

TRULY THE EIGHTH WON-
DER OF THE WORLD
SHAWN ELLIOTT . THANK
YOU SO MUCH .

GigaSpeech
(OOD on Vox)

MICROSOFT FIRED BACK
WITH ITS OWN SEARCH IN-
JUN

MICROSOFT FIRED BACK
WITH ITS OWN SEARCH IN-
JUN

MICROSOFT FIRED BACK
WITH ITS OWN SEARCH EN-
GINE

VoxPopuli we need mores sources we need
mores pipes than one from rush
ya

we need mores sources we need
mores pipes than one from rush
ya

we need more sources we need
more pipes than one from russia

VoxPopuli
(OOD on Lib-
riSpeech)

may i in decay however that the
protection of arbitration agree-
ments should not limited the
free circulation of judgments in
the union

may i indicate however that the
protection of arbitration agree-
ments should not limited the
free circulation of judgments in
the union

may i indicate however that the
protection of arbitration agree-
ments should not limit the free
circulation of judgements in the
union

Table 14: Examples of incorrect ASR transcriptions and their corresponding corrections by DARAG.
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