LegoMT2: Selective Asynchronous Sharded Data Parallel Training for Massive Neural Machine Translation

Fei Yuan¹, Yinquan Lu¹, Lei Li², Jingjing Xu¹

¹ Shanghai Artificial Intelligence Laboratory ² Carnegie Mellon University {yuanfei, luyinquan}@pjlab.org.cn, leili@cs.cmu.edu, jingjingxupku.02@gmail.com

Abstract

It is a critical challenge to learn a single model for massive languages. Prior methods focus on increasing the model size and training data size. However, large models are difficult to optimize efficiently even with distributed parallel training and translation capacity can interfere among languages. To address the challenge, we propose LegoMT2, an efficient training approach with an asymmetric multi-way model architecture for massive multilingual neural machine translation. LegoMT2 shards 435 languages into 8 language-centric groups and attributes one local encoder for each group's languages and a mix encoder-decoder for all languages. LegoMT2 trains the model through local data parallel and asynchronous distributed updating of parameters. LegoMT2 is $16.2 \times$ faster than the distributed training method ¹ for M2M-100-12B (which only for 100 languages) while improving the translation performance by an average of 2.2 BLEU on Flores-101, especially performing better for low-resource languages 2 .

1 Introduction

Recent years have witnessed great success in multilingual neural machine translation (MNMT; Ha et al., 2016a; Johnson et al., 2017; Costa-jussà et al., 2022 that uses a single model for translating all directions. To construct an MNMT system that supports high-quality translation for massive directions, many efforts have been put into scaling up the model size and training corpus (Liu et al., 2020; Fan et al., 2021). For example, Costa-jussà et al. (2022) constructed a 54.5B NLLB model to support translation among 200 languages.

However, with the increasing model size, training a single model over massive data brings new challenges. Specifically, the challenge is twofold: (1) *huge training costs*. Existing distributed

¹https://github.com/CONE-MT/CONE

training methods still exhibit large communication overhead (Rasley et al., 2020); (2) *parameter interference*. Languages compete for model capacity within an MNMT model. Mixture-of-Experts (MoE; Shazeer et al., 2017; Costa-jussà et al., 2022 is a popular solution to reduce parameter interference, but it also introduces substantial memory and computational overheads.

To address these challenges, we propose LegoMT2, an efficient approach to train massive MNMT. LegoMT2 consists of three key designs: a proper language-based data sharding scheme, an asymmetric multi-way model architecture, and asynchronous distributed updating.

First, LegoMT2 shards data into 8 carefully designed language groups. Under this scheme, we arrange all languages based on the size of the language-centric data (sentence pairs that are from or to a specific language) Each group's data is stored on a dedicated set of GPU servers, therefore no moving of training data is needed.

Second, we design an asymmetric multi-way Transformer to alleviate parameter interference. Our key insight is the separation of the model used for training and inference and splitting language capacity into different model components. Our model consists of a mix encoder-decoder for all languages and one language-specific encoder for each shard. At inference time, it only uses the mix encoder-decoder.

Third, we design an asynchronous distributed updating algorithm to accelerate the training. Our key insight is that at training time, we no longer need to load all model parameters into all workers, thanks to our sharding scheme and model architecture. We only load and train two encoders and one decoder responsible for the shard. We only aggregate a fraction of parameters using a parameter server asynchronously. There is no need to transfer language-specific encoders, thereby reducing communication costs. Parameter communication

²https://huggingface.co/Lego-MT

is efficient and does not block the training on local workers.

We construct a large-scale MNMT translation dataset to train LegoMT2. The proposed dataset contains 25B parallel pairs, covering 435 languages and 22,613 translation directions. We use our method to obtain a 1.6B LegoMT2 model for 435 languages. Our experiments on *Flores-101* show that LegoMT2 achieves $16.2 \times$ speedups over M2M-1001-12B and 2.2 BLEU gains over the prior best approach NLLB of the similar size.

2 Related Work

The most common approach in MNMT is using a single model to handle all translation directions (Ha et al., 2016a; Johnson et al., 2017; Bapna et al., 2019; Liu et al., 2020; Fan et al., 2021), which has promising generalization abilities by transferring knowledge from high-resources and low-resources. Recently, scaling up the size of MNMT models has brought significant quantitative improvements and new qualitative capabilities (M2M-100, Fan et al. 2021; NLLB-200, Costa-jussà et al. 2022; inter alia). However, employing a single model for all translation directions (Ha et al., 2016a; Johnson et al., 2017; Bapna et al., 2019; Lin et al., 2020; Liu et al., 2020; Pan et al., 2021; Sun et al., 2021) is often subject to capacity bottlenecks and tradeoffs between translation quality and the number of languages (Aharoni et al., 2019; Zhang et al., 2020; Ha et al., 2016b). To accelerate the training of models on large data with large models, there are some existing acceleration strategies (Lee et al., 2022; Shen et al., 2023; Li et al., 2020; Zhao et al., 2023). Distributed Data Parallel (DDP Li et al., 2020) is a method for distributed training that creates model copies on each worker generates gradients independently, and shares them to keep the models consistent. Fully Shared Data Parallel (FSDP Zhao et al., 2023) is a high-quality solution for training large models; Megatron-LM (Narayanan et al., 2021) shows how combining different parallelism methods to scale up to thousands of GPUs and models with trillions of parameters. Nevertheless, researchers (Aharoni et al., 2019) have observed that there is a trade-off between translation quality and language number when using a single model for inference. Based on this, LaSS (Lin et al., 2021) is designed to learn distinct sub-networks for each language direction. And (Yuan et al., 2022) propose a detachable model architecture further enhancing the performance of machine translation by language-specific module.

3 LegoMT2 Approach

We present LegoMT2 approach to train a single unified model to translate a massive number of languages (N = 435). Previous training methods such as distributed data parallel need to load the full model parameter to each worker's GPUs. Our approach only selects part of the model and trains them on each worker. These model shards are communicated from and to a parameter server asynchronously (Figure 1). This reduces the memory consumption during training and therefore enables a larger batch size and lower communication overhead during training.

3.1 Model Architecture

We adopt a multi-way architecture based on Transformer backbone (Dong et al., 2015; Firat et al., 2016; Yuan et al., 2022). Different from previous models, our architecture is asymmetric multi-way Transformer. It consists of S + 1 encoders and one decoder, where S is the number of shards (=8). In our implementation, we use 24 Transformer layers in both encoders and the decoder. Each of the first S encoders, denoted as language-centric encoder, is responsible for encoding text in a designated set of languages. The grouping of languages will be discussed later. The last encoder, denoted as mix encoder, is responsible encoding all N = 435languages. The only decoder is responsible for generating text for all languages. Our purpose is to alleviate parameter interference among languages for language-centric branches while maintaining multilingual capability in the mix branch.

These encoders share a same encoding space and can be combined with the decoder to translate. There are two translation paths for each language direction. For example, we can combine 1st encoder and the decoder to translate from English to German, or we can combine mix encoder and the decoder for the same purpose. Both paths will be used in our distributed training, while only mix encoder and decoder combination will be used during inference. Therefore our approach significantly reduces computational costs and decreases latency. It proves to significantly improve the translation quality, especially in low-resource languages. Figure 1 illustrates a portion of the model architecture.

We construct a joint vocabulary of 491,706 to-

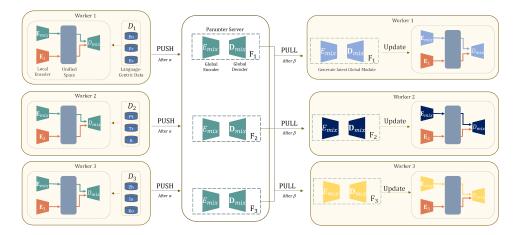


Figure 1: Overview of LegoMT2. 1) Sharding: It partitions data into language-centric groups. e.g. all parallel sentences from/to English, French, and Spanish are in Group 1 and stored in Worker 1. 2) Model: one language-specific encoder, one mix encoder, and one mix decoder for each shard. 3) Training: Each worker trains using data parallelism. Each worker stores its mix encoder-decoder parameters to the parameter server (PUSH) and loads an average of these parameters from the server (PULL) at pre-determined intervals. Parameter communication is asynchronous, which does not block local training.

kens using Byte-Pair-Encoding. We start from NLLB's vocabulary with 256,000 tokens (Costajussà et al., 2022). Since NLLB only supports 201 languages, we construct 3,000 BPE tokens for each of 234 new languages. We merge all tokens together and obtain a large multilingual vocabulary with 491,706 tokens.

Parameters: We set token embedding size to be 1024. The total number of parameters for the embedding amounts to 0.5 billion, #emb_param = The embedding parameters are shared 0.5B. among all encoders and the decoder. A single encoder with 24 Transformer layers has a total of 0.5 billion parameters, #enc_param = 0.5B. The decoder with 24 Transformer layers has a total of 0.6 billion parameters, #dec_param = 0.6B. During training, the total number of model parameters is: $\#\text{emb}_\text{param} + \#\text{enc}_\text{param} \times (S+1) +$ #dec param = $0.5 + 0.5 \times 9 + 0.6 = 5.6B$. During inference, we only use the mix encoder and the decoder, therefore the total number of parameters is $\#emb_param + \#enc_param + \#dec_param =$ 0.5 + 0.5 + 0.6 = 1.6B. The mix-encoder-decoder has the same number of parameters as NLLB1.3B, while the additional 0.3B parameters are due to the additional tokens for extra 234 languages.

3.2 Language-based Model/Data Sharding

During training, we assign one language-specific encoder, the mix encoder, and the decoder to form a local partial model on each worker node. Each worker is only responsible for training this local partial model. In practice, we use 8 (the division into 8 groups is based on the GPU nodes) worker nodes, one for each shard.

We partition the training data for 435 languages into 8 shards. We divide all languages into 8 sets, denoted as S_i , each with a different number of non-overlapping languages. For example, the 1st shard S_1 contains English, Spanish, and French. Each shard contains parallel sentence pairs from and to a designated set of languages. Given a multilingual parallel dataset \mathcal{D} with N = 435 languages \mathcal{D} , we assign data to language-centric subsets $\mathcal{D}_{lang \rightarrow \cdot}$ and $\mathcal{D}_{\cdot \rightarrow lang}$. $\mathcal{D}_{lang \rightarrow \cdot}$ contains parallel pairs from the language lang to other languages. $\mathcal{D}_{\rightarrow \text{lang}}$ contains parallel pairs from other languages to the language lang. Each data shard D_i is constructed by merging language-centric pairs for languages belonging to the shard, i.e. $\mathcal{D}_i = \bigcup_{\lg \in S_i} \mathcal{D}_{\lg \to \cdot} \cup \mathcal{D}_{\cdot \to \lg}$. For example, 1st shard contains sentence pairs from English, Spanish, French to the rest 432 languages and from the rest 432 languages to English, Spanish, French. Notice that each (directional) pair occur exactly twice among these shards combined.

In our method, we group languages based on the size of the language-centric data. Therefore each resulting shard contains roughly equal size of data. The languages for each shard are listed in Appendix A.

3.3 Dual-path Local Data Parallel Training

Each local worker only trains a local partial model, which consists of a language-specific encoder, the mix encoder, and the mix decoder. Since each worker contains multiple GPUs (8 in our experiment), we use a data parallel training approach. Each shard is further divided into multiple parallel batches that are trained together. The training objective for shard i is:

$$\min L(\theta_{emb}, \theta_{enc}^{i}, \theta_{mix_enc}, \theta_{mix_dec})$$
(1)
= $F_i(\theta_{emb}, \theta_{mix_enc}, \theta_{mix_dec})$
+ $G_i(\theta_{emb}, \theta_{enc}^{i}, \theta_{mix_dec})$

where θ_{emb} , θ_{enc}^i , θ_{mix_enc} , and θ_{mix_dec} are parameters for token embeddings, *i*-th language-specific encoder, the mix encoder, and the mix decoder. Our data go through the local model in two paths, either from the language-specific encoder to the mix decoder or from the mix encoder to the mix decoder. These two paths have loss F_i and G_i .

The loss F_i is computed using the mix encoder and the global decoder:

$$F_{i} = \sum_{\langle \mathbf{x}, \mathbf{y} \rangle \sim \tilde{\mathcal{D}}_{i}} -\log P_{\theta_{emb}, \theta_{mix_enc}, \theta_{mix_enc}}(\mathbf{y}|\mathbf{x}) \quad (2)$$

where (\mathbf{x}, \mathbf{y}) is a sample from language-centric data in the shard as defined above. Notice that this loss only involves the mix encoder and the mix decoder, therefore only the parameters for these plus embeddings will be updated.

The second loss G_i is computed using i-th language-specific encoder and the mix decoder.

$$G_{i} = \sum_{\langle \mathbf{x}, \mathbf{y} \rangle \sim \tilde{\mathcal{D}}_{i}} -\log P_{\theta_{emb}, \theta^{i}_{enc}, \theta_{mix_dec}}(\mathbf{y}|\mathbf{x})$$
(3)

where (\mathbf{x}, \mathbf{y}) is a sample from one-to-many data $\tilde{\mathcal{D}'}_i$. $\tilde{\mathcal{D}'}_i$ contains pairs from the languages in i-th shard, i.e. $\tilde{\mathcal{D}'}_i = \bigcup_{\lg \in S_i} \mathcal{D}_{\lg \to ..}$ Notice that in this loss we only use half of the data on this shard and only the parameters for embeddings, the language-specific encoder, and the mix decoder will be updated.

Our design of the loss and the data will encourage the language-specific encoder and the mix encoder to produce similar embeddings for the same input in the language assigned to each shard. This will result in a shared encoder embedding space.

3.4 Asynchronous Distributed Update

Large-scale training usually requires massive communication costs to collect gradients from each client. LegoMT2 develops an effective communication approach by exchanging and updating partial parameters asynchronously. Since the languagespecific encoders are local to each worker, we do not need to transfer and broadcast these parameters to other workers. We only need to update the parameters for embeddings, the mix encoder, and the mix decoder. Therefore we only need to transfer 1.6 billion parameters instead of a total of 5.6 billion, a saving of 71% in communication cost.

We adopt a parameter server to store 8 copies of embeddings, the mix encoder, and the mix decoder parameters. In our implementation, we use a networked file system as the parameter server. Transferring 1.6 billion parameters from each work to the parameter server only costs a few seconds. The update operation comprises two main operations: PUSH and PULL.

PUSH: After a fixed local training interval α , each worker stores the parameters of embeddings, the mix encoder, and the mix decoder to the parameter server. This saving operation is asynchronous therefore each worker stores the parameters at different time. The parameter server keeps 8 different copies of these parameters.

PULL: After a fixed number of local training interval β , each worker loads all 8 copies of embeddings, mix encoder, mix decoder to local memory. It then computes an average of these parameters and update the local parameters. Notice that in this procedure, the language-specific encoder parameters are not updated since they are only computed locally. This operation does not require any synchronization, therefore each worker may obtain different parameter values at different time.

LegoMT2 uses these two operations to complete parameter communication across all workers. Our asynchronous updating with partial parameters largely eliminates overhead in distributed training. These operations do not pause the training of local clients, therefore largely improving the throughput of training. The whole algorithm is listed in Alg. 1.

4 **Experiments**

4.1 Dataset, Models and Training Details

Training Data: We gather many-to-many dataset from OPUS ³ (Tiedemann, 2012), an open corpus that compiles numerous parallel sentences from the internet, covering a wide range of domains, from legislative to religious texts. The dataset we

³https://opus.nlpl.eu/

Algorithm 1: Asynchronous Distributed Update

```
Data: S: number of workers. \alpha: interval for pushing
                                                                   parameters. \beta: interval for pulling parameters.
                                                                 \theta below refers to the parameters of
                                                                 embeddings, the mix encoder, and the mix
                                                                 decoder.
Parallel for worker i = 1 to S do
                                                 Shuffle local language-centric data on i-th worker
                                                           to obtain a new training sequence \mathcal{B};
                                                 t_s \leftarrow 0 and t_l \leftarrow 0;
                                             for batch b = 1 to \mathcal{B} do
                                                                                            // on worker \boldsymbol{i}
                                                                                          if current_time -t_s \ge \beta then
                                                                                                                                       \begin{array}{l} \underset{\boldsymbol{\theta}_{\mathrm{avg}}}{\overset{(s)}{\leftarrow}} \overset{(s) \neq \rho}{\overset{(1)}{\leftarrow}} \underset{\boldsymbol{\theta}_{\mathrm{avg}}}{\overset{(s)}{\leftarrow}} \overset{(s) \neq \rho}{\overset{(1)}{\leftarrow}} \underset{\boldsymbol{\theta}_{\mathrm{avg}}}{\overset{(s) \neq \rho}{\leftarrow}} \overset{(s) \neq \rho}{\overset{(s) \to \rho}{\leftarrow}} \overset{(s) \to \rho
                                                                                                                                         \theta_i \leftarrow \theta_{\mathrm{avg}}
                                                                                                                                         t_s \leftarrow \text{current\_time}
                                                                                            end
                                                                                            if current_time -t_l \ge \alpha then
                                                                                                                                     PUSH (\theta_i, i) t_l \leftarrow \text{current\_time}
                                                                                            end
                                               end
end
```

constructed consists of 435 languages and approximately 22,000 language pairs, comprising around 25 billion sentence pairs. In the training set, over 11,000 language pairs contain more than 1,000 sentence pairs, and 1,151 of them have more than 1 million sentence pairs. Among all the languages, 19 have more than 1 billion sentence pairs (see more in Appendix B).

Metric: To evaluate the effectiveness of our model, we have taken a comprehensive approach. Since no dataset currently covers 435 languages, we have partially followed the standard testing process and assessed our model's performance on the widelyused multilingual dataset known as Flores-101. We use the same evaluation metric of sentence piece BLEU (abbreviated as **spBLEU**) to compare our approach with strong baselines and present the average performance of the 86 languages⁴ that overlap with Flores-101 for all M2M-100 models. Additionally, there is no parallel evaluation data for the majority low-resource languages that are not in *Flores-101.* we have employed back translation (*src-tgt-srcb*) to evaluate our model's performance over 435 language translations. This process involves translating text from the source language (src) to the target language (tgt) and then back to the source language (srcb). Back-spBLEU evaluates the spBLEU score between *src* and *srcb*. To avoid counting direct copies, we also report the translation performance between *src* and *tgt*.

Models: Flores-175MB / 615MB are two baselines released with the Flores-101 dataset (Goyal et al., 2022), which are based on M2M-100 model. M2M-100-1.2B (Fan et al., 2021) is a powerful multilingual sequence-to-sequence model that can translate between 100 languages in 9,900 directions. It is an encoder-decoder model trained for Many-to-Many multilingual translation and built using the Transformer architecture. M2M-100-12B (Fan et al., 2021) is a multilingual encoderdecoder model that builds on M2M-100-1.2B by adding language-specific information. Its main purpose is to perform translation tasks between any of the 100 languages. NLLB-200-1.3B (Costajussà et al., 2022) is a distilled variant of the NLLB-200 model, which is a pre-trained MNMT model that supports 200 languages. NLLB-200-54.5B (Costa-jussà et al., 2022) is a Mixture of Expert (MoE) model and is the largest MT model. To ensure a fair comparison, we fine-tune the NLLB-200-1.3B model with added 235k tokens on our datasets using a standard centralized training method, recorded as Single-FT.

Training Details: For balanced training, we sort all languages based on language-centric data and uniformly split all languages into 8 groups. The language details of 8 groups can be found in Appendix A. The training code is developed on fairseq⁵ repository. The model architecture follows the design in Yuan et al. (2022), with different configurations and vocabulary sizes. Both the global and private models are initialized with NLLB-200-1.3B weights. To synchronize the speed among different clients as much as possible, GPU resources are allocated to each group as follows: each client model is trained on 8 80G A100 using the Adam optimizer with $\beta_1 = 0.9, \beta_2 = 0.999$, learning rate 1e - 4, the maximum number of tokens in a batch is 4,000, update parameters every 48 batch, when in an epoch. The interval of save α and load β is set as 6 and 12, respectively. This setting primarily considers the fault tolerance time for three consecutive loading failures.

4.2 Main Results

LegoMT2 achieves 16× speedups over traditional distributed training Training a single

⁴These 86 languages are: af, am, ar, ast, be, bg, bn, bs, ca, ceb, cs, cy, da, de, el, en, es, et, fa, ff, fi, fr, ga, gl, gu, ha, he, hi, hr, hu, hy, id, ig, is, it, ja, jv, ka, kk, km, kn, ko, lb, lg, ln, lo, lt, lv, mk, ml, mn, mr, ms, my, ne, nl, no, ns, oc, or, pa, pl, ps, pt, ro, ru, sd, sk, sl, so, sr, sv, sw, ta, th, tl, tr, uk, ur, uz, vi, wo, xh, yo, zh, zu.

⁵https://github.com/facebookresearch/fairseq.

Module	Parallelism	# Param		ining
Module	1 al anchishi	(training)	Token/s	Speedup
Single-FT	DDP	1.6B	76,116	40.6×
M2M-100-12B	DDP + Pipeline	12B	1,873.4	$1.0 \times$
LLaMA	DDP + Tensor + Pipeline + Flash Attention	13B	7,091.3	$3.8 \times$
LegoMT2	Selective Asynchronous Sharded + DDP	5.6B	30,280.9	$16.2 \times$

Table 1: The training speed. The number of tokens a model can handle per second is represented by "Token/s". The analysis on training demonstrates that LegoMT2 can process more tokens per second with higher GPU efficiency.

model on multiple GPUs can result in significant communication costs, limiting training efficiency. Our LegoMT2 reduces the bottlenecks caused by aggregation across GPUs. By splitting models into different workers, we can get almost $10 \times$ speedups. With reduced communication costs in asynchronous update, LegoMT2 further achieves almost $1.6 \times$ speedups. Finally, LegoMT2 brings almost $16 \times$ speedups. As shown in Table 1, LegoMT2 can process more tokens per second and has higher GPU efficiency than a bigger model with 12B parameters. We also compared LegoMT2 with widely-used distributed training acceleration frameworks, (e.g., deepspeed (Rajbhandari et al., 2020) and megatron (Shoeybi et al., 2019)), LegoMT2 also shows over $4 \times$ throughput improvements. In baseline "Single-FT", we implement distributed data parallelism (DDP) and pipeline parallelism (Huang et al., 2019) to accelerate training using the released code training NLLB. In addition, we also report an LLM baseline LLaMA (Touvron et al., 2023) having a similar model size with almost the SOTA distributed setting: DDP + tensor parallelism and pipeline parallelism. Additionally, we use an efficient version of Transformer Flash Attention (Dao et al., 2022) for faster inference. Compared to these advanced training methods, LegoMT2 is a simple but efficient method.

LegoMT2 outperforms single-model fine-tuning by a large margin. As illustrated in Table 2, LegoMT2 outperforms *Single-FT* by a large marge with 2.2 spBLEU on many-to-one translation and 2.5 spBLEU on one-to-many translation. For a fair comparison, we only report results by using the shared global encoder and global decoders for all translation directions. With additional languagespecific parameters, LegoMT2 alleviates parameter interference and brings better results. Furthermore, unlike traditional synchronous aggregation methods, we adopt asynchronous aggregation to update global parameters to reduce communication costs and delays. The better results also demonstrate that asynchronous training is an effective method for training massive models.

LegoMT2 supports 435 languages, the most covered languages among all existing multilingual machine translation systems. To build a fair comparison, we conduct a large-scale multilingual training set. Our approach balances the trade-off between knowledge transferring and parameter interference. Otherwise, involving more languages would result in performance degeneration. Due to the lack of high-quality test translations over 400+ languages, we adopt a practical unsupervised metric, Back-spBLEU to compute the BLEU score between source text and back-translated text. As shown in Table 3, we sample several languagecentric results and LegoMT2 demonstrates an improvement in back-translation performance without source copy (comparable src-trg scores).

Human evaluation results show that the performance of LegoMT2 reaches commercial translators' performance. We manually assessed the performance of Google Translator, Baidu Translator, LegoMT2, and NLLB-200-1.3B models on Chinese-centric translation tasks. The resulting evaluation scores ranged from 0 to 5. A score of 0 meant that the language was not supported or could not be translated at all. A score of 5 implied that not only was the content preserved, but the expression was also very smooth. The performance of LegoMT2 is between Google and Baidu, while largely better than NLLB-200-1.3B. More human evaluation details are shown in Appendix E. Among the overlapped languages, LegoMT2 has an average translation score of 3.12, while Google Translator has an average score of 3.64. Similarly, LegoMT2's average score is 3.03, while Baidu Translator's average score is 2.55.

LegoMT2 brings better performance improvements on high-resource translation We find that multi-way training benefits high-resource translation by relieving parameter interference. On high-

Model	H X -	L → En	H X -	$ \overset{L}{\rightarrow Pt} $	H X-	L → Hu	H X –	L → Da	H X-	L ≻ Zh	H X –	L → Sw	H X –	L → Pa	AVG.
NLLB-200-54.5B	44.9	39.0	35.8	30.8	27.8	22.8	34.6	28.7	17.3	16.7	28.4	25.4	30.7	27.0	29.3
Flores-175M	23.5	8.4	23.5	7.8	15.8	5.3	20.9	5.4	10.7	3.6	12.3	4.5	2.3	1.3	10.4
Flores-615M	30.9	12.8	30.1	11.8	22.0	8.0	27.5	9.6	15.9	6.2	18.6	7.4	3.7	2.1	14.8
M2M-100-1.2B	36.3	16.8	33.1	14.8	24.8	10.4	31.0	13.0	18.3	7.8	20.6	9.7	3.7	2.5	17.3
M2M-100-12B	38.2	18.6	34.8	17.0	26.1	12.2	32.2	14.5	18.3	8.7	23.9	12.9	12.5	7.0	19.8
NLLB-200-1.3B	41.6	35.9	34.0	28.5	23.9	19.3	32.1	25.9	14.5	13.7	27.5	24.3	29.4	25.9	26.9
Single-FT-1.6B	40.1	33.0	34.1	27.6	23.5	18.0	31.6	24.9	18.0	15.1	26.3	22.2	26.5	22.8	26.0
LegoMT2-435-1.6B	42.9	35.6	36.8	29.5	26.0	20.6	33.9	27.0	20.5	16.8	28.1	24.2	28.6	24.9	28.2
Model	En ·	$\rightarrow \mathbf{X}$	Pt -	$ ightarrow \mathbf{X}$	Hu	$ ightarrow \mathbf{X}$	Da	$ ightarrow \mathbf{X}$	Zh -	$ ightarrow \mathbf{X}$	Sw	$\rightarrow \mathbf{X}$	Pa ·	$\rightarrow \mathbf{X}$	AVG.
NLLB-200-54.5B	40.3	30.6	34.2	26.4	29.3	23.0	33.5	25.5	25.3	20.4	29.0	22.9	29.9	24.8	28.2
Flores-175M	21.2	4.8	20.3	4.4	16.4	3.4	20.2	4.1	12.4	2.7	12.9	3.2	3.2 5.4 9.7 13.7 25.6	1.1	9.3
Flores-615M	29.8	7.0	26.4	5.8	22.4	4.8	26.7	5.6	17.7	4.1	19.4	4.8		1.6	13.0
M2M-100-1.2B	33.8	9.6	29.2	7.7	25.4	6.5	29.2	7.4	20.8	5.5	21.5	6.6		3.1	15.4
M2M-100-12B	36.2	14.0	31.1	11.6	26.9	9.6	31.0	10.9	21.8	8.4	23.8	9.9		6.6	18.3
NLLB-200-1.3B	36.4	28.3	30.9	24.4	25.7	20.9	30.2	23.5	21.7	18.1	25.4	21.3		22.3	25.3
Single-FT-1.6B	35.8	24.6	30.2	21.0	24.9	18.2	30.1	21.2	22.0	17.0	25.0	19.5	25.1	18.6	23.8
LegoMT2-435-1.6B	38.6	27.5	32.5	23.3	28.3	20.7	32.9	23.2	23.6	18.2	28.2	21.9	27.5	21.4	26.3

Table 2: Result on the *Flores-101* devtest. "Para." refers to the number of parameters required for inference. "H" and "L" represent average results from or to high/low-resource languages, where high-resource languages include all languages in Groups 1-6 while low-resource languages include all languages in Groups 7-8. Single-FT and LegoMT2 have the same training data and can be fairly compared. LegoMT2, supporting 435 languages, outperforms Single-FT by a large margin.

Model	S-T↓ En→X	$\left \begin{array}{c} \mathbf{S} \cdot \mathbf{S}_b \uparrow \\ \mathbf{X} \rightarrow \mathbf{En} \end{array} \right $	S-T↓ Pt→2	$\left. \begin{array}{c} \mathbf{S} - \mathbf{S}_b \uparrow \\ \mathbf{X} \rightarrow \mathbf{Pt} \end{array} \right $	$\begin{array}{c} \text{S-T} \downarrow \\ \text{Hu} \rightarrow \end{array}$	$\left. \begin{array}{c} \mathbf{S} \cdot \mathbf{S}_b \uparrow \\ \mathbf{X} \rightarrow \mathbf{H} \mathbf{u} \end{array} \right $	$\begin{array}{c} \textbf{S-T} \downarrow \\ \textbf{Da} \rightarrow \end{array}$	$\mathbf{S}-\mathbf{S}_b\uparrow$ $\mathbf{X} ightarrow\mathbf{D}\mathbf{a}$	$egin{array}{c} S-T \downarrow \\ Zh \rightarrow \end{array}$	$\left \begin{smallmatrix} \mathbf{S} - \mathbf{S}_b \uparrow \\ \mathbf{X} ightarrow \mathbf{Z} \mathbf{h} \end{smallmatrix} \right $	$S-T\downarrow Mt \rightarrow$	$\mathbf{S} - \mathbf{S}_b \uparrow \\ \mathbf{X} \rightarrow \mathbf{M} \mathbf{t}$	$\begin{array}{c} \mathbf{S}\text{-}\mathbf{T} \!\!\downarrow & \!\!\!\mathbf{S}\text{-}\!\mathbf{S}_b \!\!\uparrow \\ \mathbf{P}\mathbf{a} \!\!\to \!\!\!\mathbf{X} \!\!\to \!\!\!\mathbf{P}\mathbf{a} \end{array}$	S-T↓ Lo→X	S-S _b ↑ K→Lo
Single-FT LegoMT2	8.3 9.6	36.6 43.2	2.8 3.0	31.3 37.7	1.7 1.8	18.1 22.2	2.6 2.7	26.7 33.0	1.3 1.3	15.8 20.1	1.4 1.5	27.9 35.0	0.217.40.222.3	1.1 1.2	14.6 18.3
Model	Fr→X	K→Fr	Nl→	K→NI	$Bg \rightarrow$	X→Bg	$\mathbf{Sk} ightarrow$	·X→Sk	$Mk \rightarrow$	X→Mk	Is→	X → Is	$Ig {\rightarrow} X {\rightarrow} Ig$	Li→X	K→Li
Single-FT LegoMT2	2.7 2.8	32.1 38.4	2.7 2.9	25.0 31.5	0.7 0.9	27.5 31.1	1.7 1.8	22.9 28.0	0.7 0.8	24.3 30.3	1.7 1.9	17.7 22.5	1.413.41.514.6	2.5 2.4	7.1 9.8
Model	Ja→X	K→Ja	Es→	K→Es	Ar→	X→Ar	$Lt \rightarrow$	•X→Lt	Fo→	X→Fo	De→	X→De	$Uk { ightarrow} X { ightarrow} Uk$	Zu→X	K→Zu
Single-FT LegoMT2	0.2 0.3	16.7 21.6	4.7 4.1	27.7 33.0	0.8 0.8	17.2 21.8	1.1 1.2	19.8 24.5	1.8 1.6	13.2 12.9	2.8 2.9	23.8 30.8	0.5 20.7 0.6 26.9	1.2 1.5	16.4 20.4

Table 3: Back-translation evaluation results. Back-translation (*src-trg-srcb*) is an unsupervised evaluation method that involves translating source text to target text *src-trg* (*S*-*T*, *such as* $En \rightarrow X$) and then translating target text back to source text *src-srcb* (*S*-*S*_b, *such as* $En \rightarrow X \rightarrow En$). Lower S-T and higher S-S_b are better. Results demonstrate that LegoMT2 outperforms Single-FT on back-translation performance with almost the same *src-trg* (*S*-*T*) score.

resource translation, LegoMT2 outperforms NLLB-200-1.3B with gains of 1.3 BLEU on many-to-one translation and 2.0 BLEU on one-to-many translation. LegoMT2 largely narrows the gap with the largest machine translation model, NLLB-200-54.5B. Specifically, some results even approach the NLLB-200-54.5B. Taking Group-5 as an example, LegoMT2 yields +3.2% spBLEU improvements over NLLB-200-54.5B on Group-5 on many-toone settings. Meanwhile, LegoMT2 is on par with NLLB-200-1.3B on low-resource settings. It is mainly because NLLB focuses on low-resource settings and extremely optimizes low-resource settings based on techniques like back-translation. We only cover limited resources for each translation pair to support more languages.

5 Analysis of LegoMT2

Why does asynchronous training work? LegoMT2 introduces asynchronous training to reduce communication delays to accelerate training. Each client pulls the latest parameters every α minutes and pushes current parameters into the federated server every β minutes. It represents that all clients do not always enjoy and latest parameters. To prove whether such delay affects final performance, we conduct experiments by using global modules from other clients for inference. Figure 2 shows that delayed global parameters do not affect model training. The client can use delayed global parameters from other clients for inference without any performance drops.

Impact of push/pull (α/β) intervals setting Test

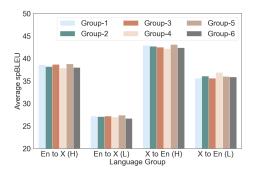


Figure 2: Analysis on deferred parameters for embeddings and mix encoder-decoder. Each worker uses delayed parameters from other worker for inference without experiencing any decrease in performance. This observation substantiates the notion that the asynchronous updating of partial parameters does not exert a negative impact on model training.

Direction	Setting	Hr	Bg	Da	AVG.
LG→X	Similarity	14.7	14.9	16.1	15.2
	Random	16.9	17.6	18.9	17.8
X→LG	Similarity	12.9	18.5	19.1	16.8
	Random	15.0	21.2	22.4	19.5

Table 4: The model trained using imbalanced sharding (Similarity) is significantly inferior to the balanced sharding (Random).

the effect of different save/load intervals on system performance, i.e. the effect of α and β in the algorithm. Theoretically, when α and β are small enough, the localized training by LegoMT2 is approximately equal to synchronous training. Here, we conduct two different settings: 1) $\alpha = 10 \text{min}, \beta = 20 \text{min}$ and 2) $\alpha = 20 \text{min}, \beta = 40 \text{min}$. We test two settings LegoMT2 on the *Flores-101* devtest. Figure 3 shows the winning rate of the first configuration over the second. The results show that more frequent updates does improve the performance at the cost of more communication.

Impact of language/data sharding In this work, we sort languages based on the size of languagecentric data and split languages into different equalsize groups. We adopt this split method because we find that balanced training flows in different clients help multilingual machine translation. In addition, the common strategy of language clustering is by similarity. Therefore, we use similarity clustering to construct a baseline. Given an MNMT model, here we use the single multilingual model to get language id embedding, then directly apply kMeans (by sklearn) on those embedding. The resulting

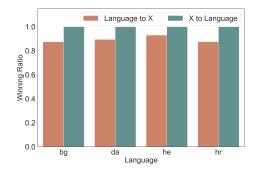


Figure 3: Impacts of push interval α and pull interval β . 1) $\alpha = 10$ min and $\beta = 20$ min; 2) $\alpha = 20$ min and $\beta = 40$ min. The figure shows the winning rate of the first configuration over the second. More frequent updates does improve the performance at the cost of more communication.

Model	X→En	$En{\rightarrow}X$	AVG.
ChatGPT zero-shot	27.9	23.9	25.9
ChatGPT eight-shot	31.9	24.7	28.3
LegoMT2	38.3	31.6	35.0

Table 5: Comparison between ChatGPT and LegoMT2. Both in the En \rightarrow X and X \rightarrow En direction, ChatGPT falls behind LegoMT2 even with eight-shot.

number of languages varies significantly, therefore the data in each group is highly imbalanced. The clustering results are shown in Appendix D. Meanwhile, we also experiment by randomly splitting language groups, which results in a balanced data sharding. We train two models under these two language/data sharding schemes. The result show that the imbalanced data sharding (corresponding to similarity in Table 4) hurts the system's performance.

Comparison between ChatGPT with LegoMT2 A comparative analysis between ChatGPT (GPT 3.5) and LegoMT2 on 100 samples in *Flores-101*, as shown in Table 11, reveals that in zeroshot and eight-shot performance, ChatGPT lags behind LegoMT2 in the En \rightarrow X and X \rightarrow En direction more than 6 points. The prompts utilized for ChatGPT are "You are a helpful assistant that translates {*SOURCE_LANG*} to {*TAR-GET_LANG*}." for the system and "Translate the following {*SOURCE_TEXT*}." for the user. The detailed results are shown in Appendix C.

6 Conclusion

The typical multilingual neural machine translation is training a single model for all directions with a centralized training schema, which faces many challenges in practice including parameter competition and efficiency problems. In this paper, we propose a new MNMT pre-training framework with federated learning, LegoMT2. Extensive experiments verify the effectiveness of LegoMT2. It brings $16.2 \times$ training speedups and large performance gains. We build a translation system that supports 435 languages, the supported language number outperforming all existing open-source multilingual machine translation systems.

Limitation

This paper also has several limitations. Firstly, our analysis reveals that the augmentation of low-resource translation through the use of language-specific decoders (in Appendix F) and encoders is not as effective as anticipated, necessitating a deeper exploration of the interplay between parameter sharing and tension. Secondly, the assessment of few-shot languages continues to pose a significant challenge. Despite our training dataset encompassing 435 languages, our evaluation is limited to back-translation performance, underscoring the need for more rigorous benchmarks.

References

- Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019. Massively multilingual neural machine translation. *arXiv preprint arXiv:1903.00089*.
- Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. 2019. Simple, scalable adaptation for neural machine translation. *arXiv preprint arXiv:1909.08478*.
- Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loïc Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. 2022. No language left behind: Scaling human-centered machine translation. CoRR, abs/2207.04672.
- Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. 2022. No language left behind: Scaling

human-centered machine translation. *arXiv preprint arXiv:2207.04672*.

- Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashattention: Fast and memory-efficient exact attention with io-awareness. In *NeurIPS*.
- Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and Haifeng Wang. 2015. Multi-task learning for multiple language translation. In *Proceedings of the Annual Meeting of the Association for Computational Linguistics(ACL).*
- Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, et al. 2021. Beyond english-centric multilingual machine translation. *J. Mach. Learn. Res.*, 22(107):1–48.
- Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. 2016. Multi-way, multilingual neural machine translation with a shared attention mechanism. In *Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).*
- Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Krishnan, Marc'Aurelio Ranzato, Francisco Guzman, and Angela Fan. 2022. The flores-101 evaluation benchmark for low-resource and multilingual machine translation. *Transactions of the Association for Computational Linguistics*, 10:522–538.
- Thanh-Le Ha, Jan Niehues, and Alex Waibel. 2016a. Toward multilingual neural machine translation with universal encoder and decoder. In *Proceedings of the* 13th International Conference on Spoken Language Translation, Seattle, Washington D.C. International Workshop on Spoken Language Translation.
- Thanh-Le Ha, Jan Niehues, and Alex Waibel. 2016b. Toward multilingual neural machine translation with universal encoder and decoder. In *Proceedings of the* 13th International Conference on Spoken Language Translation, Seattle, Washington D.C. International Workshop on Spoken Language Translation.
- Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. 2019. Gpipe: Efficient training of giant neural networks using pipeline parallelism. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 103–112.
- Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. 2017. Google's multilingual neural machine translation system: Enabling zero-shot translation.

Transactions of the Association for Computational Linguistics, 5:339–351.

- Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas Carlini. 2022. Deduplicating training data makes language models better.
- Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. 2020. Pytorch distributed: Experiences on accelerating data parallel training.
- Zehui Lin, Xiao Pan, Mingxuan Wang, Xipeng Qiu, Jiangtao Feng, Hao Zhou, and Lei Li. 2020. Pretraining multilingual neural machine translation by leveraging alignment information. In the Conference on Empirical Methods in Natural Language Processing (EMNLP).
- Zehui Lin, Liwei Wu, Mingxuan Wang, and Lei Li. 2021. Learning language specific sub-network for multilingual machine translation. In the 59th Annual Meeting of the Association for Computational Linguistics (ACL).
- Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. 2020. Multilingual denoising pretraining for neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:726–742.
- Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021. Efficient large-scale language model training on gpu clusters using megatronlm.
- Xiao Pan, Liwei Wu, Mingxuan Wang, and Lei Li. 2021. Contrastive learning for many-to-many multilingual neural machine translation. In *the 59th Annual Meeting of the Association for Computational Linguistics* (ACL).
- Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero: memory optimizations toward training trillion parameter models. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November 9-19, 2020, page 20. IEEE/ACM.
- Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In *KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August* 23-27, 2020, pages 3505–3506. ACM.

- Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. *arXiv preprint arXiv:1701.06538*.
- Li Shen, Yan Sun, Zhiyuan Yu, Liang Ding, Xinmei Tian, and Dacheng Tao. 2023. On efficient training of large-scale deep learning models: A literature review.
- Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter language models using model parallelism. *CoRR*, abs/1909.08053.
- Zewei Sun, Mingxuan Wang, and Lei Li. 2021. Multilingual translation via grafting pre-trained language models. In the Conference on Empirical Methods in Natural Language Processing (EMNLP) - Findings.
- Jörg Tiedemann. 2012. Parallel data, tools and interfaces in OPUS. In *Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)*, Istanbul, Turkey. European Language Resources Association (ELRA).
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. 2023. Llama: Open and efficient foundation language models. *CoRR*, abs/2302.13971.
- Fei Yuan, Yinquan Lu, WenHao Zhu, Lingpeng Kong, Lei Li, and Jingjing Xu. 2022. Lego-mt: Towards detachable models in massively multilingual machine translation.
- Biao Zhang, Philip Williams, Ivan Titov, and Rico Sennrich. 2020. Improving massively multilingual neural machine translation and zero-shot translation. *arXiv preprint arXiv:2004.11867*.
- Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. 2023. Pytorch fsdp: Experiences on scaling fully sharded data parallel.

A Sharding and Workers

The language group result as shown in Table 6.

We surprisingly find that low-resource language groups harm pre-training During the training process of LegoMT2, we include all clients to update global parameters. However, we find that if we directly combine low-resource languages in Group-7 and Group-8 into pre-training, it will increase the proportion of low-resource excessively, thus reducing the performance of the entire system. As shown in Figure 4, we conduct two experiments by involving Group-7 and Group-8 or not and report the performance improvements caused by removing Group-7 and Group-8 from pre-training. Experiments show that low-resource languages bring negative effects on pre-training by overestimating the distribution of long-tailed languages.

B Dataset Construction

In this section, we will go through the details of constructing a Many-to-Many dataset. The entire pipeline is made up of six steps:

Step 1: Data Collection The unprocessed data is obtained from OPUS⁶. It is an open corpus that collects a large number of parallel sentences from the Web and covers a wide range of domains from legislative to religious texts.

Step 2: Data Unification OPUS has datasets from several sources, which causes the two important problems listed below.

1) Different Language Code: Language code is the abbreviation for a language. In OPUS, there are some languages has multiple language codes. One of the causes is that different corpora follow different standards, including ISO 639-1, ISO 639-2, ISO 639-3, or self-defined language codes. Another scenario is that some datasets use language code and region code together. We take ISO 639-1 as the unique code and replaced ISO 639-2 and ISO 639-3 language codes with ISO 639-1 language codes. All these language codes are released by SIL International (formerly known as the Summer Institute of Linguistics)⁷.

2) Inconsistent Operation: There are some inconsistent operations in some datasets, for example, pre-tokenize for Chinese and Japanese. To address the above issue, we first handle the case where the language code ends with the region code by removing the region code. Then we standardize all language codes by ISO 639-1. All replaced language codes are listed in Table 7. For the language codes out of ISO 639 series, we report the detail of the language and the corpus that they come from in Table 8. For ease of understanding, we report all used languages with their full name in Table 9. Finally, for the dataset with inconsistent operations, we uniformly perform a removal operation to restore them to natural text.

Step 3: Data Merging After unifying the language code and operation, the parallel data with the same language code will be merged into a file.

Step 4: Data Cleaning There are some lowquality text in OPUS. They are mainly caused by following reason.

1) Duplication: We apply fairseq⁸ deduplication script for each language pair.

2) *Missing Translation:* Some low-quality parallel data lacked the correct translation results. We discard using the sentence where the source sentence is without a corresponding target sentence or simply repeat the source sentence as a target sentence.

3) Length Mismatching: The length mismatching mainly focuses on the case where the difference between the length of the source and the target is too large. The length of a sentence is defined as the number of words after segmenting with white space (individual characters for Chinese and Japanese). We reuse the filtering script from Moses⁹.

Step 5: Train-Dev-Test Split The train-dev-test split scheme is specified by the data quantity.

1) A dataset has over 6.000 parallel sentences. For a dataset, 2,000 randomly selected parallel sentences are used as a test set, another 2000 randomly selected parallel sentences are used as a validation set, and the rest of the dataset is used as the training set.

2) A dataset has less than 6.000 parallel sentences. We use 80%, 10%, and 10% of all parallel sentences as train, validation, and test set.

Meanwhile, we remove the sentence included in the widely used benchmark (WMT, *Flores-101*)

⁶https://opus.nlpl.eu/

⁷https://iso639-3.sil.org/sites/iso639-3/ files/downloads/iso-639-3.tab

⁸https://github.com/facebookresearch/fairseq/ edit/main/examples/backtranslation/deduplicate_ lines.py

⁹https://github.com/moses-smt/mosesdecoder

Group	435 Languages
Group-1 Group-2 Group-3 Group-4 Group-5 Group-6	fr, es, en nl, tr, pl, it, de, pt bg, ar, ru, fa, el, hu, ro, cs sk, da, uk, sl, he, fi, id, sv, vi ko, sq, hr, mk, sr, zh, no, bs, hi eo, mt, eu, sw, is, lv, ca, th, ms, zhtrad, bn, lt, et
Group-7	ig, km, ky, ps, tg, gv, nb, br, ss, sh, ze, zu, nn, pa, so, sn, kk, cy, mg, am, xh, az, gu, hy, kn, te, ga, gl, be, mr, ne, si, af, ml, tl
Group-8	iro, kam, mvv, ofs, izh, ady, mic, osp, sg, sz, gan, gil, koi, nlv, tvl, kjh, mik, ngt, shy, bjn, hak, na, non, ty, aoz, cdo, quz, bvy, ood, dng, myv, rap, akl, aln, niu, lkt, liv, mgm, ppl, pau, sdh, jam, hif, phn, mo, ngu, ike, gbm, apc, xmf, acm, tly, bom, sma, sgs, pag, thv, iba, cycl, fro, zz, drt, ho, udm, umb, tz, dws, ext, kv, rif, lut, pdc, evn, mww, moh, tpw, afh, sm, nch, afb, nog, hus, tpi, yaq, min, luo, zlm, npi, zgh, hbo, luy, sat, cr, stq, ae, sux, pnb, ary, nah, ldn, qya, rue, mh, awa, got, pcd, gsw, kik, hup, sjn, ain, cho, krl, egl, max, nv, tmr, haw, ik, frr, prg, vls, tw, fkv, hoc, qa, lzh, hrx, cku, nst, sgn, kmr, enm, swh, frm, sah, nr, ota, nov, mad, gcf, grc, bzt, war, bho, kha, orv, que, zam, tzl, to, swg, bnt, trv, kzj, bug, lij, sml, avk, cnh, mos, hai, qd, pam, dtp, bua, cu, hil, brx, cbk, zhyue, bal, pi, din, fuv, nus, bh, zsm, tc, ksh, rup, nap, gos, fj, xal, efi, vo, lad, ry, pmy, kj, gr, co, bm, ase, bi, iu, pms, azb, rn, hbs, dsb, av, scn, ve, miq, mfe, mus, mwl, nan, rm, gn, lld, st, wuu, kr, tet, lmo, ce, ak, lfn, prs, cmn, pap, ber, inh, bem, tmp, ie, toki, shs, tlh, ab, cv, aa, ltg, zhs, vec, zza, zht, qu, kl, ilo, bar, shn, ay, sco, szl, arz, gom, arq, ts, jbo, sc, ace, os, ks, wae, ckb, frp, kw, zhtw, ti, sa, ns, bo, kg, ba, fo, io, dz, mhr, ang, ln, pot, tmh, om, fil, ia, lg, tk, csb, yi, acu, ake, cb, jiv, se, dik, an, tn, agr, tt, kek, ojb, crp, pck, plt, dje, pes, lb, gbi, djk, cak, mai, bsn, chq, quc, mam, ch, fur, ppk, cni, usp, jak, wal, amu, ee, lo, rw, nhg, shi, dop, wa, cx, li, cjp, rom, quw, chr, cop, syr, ug, su, kab, hsb, kbh, hne, uz, nso, fy, ht, wo, crh, la, ny, or, gd, oc, jv, nds, mn, as, ast

Table 6: Language groups. We sort languages based on the size of language-centric data and split them into 8 equal-size chunks.

from our training and validation set to keep the fairness of comparison.

Step 6: Data Preprocessing The data preprocessing consists of two main steps:

1) Sampling: Because the full dataset is huge, we sample some data for our training. Our dataset contains 435 languages and about 25B sentence pairs. Table 10 shows the number of parallel sentences in the training set for each language. We present statistics on parallel sentence pairs for the top 100 languages in our constructed data, as shown in Figure 5. The dataset comprises 435 languages and approximately 25 billion sentence pairs. Among these, 19 languages have over 1 billion sentence pairs, while for most languages, the total number of sentence pairs in the dataset does not exceed 1 million.

2) *Preprocessing:* The data is preprocess using the SentencePiece tokenizer provided by Costajussà et al. (2022) with a expaned vocabulary of size 491,404.

C Compare with ChatGPT

A comparison is made between the performance of ChatGPT and LegoMT2 using the first 100 samples extracted from the *Flores-101* devtest. The effects

of both X \rightarrow En and En \rightarrow X are tested. For the system, the given prompt for ChatGPT is: "You are a helpful assistant that translates {SOURCE_LANG} to {TARGET_LANG}." For the sentences that needed to be translated, the given prompt is: "Translate the following {SOURCE_LANG} text to {TARGET_LANG}: {SOURCE_TEXT}." Both zero-shot and eight-shot results are tested, with the eight-shot samples being randomly extracted from the *Flores-101* dev.

For some language pairs, the performance of ChatGPT is better than that of LegoMT2, such as $En \rightarrow Zh$, where ChatGPT scores 30.7 versus LegoMT2 's 27.1. However, for the vast majority of language pairs, LegoMT2 has an absolute advantage. On average, ChatGPT lags behind LegoMT2 in both the $En \rightarrow X$ and $X \rightarrow En$ directions by more than 6 points.

D Language Group by KMeans.

In this study, we categorize languages based on the magnitude of language-specific data and partition them into distinct groups of equivalent size. This partitioning method was chosen due to our observation that balanced training flows among different clients facilitate multilingual machine translation.

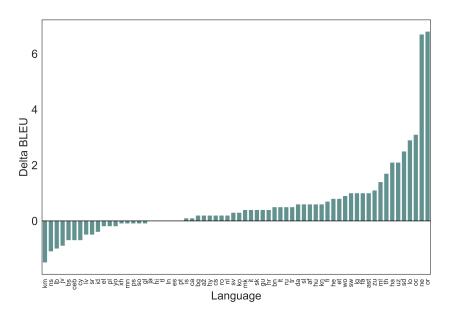
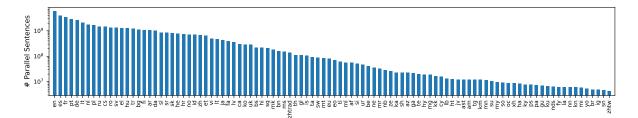



Figure 4: Pre-training is negatively impacted by low-resource language groups. Two experiments were conducted to determine the effects of including or excluding Group-7 and Group-8. The Y-axis displays the performance improvements from pre-training.

Figure 5: We present an analysis of parallel sentence pairs for the top 100 languages in our constructed dataset. Comprising 435 languages and approximately 25 billion sentence pairs, our dataset reveals that 19 languages have over 1 billion sentence pairs. In contrast, the majority of languages have a total number of sentence pairs that do not exceed 1 million.

Original	Replaced										
ak	aka	es	es_HN	pt	pt_BR	es	es_CL	kr	kau	tr	tr_TR
am	amh	es	es_EC	pt	pt_br	es	es_SV	kv	kpv	ur	ur_PK
ar	ara	es	es_CO	pt	pt_PT	es	es_NI	ln	lin	vi	vi_VN
ar	ar_SY	fa	fa_IR	rn	run	es	es_UY	mg	mlg	wo	wol
ar	ar_TN	fa	fa_AF	rw	kin	es	es_PE	ms	ms_MY	xh	xho
ay	aym	ff	ful	sn	sna	es	es_VE	nb	nb_NO	yo	yor
az	az_IR	fr	fr_FR	so	som	es	es_AR	nds	nds_nl	ze	ze_zh
bg	bg_BG	fr	fr_CA	sr	srp	es	es_MX	nl	nl_NL	ze	ze_en
bm	bam	fr	fr_BE	sr	sr_ME	es	es_MX	nl	nl_NL	ze	ze_en
bn	bn_IN	fr	fr_ca	st	sot	es	es_PA	nl	nl_BE	zh	zh_cn
ca	cat	ha	hau	sw	swa	es	es_CR	nn	nn_NO	zh	zh_CN
da	da_DK	hi	hi_IN	ta	ta_LK	es	es_PR	no	no_nb	zhtrad	zh_HK
de	de_CH	ig	ibo	tg	tg_TJ	es	es_ES	ny	nya	zhtrad	zh_TW
de	de_AT	it	it_IT	ti	tir	es	es_GT	om	orm	zhtrad	zh_tw
de	de_DE	jp	jap	tl	tl_PH	es	es_DO	pa	pan	zu	zul

Table 7: Code Replacement List. We use the codes in the column "Original" to replace the codes in the column "replaced" if these replaced codes exist in OPUS.

Furthermore, language clustering is commonly performed based on similarity. While it is possible to utilize existing linguistic knowledge for classification, this approach becomes labor-intensive when dealing with more than 400 languages. As such, we employ similarity clustering to establish a baseline. Utilizing a single multilingual model, we obtain language id embeddings and apply KMeans

Code	Dataset	Code	Dataset	Code	Dataset	Code	Dataset	Code	Dataset
crp tc zhs zht tmp	bible-uedin EUbookshop GlobalVoices GlobalVoices GNOME	cb cx ns qd qa	MultiCCAligned MultiCCAligned MultiCCAligned MultiCCAligned MultiCCAligned	sz zz ze bh bnt	MultiCCAligned MultiCCAligned OpenSubtitles QED QED	sgn iro mo ber toki	QED QED QED,Ubuntu QED,Ubuntu Tatoeba	cycl nah	Tatoeba Tatoeba
gr	GNOME	tz	MultiCCAligned	ry	QED	kzj	Tatoeba		

Table 8: Unkown Language Codes, which are out of ISO 639 series. We can't confirm their full names.

Language	Code	Language	Code	Language	Code	Language	Code	Language	Code	Language	Code
Abkhazian	ab	Corsican	co	Iban	iba	Lower Sorbian	dsb	Ossetian	os	Swahili (macrolanguage)	SW
Achinese	ace	Cree	cr	Icelandic	is	Lukpa	dop	Ottoman Turkish (1500-1928)	ota	Swati	SS
Achuar-Shiwiar	acu	Creek Crimean Tatar	mus crh	Ido Igbo	io	Luo (Kenya and Tanzania) Lushootseed	luo lut	Paite Chin Palauan	pck	Swedish Swiss German	SV
Adyghe Afar	ady aa	Crimean latar Croatian	hr	Igno	ig ilo	Luxembourgish	lut	Palauan Pali	pau	Swiss German Svriac	gsw
Afrihili	aa afh	Cusco Quechua	quz	Indonesian	id	Luyia	luy	Pampanga	pi pam	Tachawit	syr shy
Afrikaans	af	Czech	cs cs	Ingrian	izh	Macedonian	mk	Pangasinan	pag	Tachelhit	shi
Aguaruna	agr	Danish	da	Ingush	inh	Macedo-Romanian	rup	Panjabi	pag	Tagal Murut	mvv
Ainu (Japan)	ain	Dari	prs	Interlingua	ia	Madurese	mad	Papiamento	pap	Tagalog	tl
Akan	ak	Dinka	din	Interlingue	ie	Maithili	mai	Papuan Malay	pmy	Tahaggart Tamahaq	thv
Akawaio	ake	Drents	drt	Inuktitut	iu	Malagasy	mg	Pedi	nso	Tahitian	ty
Aklanon	akl	Dungan	dng	Inupiaq	ik	Malay (individual language)	zlm	Pennsylvania German	pdc	Tajik	tg
Albanian	sq	Dutch	nl	Iranian Persian	pes	Malay (macrolanguage)	ms	Persian	fa	Talossan	tzl
Algerian Arabic	arq	Dutton World Speedwords	dws	Irish	ga	Malayalam	ml	Phoenician	phn	Talysh	tly
American Sign Language	ase	Dzongkha	dz	Italian	it	Maltese	mt	Picard	pcd	Tamashek	tmh
Amharic	am	Eastern Canadian Inuktitut	ike	Jakun Jamaican Creole English	jak	Mam	mam	Piemontese	pms	Tamil	ta rif
Ancient Greek (to 1453) Ancient Hebrew	grc hbo	Eastern Mari Eastern Maroon Creole	mhr djk	Jamaican Creole English Japanese	jam ja	Mambae Mandarin Chinese	mgm cmn	Pipil Plateau Malagasy	ppl plt	Tarifit Tase Naga	nst
Arabic	ar	Eastern Waroon Creole	efi	Javanese	ja jv	Manx	gv	Polish	pl	Tatar	tt
Aragonese	an	Egyptian Arabic	arz	Jewish Babylonian Aramaic	tmr	Maori	mi	Portuguese	pt	Telugu	te
Armenian	hy	Emilian	egl	Kabyle	kab	Marathi	mr	Potawatomi	pot	Tena Lowland Quichua	auw
Arpitan	frp	English	en	Kadazan Dusun	dtp	Marshallese	mh	Prussian	prg	Tetelcingo Nahuatl	nhg
Asháninka	cni	Erzya	myv	Kalaallisut	kl	Mesopotamian Arabic	acm	Pushto	prg	Tetum	tet
Assamese	as	Esperanto	eo	Kalmyk	xal	Miahuatlán Zapotec	zam	Quechua	qu	Thai	th
Asturian	ast	Estonian	et	Kamba (Kenya)	kam	Middle English (1100-1500)	enm	Quenya	qya	Tibetan	bo
Avaric	av	Evenki	evn	Kannada	kn	Middle French (ca. 1400-1600)	frm	Quiotepec Chinantec	cĥq	Tigrinya	ti
Avestan	ae	Ewe	ee	Kanuri	kr	Mikasuki	mik	Rapanui	rap	Tohono O'odham	ood
Awadhi	awa	Extremaduran	ext	Kaqchikel	cak	Mi'kmaq	mic	Romanian	ro	Tok Pisin	tpi
Aymara	ay	Faroese	fo	Karelian	krl	Min Dong Chinese	cdo	Romansh	rm	Tonga (Tonga Islands)	to
Azerbaijani	az	Fiji Hindi	hif	Kashmiri	ks	Min Nan Chinese	nan	Romany	rom	Traditional Chinese	zhtrad
Baluchi	bal	Fijian	fj	Kashubian	csb	Minangkabau	min	Rundi	m	Tsonga	ts
Bambara	bm	Filipino	fil	Kazakh	kk	Mingrelian	xmf	Russian	ru	Tswana	tn
Banjar Barasana-Eduria	bjn	Finnish French	fi fr	Kekchí Khakas	kek kjh	Mirandese Mískito	mwl	Rusyn Samoan	rue	Tupí Turkish	tpw
Bashkir	bsn ba	Friulian	fur	Khasi	kha	Modern Greek (1453-)	miq el	Samoan Samogitian	sm	Turkish	tr tk
Basque	eu	Fulah	ff	Khmer	km	Mohawk	moh	Sango	sgs sg	Tuvalu	tvl
Bavarian	bar	Galela	gbi	K'iche'	que	Mongolian	mn	Sanskrit	sa	Twi	tw
Baybayanon	bvy	Galician	gl	Kikuvu	kik	Morisven	mfe	Santali	sat	Uab Meto	aoz
Belarusian	be	Gan Chinese	gan	Kinyarwanda	rw	Moroccan Arabic	ary	Sardinian	SC	Udmurt	udm
Bemba (Zambia)	bem	Ganda	Ĭg	Kirghiz	ky	Mossi	mos	Saterfriesisch	stq	Uighur	ug
Bengali	bn	Garhwali	gbm	Klingon	tĺĥ	Nauru	na	Scots	sco	Ukrainian	uk
Berom	bom	Georgian	Ка	Koasati	cku	Navajo	nv	Scottish Gaelic	gd	Uma	ppk
Bhojpuri	bho	German	de	Kölsch	ksh	Neapolitan	nap	Sediq	trv	Umbundu	umb
Bislama	bi	Gheg Albanian	aln	Komi	kv	Nepali (individual language)	npì	Serbian	sr	Upper Sorbian	hsb
Bodo (India)	brx	Gilbertese	gil	Komi-Permyak	koi	Nepali (macrolanguage)	ne	Serbo-Croatian	sh	Urdu	ur
Bosnian	bs	Goan Konkani	gom	Kongo	kg	Nigerian Fulfulde	fuv	Shan	shn	Uspanteco	usp
Breton	br	Gothic	got	Korean	ko	Niuean	niu	Shona	sn	Uzbek	uz
Brithenig	bzt	Gronings	gos	Kotava	avk	Nogai	nog	Shuar	jiv	Venda	ve
Buginese Bulgarian	bug	Guadeloupean Creole French Guarani	gcf	Kriang Kuanyama	ngt ki	North Levantine Arabic North Moluccan Malay	apc	Shuswap Sicilian	shs	Venetian Vietnamese	vec vi
Burjat	bg bua	Guarani Guerrero Amuzgo	gn amu	Kuanyama Kurdish	кј ku	North Moluccan Malay Northern Frisian	max frr	Silesian	scn szl	Vlaams	vls
Burmese	my	Guerrero Nahuatl	ngu	Kuruish Kven Finnish	fkv	Northern Kurdish	kmr	Sindarin	sjn	Volapük	VIS
Cabécar	cjp	Guiarati	gu	Láadan	ldn	Northern Sami	se	Sindhi	sd	Walloon	wa
Camsá	kbh	Gulf Arabic	afb	Ladin	lld	Northwestern Ojibwa	ojb	Sinhala	si	Walser	wae
Catalan	ca	Haida	hai	Ladino	lad	Norwegian	no	Slovak	sk	Waray (Philippines)	war
Cebuano	ceb	Haitian	ht	Lakota	lkt	Norwegian Bokmål	nb	Slovenian	sl	Welsh	cy
Central Huasteca Nahuatl	nch	Hakha Chin	cnh	Lao	lo	Norwegian Nynorsk	nn	Somali	so	Western Frisian	fy
Central Kurdish	ckb	Hakka Chinese	hak	Latgalian	ltg	Novial	nov	South Azerbaijani	azb	Western Panjabi	pnb
Central Sama	sml	Hausa	ha	Latin	la	Nuer	nus	South Ndebele	nr	Wolaytta	wal
Chamorro	ch	Hawaiian	haw	Latvian	lv	Nyanja	ny	Southern Kurdish	sdh	Wolof	wo
Chavacano	cbk	Hebrew	he	Ligurian	lij	Occitan (post 1500)	oc	Southern Sami	sma	Wu Chinese	wuu
Chechen	ce	Hiligaynon	hil	Limburgan	li	Old English (ca. 450-1100)	ang	Southern Sotho	st	Xhosa	xh
Cherokee	chr	Hindi	hi	Lingala	ln	Old French (842-ca. 1400)	fro	Southwestern Dinka	dik	Yakut	sah
Chhattisgarhi	hne	Hiri Motu	ho	Lingua Franca Nova	lfn	Old Frisian	ofs	Spanish	es	Yaqui	yaq
Chinese	zh	Hmong Daw	mww	Literary Chinese	lzh	Old Norse	non	Standard Malay	zsm	Yiddish	yi
Choctaw	cho	Ho	hoc	Lithuanian	lt	Old Russian	orv	Standard Moroccan Tamazight	zgh	Yoruba	yo
Church Slavic	cu	Huastec	hus	Liv	liv	Old Spanish	osp	Sumerian	sux	Zarma	dje
Chuvash	cv	Hungarian	hu	Lojban	jbo	Oriya (macrolanguage)	or	Sundanese	su	Zaza	zza
Coptic Cornish	cop kw	Hunsrik Hupa	hrx hup	Lombard Low German	lmo nds	Orizaba Nahuatl Oromo	nlv om	Swabian Swahili (individual language)	swg swh	Zulu	zu

Table 9: List of Languages. Our dataset mainly use ISO 639 series as language code. For traditional Chinese, we define "zhtrad" as code.

clustering to them. The results of this clustering are depicted in Figure 6, which clearly illustrates the variation in the number of languages across different clusters. We also conduct an experiment in which language groups are randomly split. Our findings indicate that a severely unbalanced distribution of clients negatively impacts system performance.

E Human Evaluation Performance

Human evaluation results show that the performance of LegoMT2 far exceeds that of Baidu and is on par with Google. We manually assessed the performance of Google Translator, Baidu Translator, LegoMT2, and NLLB-1.3B models on Chinesecentric translation tasks and found that, on average, Google Translator outperformed LegoMT2. LegoMT2 performed better than Baidu Translator and NLLB-1.3B, as shown in Table 12. Here are the specifics of our human evaluation:

1) Data source: We evaluated a total of 100 raw data samples, including 58 samples from the *Flores-101* dataset and 42 samples from the domains of sports, entertainment, and financial news.

2) Annotation method: To better evaluate the quality of large-scale translation, we adopted a translation and back-translation method in our human evaluation. For instance, we presented a Chi-

code	sentence pairs	code	sentence pairs	code	sentence pairs	code	sentence pairs	code	sentence pairs	code	sentence pairs
aa	25190	cni	366213	he	768039586	lo	2934940	pag	41	swg	1485
ab	24734	co	5679	hi	218864052	lt	467441039	pam	1897	swh	767
ace	55744	cop	392871	hif	30	ltg	25791	pap	16428	syr	393273
acm	38	cr	128	hil	2044	luo	91	pau	28	SZ	10
acu ady	275510 10	crh crp	583965 1698290	hne ho	3624732 51	lut luy	61 105	pcd pck	238 1722862	szl ta	45989 90971643
ae	139	cs	1457869889	hoc	517	lv	355693685	pdc	63	tc	2831
af	55335682	csb	1087185	hr	737162068	lzh	540	pes	1744278	te	20088988
afb	77	cu	1996	hrx	558	mad	947	phn	30	tet	12255
afh	73	cv	24927	hsb	662844	mai	1969608	pi	2306	tg	11994239
agr	296459	cx	2852903	ht	12715844	mam	358606	pl	1650606708	th	111068105
ain	306	cy 1	15839521	hu	1254849755	max	345	plt	1715974	thv	41
ak	13593 278088	cycl	43	hup	287	mfe	8944	pms	6128	ti	98816 237791
ake akl	278088	da de	1024948205 2564377381	hus hy	81 19095048	mg mgm	18564176 27	pmy pnb	5324 154	tk tl	62019683
aln	23	dik	290563	ia	243295	mh	188	pot	163018	tlh	22430
am	12065296	din	2457	iba	42	mhr	150906	ppk	363985	tly	38
amu	375783	dje	1728497	id	697068570	mi	5753968	ppl	27	tmh	166643
an	457768	djk	354595	ie	19196	mic	10	prg	407	tmp	19110
ang	151166	dng	22	ig	4802381	mik	15	prs	14123	tmr	380
aoz	20	dop	381489	ik	393	min	84	ps	7700300	tn	488012
apc	35 1079338710	drt	46 7157	ike ilo	32 891090	miq	8506 177474445	pt	2812386990	to tolvi	1479 37627
ar arq	50647	dsb dtp	1911	inh	17366	mk ml	57004885	qa qd	521 1896	toki tpi	81
ary	155	dws	56	io	149762	mn	11603195	qu	31780	tpw	72
arz	78593	dz	161086	iro	8	mo	31	quc	358962	tr	1193231266
as	2307772	ee	376963	is	104661362	moh	72	quw	391236	trv	1535
ase	6084	efi	4358	it	2093054002	mos	1864	quz	20	ts	51109
ast	12083731	egl	322	iu	6120	mr	31855664	qya	171	tt	1501339
av	7398	el	1258104866	izh	9	ms	149607728	rap	22	tvl	13
avk	1757 225	en	5781922682 741	ja	434118540 368614	mt	82700941 9229	rif	60 10037	tw	479 17
awa ay	43034	enm eo	71211656	jak jam	29	mus mvv	9229	rm rn	6358	ty tz	55
az	22317802	es	3911731697	jbo	53616	mwl	36153	ro	1335221001	tzl	1415
azb	6270	et	647382971	jiv	278960	mww	65	rom	391669	udm	53
ba	414706	eu	79865761	jv	12235804	my	9517618	ru	1460007489	ug	915049
bal	2285	evn	64	ka	23136675	myv	22	rue	175	uk	280561930
bar	75324	ext	57	kab	469669	na	16	rup	2965	umb	54
be	41361204 19058	fa ff	383151473 329791	kam	8 407244	nah	160 9666	rw	1271784 5054	ur	47703807 368078
bem ber	19038	fi	1081684445	kbh kek	1674772	nan nap	3093	ry sa	93931	usp uz	3381954
bg	1130459221	fil	1091348	kg	131420	nb	27802066	sah	835	ve	8057
bĥ	2613	fj	3443	kha	1282	nch	75	sat	114	vec	26482
bho	1263	fkv	498	kik	267	nds	6525803	sc	55166	vi	500458007
bi	6112	fo	228021	kj	5446	ne	36233624	scn	7790	vls	430
bjn	16	fr	3412558369	kjh	15	ngt	15	sco	44793	vo	4484
bm	5993 156924699	frm	827 44	kk kl	16875999 33411	ngu	31 376653	sd	2816050	wa	2659876 74267
bn bnt	150924099	fro frp	82087	kn kn	11875237	nhg niu	24	sdh se	28 1912829	wae wal	374085
bo	108249	frr	402	kmr	714	nl	1777745084	sg	10	war	1230
bom	39	fur	328314	kn	5999187	nlv	12	sgn	688	wo	983607
br	4839927	fuv	2482	ko	285583000	nn	6036066	sgs	40	wuu	10993
brx	2126	fy	6208767	koi	12	no	698491446	sh	22711333	xal	3583
bs	221212239	ga	21763185	kr	11412	nog	79	shi	378312	xh	8640822
bsn	325256 1948	gan	12 350547	krl	314 64356	non	16 919	shn	40453 20833	xmf	36 81
bua bug	1659	gbi gbm	33	ks ksh	2892	nov npi	919	shs shy	20855	yaq yi	1038001
bvy	21	gcf	1009	ku	6566496	nr	874	si	52111630	yo	5433688
bzt	1196	gd	833984	kv	59	ns	103879	sjn	293	zam	1379
ca	303844363	gil	12	kw	82917	nso	427594	sk	809520471	ze	25667080
cak	355513	gl	110969736	ky	7814500	nst	644	sl	834996012	zgh	97
cb	354133	gn	10158	kzj	1543	nus	2496	sm	73	zh	660697725
cbk	2141	gom	49256	la	6202902	nv	358	sma	39	zhs	37264
cdo ce	20 13338	gos	3382 234	lad lb	4634 13159469	ny	4130938 8708362	sml	1711 4557031	zht zhtrad	39547 143676341
ceb	3534028	got gr	5607	ldn	15159409	oc ofs	8708302	sn so	9082662	zlm	92
ch	356694	grc	1105	lfn	13823	ojb	299926	sq	203389893	zsm	2719
cho	309	gsw	247	lg	248315	om	203313	sr	825444520	zu	3516139
chq	356343	gu	7015993	li	365187	ood	21	ss	672164	ZZ	44
chr	392260	gv	537765	lij	1673	or	1005953	st	10364	zza	27246
cjp	389090	ha	8504550	liv	27	orv	1348	stq	128		
ckb	78358	hai	1866	lkt	25	os	61302	su	10421463		
cku cmn	571 16159	hak haw	16 385	lld lmo	10268 13318	osp ota	10 880	sux sv	153 1297167012		
cnh	1784	hbo	101	ln	171241	pa	7181860	SV	87842873		
		1		1		1				1	

Table 10: Statistics of the constructed dataset. Upon further quality assessment, we identified that the data for the following ten languages: iro, kam, mvv, ofs, izh, ady, mic, osp, sg, sz, were incorrect as they were all in English. As a result, we have decided to exclude these from our model.

nese input text to the models and asked them to produce a translated text and a back-translated Chinese text. The annotators assessed the degree of information overlap between the input text and the back-translated Chinese text. agreement, we assigned each sample to two distinct annotators at a cost of \$0.028 per datum. The resulting evaluation scores ranged from 0 to 5. A score of 0 meant that the language was not supported or could not be translated at all. A score of 5 implied that not only was the content preserved,

3) Annotation process: To ensure inter-annotator

X→En	ChatGPT	LegoMT2	X→En	ChatGPT	LegoMT2	X→En	ChatGPT	LegoMT2	X→En	ChatGPT	LegoMT2
af	54.9	58.9	gu	20.0	39.1	lo	9.8	37.3	ru	32.6	36.8
am	2.7	32.4	ĥa	13.4	31.3	lt	30.9	35.4	sd	13.0	22.0
ar	33.7	41.6	he	32.6	41.5	luo	8.1	27.5	sk	35.5	41.6
as	12.9 38.3	31.1	hi	33.9 36.9	47.1	lv	30.5	35.7 30.0	sl	33.7	36.7
ast	38.3	33.3	hr	36.9	39.5	mi	19.4	30.0	sn	13.2	30.5
az	18.7	27.7	hu	32.6	35.6	mk	37.6	43.0	so	14.3	32.5
be	19.2	19.9	hy	14.5	39.0	ml	18.5	41.0	sr	35.2	40.7
bg	37.1	41.4	id	40.1	45.0 28.4	mn	11.1	30.2	sv	46.3	49.4
bn	21.2	38.5	ig is	8.7	28.4	mr	20.4	39.6	sw	40.4	47.0
bs	41.3	44.6		28.9	35.0	ms	43.8	47.6	ta	13.6	32.5
ca	43.1	46.3	it	34.4	35.5	mt	42.8	60.5	te	18.6	42.1
ceb	37.5	45.0	ja	26.5	30.5	my	2.8	30.2	tg	13.4	32.9
cs	38.2	43.7	jv	27.4	45.1 27.6	ne	21.2	40.5	th	21.9	33.6
cy	44.0	54.6	ka	12.1	27.6	nl	34.8	36.2	tl	41.9	51.4
da	47.6	51.3	kam	9.8	19.6	no	41.3	45.7	tr	36.0	39.0
de	41.4	44.4	kea	9.8 33.7	51.2	ns	13.9	43.2	uk	37.2	41.5
el	33.9	39.1	kk	18.6	35.6	ny	15.1	32.4	umb	5.0	14.8
es	29.9	31.4	km	13.6	36.8	oc	45.3	56.8	ur	24.6	38.5
et	35.9	38.7	kn	20.0	35.1	om	4.9	22.6	uz	19.3	34.6
fa	30.4	37.2	ko	26.1	28.3	or	14.0	36.3	vi	33.3	42.0
ff	7.3	12.0	ku	9.6	35.7	pa	24.0	44.2	wo	8.5	21.5
fi	31.5	33.9	ky	10.7	26.9 45.5	pl	29.9	33.6	xh	17.1	39.6
fr	43.9	46.9	lĎ	39.6	45.5	ps	10.6	35.6	yo	9.8	26.0
ga	33.2	43.3	lg	11.1	23.1	pt	47.5	50.5	zh	28.3	30.5
gl	39.2	40.5	ln	10.6	28.7	ro	42.7	48.1	zu	18.0	41.5
EN→X	ChatGPT	LegoMT2	EN→X	ChatGPT	LegoMT2	EN→X	ChatGPT	LegoMT2	EN→X	ChatGPT	LegoMT2
af	ChatGPT 44.3	45.3		19.0	34.8	lo	ChatGPT 4.0	28.9	$EN \rightarrow X$ ru	36.0	39.0
af am	44.3 2.9	45.3 26.9	gu ha	19.0 8.1	34.8 26.9	lo lt	4.0 27.2	28.9 33.5	ru sd	36.0 8.4	39.0 33.3
af am ar	44.3 2.9 31.6	45.3 26.9 36.1	gu ha he	19.0 8.1 27.0	34.8 26.9 37.2	lo lt luo	4.0 27.2 4.2	28.9 33.5	ru sd sk	36.0 8.4 34.5	39.0 33.3 38.9
af am ar as	44.3 2.9 31.6 7.3	45.3 26.9 36.1 24.6	gu ha he hi	19.0 8.1 27.0 29.2	34.8 26.9 37.2 46.6	lo lt luo lv	4.0 27.2 4.2 27.9	28.9 33.5 18.3 23.2	ru sd sk sl	36.0 8.4 34.5 32.5	39.0 33.3 38.9 37.1
af am ar as ast	44.3 2.9 31.6 7.3 29.8	45.3 26.9 36.1 24.6 30.3	gu ha he hi hr	19.0 8.1 27.0 29.2	34.8 26.9 37.2 46.6 35.7	lo lt luo lv mi	4.0 27.2 4.2 27.9 16.0	28.9 33.5 18.3 23.2 19.8	ru sd sk sl sn	36.0 8.4 34.5 32.5 5.8	39.0 33.3 38.9 37.1 19.5
af am ar as ast az	44.3 2.9 31.6 7.3 29.8 11.8	45.3 26.9 36.1 24.6 30.3 20.4	gu ha he hi hr hu	19.0 8.1 27.0 29.2 34.4 27.2	34.8 26.9 37.2 46.6 35.7 34.9	lo lt luo lv mi mk	4.0 27.2 4.2 27.9 16.0 33.1	28.9 33.5 18.3 23.2 19.8 43.4	ru sd sk sl sn so	36.0 8.4 34.5 32.5 5.8 6.4	39.0 33.3 38.9 37.1 19.5 18.2
af am ar as ast az be	44.3 2.9 31.6 7.3 29.8 11.8 16.4	45.3 26.9 36.1 24.6 30.3 20.4 23.4	gu ha he hi hr hu hy	19.0 8.1 27.0 29.2 34.4 27.2 10.5	34.8 26.9 37.2 46.6 35.7 34.9 33.1	lo lt luo lv mi mk ml	4.0 27.2 4.2 27.9 16.0 33.1 12.0	28.9 33.5 18.3 23.2 19.8 43.4 38.0	ru sd sk sl sn so sr	36.0 8.4 34.5 32.5 5.8 6.4 1.5	39.0 33.3 38.9 37.1 19.5 18.2 29.3
af am ar as ast az be bg	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3	gu ha hi hr hu hy id	19.0 8.1 27.0 29.2 34.4 27.2 10.5 45.4	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6	lo lt luo lv mi mk ml mn	4.0 27.2 4.2 27.9 16.0 33.1 12.0 5.5	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8	ru sd sk sl sn so sr sv	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6
af am ar as ast az be bg bn	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7	gu ha hi hr hu hy id	19.0 8.1 27.0 29.2 34.4 27.2 10.5 45.4	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9	lo lt luo lv mi mk ml mn mn	4.0 27.2 4.2 27.9 16.0 33.1 12.0 5.5 10.4	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4	ru sd sk sl sn so sr sv sv sw	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1
af am ar as ast az be bg bn bs	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4 34.0	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1	gu ha hi hr hu hy id ig is	$ 19.0 \\ 8.1 \\ 27.0 \\ 29.2 \\ 34.4 \\ 27.2 \\ 10.5 \\ 45.4 \\ 6.2 \\ 22.0 \\ $	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2	lo lt luo lv mi mk ml mn mr ms	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2 \end{array}$	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4 47.2	ru sd sk sl sn so sr sv sw ta	$36.0 \\ 8.4 \\ 34.5 \\ 32.5 \\ 5.8 \\ 6.4 \\ 1.5 \\ 46.5 \\ 37.5 \\ 10.2$	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8
af am ar as ast az be bg bn bs ca	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4 34.0 46.8	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9	gu ha hi hr hu hy id ig is is it	$ 19.0 \\ 8.1 \\ 27.0 \\ 29.2 \\ 34.4 \\ 27.2 \\ 10.5 \\ 45.4 \\ 6.2 \\ 22.0 \\ 35.8 $	$\begin{array}{c} 34.8\\ 26.9\\ 37.2\\ 46.6\\ 35.7\\ 34.9\\ 33.1\\ 46.6\\ 19.9\\ 30.2\\ 36.5\end{array}$	lo lt luo lv mi mk ml mn mr ms mt	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\end{array}$	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4 47.2 64.4	ru sd sk sl sn so sr sv sv ta te	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8 41.6
af am ar as ast az be bg bn bs ca ceb	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4 34.0 46.8 24.5	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9 18.9	gu ha he hi hu hy id ig is it ja	$ 19.0 \\ 8.1 \\ 27.0 \\ 29.2 \\ 34.4 \\ 27.2 \\ 10.5 \\ 45.4 \\ 6.2 \\ 22.0 \\ 35.8 \\ 29.7 \\ $	$\begin{array}{c} 34.8\\ 26.9\\ 37.2\\ 46.6\\ 35.7\\ 34.9\\ 33.1\\ 46.6\\ 19.9\\ 30.2\\ 36.5\\ 33.5\end{array}$	lo lt luo lv mi mk ml mn mr ms mt my	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\end{array}$	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4 47.2 64.4 15.5	ru sd sk sl sn so sr sv sw ta te tg	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0	$\begin{array}{c} 39.0\\ 33.3\\ 38.9\\ 37.1\\ 19.5\\ 18.2\\ 29.3\\ 46.6\\ 40.1\\ 20.8\\ 41.6\\ 32.5\end{array}$
af am ar as ast az be bg bn bs ca ceb cs	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4 34.0 46.8 24.5 36.7	45.3 26.9 36.1 24.6 30.3 20.4 49.3 33.7 35.1 48.9 18.9 40.5	gu ha he hi hu hy id ig is it ja jv	19.0 8.1 27.0 29.2 34.4 27.2 10.5 45.4 6.2 22.0 35.8 29.7 15.6	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2 36.5 33.5 30.3	lo lt luo w mi mk ml mn mr ms mt my ne	4.0 27.2 4.2 27.9 16.0 33.1 12.0 5.5 10.4 39.2 31.6 2.5 15.0	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4 47.2 64.4 15.5 26.4	ru sd sk sl sn so sr sv sw ta te tg th	$\begin{array}{c} 36.0\\ 8.4\\ 34.5\\ 32.5\\ 5.8\\ 6.4\\ 1.5\\ 46.5\\ 37.5\\ 10.2\\ 13.2\\ 11.0\\ 22.1 \end{array}$	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8 41.6 32.5 21.1
af am ar as ast az be bg bn bs ca ceb cs cy	44.3 2.9 31.6 7.3 29.8 16.4 38.7 18.4 34.0 46.8 24.5 36.7 44.0	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9 18.9 18.9 40.5 43.8	gu ha hr hu hy ig is it ja jv ka	19.0 8.1 27.0 29.2 34.4 27.2 10.5 45.4 6.2 22.0 35.8 29.7 15.6 11.1	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2 36.5 33.5 30.3	lo lt luo wi mk ml mr ms mt my ne nl	4.0 27.2 4.2 27.9 16.0 33.1 12.0 5.5 10.4 39.2 31.6 2.5 15.0 31.7	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4 47.2 64.4 15.5 26.4 31.9	ru sd sk sl sn so sr sv sw ta te tg th tl	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8 41.6 32.5 21.1 34.9
af am ar as ast az be bg bn bs ca ceb cs cy da	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4 34.0 46.8 24.5 36.7 44.0 45.4	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9 18.9 40.5 43.8 45.5	gu ha hr hu id ig is it ja jv ka kam	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\end{array}$	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2 36.5 33.5 30.3	lo lt luo lv mi mk ml mn mr ms mt my ne nl no	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2 \end{array}$	ru sd sk sl sn so sr sv sw ta te tg th tf tr	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5	$\begin{array}{c} 39.0\\ 33.3\\ 38.9\\ 37.1\\ 19.5\\ 18.2\\ 29.3\\ 46.6\\ 40.1\\ 20.8\\ 41.6\\ 32.5\\ 21.1\\ 34.9\\ 36.4 \end{array}$
af am ar as ast az be bg bn bs ca ceb cs cy da de	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4 34.0 46.8 24.5 36.7 44.0 45.4 40.3	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9 18.9 40.5 43.8 45.5 41.7	gu ha hi hr hu id ig is it ja jv ka ka kea	$19.0 \\ 8.1 \\ 27.0 \\ 29.2 \\ 34.4 \\ 27.2 \\ 10.5 \\ 45.4 \\ 6.2 \\ 22.0 \\ 35.8 \\ 29.7 \\ 15.6 \\ 11.1 \\ 4.9 \\ 11.5 \\$	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2 36.5 33.5 30.3 23.0 7.4 17.5	lo lt luo lv mi mk ml mn mr ms mt my ne nl no ns	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.6\end{array}$	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4 47.2 64.4 15.5 26.4 31.9 37.2 26.8	ru sd sl sn so sr sv ta te tg th tl tr uk	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8 41.6 32.5 21.1 34.9 36.4 40.1
af am ar as ast az be bg bn bs ca ceb cs cy da de el	$\begin{array}{c} 44.3\\ 2.9\\ 31.6\\ 7.3\\ 29.8\\ 11.8\\ 16.4\\ 38.7\\ 18.4\\ 34.0\\ 46.8\\ 24.5\\ 36.7\\ 44.0\\ 45.4\\ 40.3\\ 30.9 \end{array}$	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9 18.9 40.5 43.8 45.5 41.7 34.5	gu ha hi hr hy id is it ja jv ka kam kea kk	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\end{array}$	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2 36.5 33.5 30.3 23.0 7.4 17.5 33.7	lo lt luo lv mi mk ml mn ms mt my ne nl no ns ny	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.6\\ 6.3\\ \end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2\\ 26.8\\ 23.8 \end{array}$	ru sd sl sn so sr sv sw ta te tg th tl tr uk umb	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8 41.6 32.5 21.1 34.9 36.4 40.1 2.9
af am ar as ast az be bg bn bs ceb cs ceb cs cy da de el es	44.3 2.9 31.6 7.3 29.8 11.8 16.4 38.7 18.4 34.0 46.8 24.5 36.7 44.0 45.4 40.3 30.9 32.3	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9 18.9 40.5 43.8 45.5 41.7 34.5 30.7	gu ha he hi hy id ig is it jv ka kea ka ka ka km	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\\ 4.4 \end{array}$	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2 36.5 33.5 30.3 23.0 7.4 17.5 33.7 15.9	lo lt luo lv mi mk ml mn mr ms mt my ne nl no ns ny oc	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.6\\ 6.3\\ 28.2 \end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2\\ 26.8\\ 23.8\\ 44.0 \end{array}$	ru sd sk sl sn so sr sv sw ta te tg th t t t t t u k umb ur	36.0 8.4 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8 16.8	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8 41.6 32.5 21.1 34.9 36.4 40.1 2.9 27.4
af am ar as ast be bg bn bs ca ceb cs cy da e el es et	$\begin{array}{c} 44.3\\ 2.9\\ 31.6\\ 7.3\\ 29.8\\ 11.8\\ 16.4\\ 38.7\\ 18.4\\ 34.0\\ 46.8\\ 24.5\\ 36.7\\ 44.0\\ 45.4\\ 40.3\\ 30.9\\ 32.3\\ 33.6\end{array}$	45.3 26.9 36.1 24.6 30.3 20.4 23.4 49.3 33.7 35.1 48.9 40.5 43.8 45.5 41.7 34.5 30.7 34.4	gu ha he hi hy id ig is it jv ka ka ka kk kk kn	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\\ 4.4\\ 14.3\end{array}$	34.8 26.9 37.2 46.6 35.7 34.9 33.1 46.6 19.9 30.2 36.5 33.5 30.3 23.0 7.4 17.5 33.7 15.9	lo lt lvo lv mi mk ml mn ms mt ng ne nl no ns ny oc om	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.6\\ 6.3\\ 28.2\\ 1.7\end{array}$	28.9 33.5 18.3 23.2 19.8 43.4 38.0 18.8 27.4 47.2 64.4 15.5 26.4 31.9 37.2 26.8 23.8 44.0 10.8	ru sd sk sl sn so sr sv ta te tg th tl tr uk umb ur uz	36.0 8.4 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8 16.8	$\begin{array}{c} 39.0\\ 33.3\\ 38.9\\ 37.1\\ 19.5\\ 18.2\\ 29.3\\ 46.6\\ 40.1\\ 20.8\\ 41.6\\ 32.5\\ 21.1\\ 34.9\\ 36.4\\ 40.1\\ 2.9\\ 27.4\\ 27.3\end{array}$
af am ar as ast be bg bn bs ceb cs ceb cs cy da de es et fa	$\begin{array}{c} 44.3\\ 2.9\\ 31.6\\ 7.3\\ 29.8\\ 11.8\\ 16.4\\ 38.7\\ 18.4\\ 34.0\\ 46.8\\ 24.5\\ 36.7\\ 44.0\\ 45.4\\ 40.3\\ 30.9\\ 32.3\\ 33.6\\ 25.4\end{array}$	$\begin{array}{c} 45.3\\ 26.9\\ 36.1\\ 24.6\\ 30.3\\ 20.4\\ 23.4\\ 49.3\\ 33.7\\ 35.1\\ 48.9\\ 18.9\\ 40.5\\ 43.8\\ 45.5\\ 41.7\\ 34.5\\ 30.7\\ 34.4\\ 35.0\\ \end{array}$	gu ha he hi hu hy id ig is it ja jv ka kam ka ka ka ka ko	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\\ 4.4\\ 14.3\\ 25.0\\ \end{array}$	$\begin{array}{c} 34.8\\ 26.9\\ 37.2\\ 46.6\\ 35.7\\ 34.9\\ 33.1\\ 46.6\\ 19.9\\ 30.2\\ 36.5\\ 33.5\\ 30.3\\ 23.0\\ 7.4\\ 17.5\\ 33.7\\ 15.9\\ 31.6\\ 26.0 \end{array}$	lo lt luo lv mi mk ml mn mr ms mt no ns nl no ns ny oc om or	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.3\\ 28.2\\ 1.7\\ 11.3\end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2\\ 26.8\\ 23.8\\ 44.0\\ 10.8\\ 32.3\\ \end{array}$	ru sd sk sl sn so sr sv ta tg th tr tk tr uk umb ur uz vi	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8 16.8 15.8 38.3 38.3 38.7	39.0 33.3 38.9 37.1 19.5 18.2 29.3 46.6 40.1 20.8 41.6 32.5 21.1 34.9 36.4 40.1 2.9 27.4 27.3 43.2
af am ar as ast be bg bs ca ceb cs cy de el es et fa	$\begin{array}{c} 44.3\\ 2.9\\ 31.6\\ 7.3\\ 29.8\\ 11.8\\ 16.4\\ 38.7\\ 18.4\\ 34.0\\ 46.8\\ 24.5\\ 36.7\\ 44.0\\ 45.4\\ 40.3\\ 30.9\\ 32.3\\ 33.6\\ 25.4\\ 3.0\end{array}$	$\begin{array}{c} 45.3\\ 26.9\\ 36.1\\ 24.6\\ 30.3\\ 20.4\\ 23.4\\ 49.3\\ 33.7\\ 35.1\\ 48.9\\ 40.5\\ 43.8\\ 45.5\\ 41.7\\ 34.5\\ 30.7\\ 34.4\\ 35.0\\ 0.1 \end{array}$	gu ha he hi hy id ig is is jv ka kea ka ka kea kk kn ko ku	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\\ 4.4\\ 14.3\\ 25.0\\ 5.0\\ \end{array}$	$\begin{array}{c} 34.8\\ 26.9\\ 37.2\\ 46.6\\ 35.7\\ 34.9\\ 33.1\\ 46.6\\ 19.9\\ 30.2\\ 36.5\\ 33.5\\ 30.3\\ 23.0\\ 7.4\\ 17.5\\ 33.7\\ 15.9\\ 31.6\\ 26.0\\ 3.5 \end{array}$	lo ltuo lv mi mk ml mn mr ms mt ns ny ne nl no ns ny oc om or pa	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.6\\ 6.3\\ 28.2\\ 1.7\\ 11.3\\ 20.3\\ \end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2\\ 26.8\\ 23.8\\ 44.0\\ 10.8\\ 32.3\\ 36.1 \end{array}$	ru sd sk sl so sr sv ta tg th tl tr uk ur uz vi wo	36.0 8.4 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8 16.8 15.8 38.7 5.1	$\begin{array}{c} 39.0\\ 33.3\\ 38.9\\ 37.1\\ 19.5\\ 18.2\\ 29.3\\ 46.6\\ 40.1\\ 20.8\\ 41.6\\ 32.5\\ 21.1\\ 34.9\\ 36.4\\ 40.1\\ 2.9\\ 27.4\\ 27.3\\ 43.2\\ 6.3 \end{array}$
af am ar as ast be bg bn bs ca ceb cs cy da de el es et fa ff	$\begin{array}{c} 44.3\\ 2.9\\ 31.6\\ 7.3\\ 29.8\\ 11.8\\ 16.4\\ 38.7\\ 18.4\\ 34.0\\ 46.8\\ 24.5\\ 36.7\\ 44.0\\ 45.4\\ 40.3\\ 30.9\\ 32.3\\ 33.6\\ 25.4\\ 3.0\\ 33.3\end{array}$	$\begin{array}{c} 45.3\\ 26.9\\ 36.1\\ 24.6\\ 30.3\\ 20.4\\ 49.3\\ 33.7\\ 35.1\\ 48.9\\ 18.9\\ 40.5\\ 43.8\\ 45.5\\ 41.7\\ 34.5\\ 30.7\\ 34.4\\ 35.0\\ 0.1\\ 31.2\end{array}$	gu ha he hi hy id ig is it jv ka ka kk kk kk kn ko ku ky	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\\ 4.4\\ 14.3\\ 25.0\\ 5.0\\ 7.2 \end{array}$	$\begin{array}{c} 34.8\\ 26.9\\ 37.2\\ 46.6\\ 35.7\\ 34.9\\ 33.1\\ 46.6\\ 19.9\\ 30.2\\ 36.5\\ 33.5\\ 30.3\\ 23.0\\ 7.4\\ 17.5\\ 33.7\\ 15.9\\ 31.6\\ 26.0\\ 3.5\\ 24.4 \end{array}$	lo lt luo lv mi mk ml mn mr ms mt my ne nl no ns ny oc om or pa pl	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.6\\ 6.3\\ 28.2\\ 1.7\\ 11.3\\ 20.3\\ 29.3\\ \end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2\\ 26.8\\ 23.8\\ 44.0\\ 10.8\\ 32.3\\ 36.1\\ 31.9\end{array}$	ru sd sk sl sn so sr sv ta te tg th tl tr uk umb ur vi wo xh	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8 16.8 15.8 38.7 5.1 6.4	$\begin{array}{c} 39.0\\ 33.3\\ 38.9\\ 37.1\\ 19.5\\ 18.2\\ 29.3\\ 46.6\\ 40.1\\ 20.8\\ 41.6\\ 32.5\\ 21.1\\ 34.9\\ 36.4\\ 40.1\\ 2.9\\ 27.4\\ 43.2\\ 6.3\\ 28.9 \end{array}$
af am ar as ast be bn bs ceb cs ceb cs cy da de es et a ff ff fr	$\begin{array}{c} 44.3\\ 2.9\\ 31.6\\ 7.3\\ 29.8\\ 11.8\\ 16.4\\ 38.7\\ 18.4\\ 34.0\\ 46.8\\ 24.5\\ 36.7\\ 44.0\\ 45.4\\ 40.3\\ 30.9\\ 32.3\\ 33.6\\ 25.4\\ 3.0\\ 33.3\\ 53.2 \end{array}$	$\begin{array}{c} 45.3\\ 26.9\\ 36.1\\ 24.6\\ 30.3\\ 20.4\\ 23.4\\ 49.3\\ 33.7\\ 35.1\\ 48.9\\ 18.9\\ 40.5\\ 43.8\\ 45.5\\ 41.7\\ 34.5\\ 30.7\\ 34.4\\ 35.0\\ 0.1\\ 31.2\\ 56.8 \end{array}$	gu ha he hi hu hy id ig is it ja jv ka kam ka ka ka kn kn kn kn ku ku ku ku ku ku ku ku ku ku ku ku ku	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\\ 4.4\\ 14.3\\ 25.0\\ 5.0\\ 7.2\\ 24.2 \end{array}$	$\begin{array}{c} 34.8\\ 26.9\\ 37.2\\ 46.6\\ 35.7\\ 34.9\\ 33.1\\ 46.6\\ 19.9\\ 30.2\\ 36.5\\ 33.5\\ 30.3\\ 23.0\\ 7.4\\ 17.5\\ 33.7\\ 15.9\\ 31.6\\ 26.0\\ 3.5\\ 24.4\\ 1.1 \end{array}$	lo lt luo lv mi mk ml mn mr ms mt my ne nl no ns ny oc or pa pl ps	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.3\\ 28.2\\ 1.7\\ 11.3\\ 20.3\\ 29.3\\ 3.4 \end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2\\ 26.8\\ 23.8\\ 44.0\\ 10.8\\ 32.3\\ 36.1\\ 31.9\\ 22.0\\ \end{array}$	ru sd sk sl so sr sv sw ta tg th tr uk umb ur uz vi wo xh yo	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8 16.8 15.8 38.7 5.1 6.4 3.4	$\begin{array}{c} 39.0\\ 33.3\\ 38.9\\ 37.1\\ 19.5\\ 18.2\\ 29.3\\ 46.6\\ 40.1\\ 20.8\\ 41.6\\ 32.5\\ 21.1\\ 34.9\\ 36.4\\ 40.1\\ 2.9\\ 27.4\\ 40.1\\ 2.9\\ 27.4\\ 43.2\\ 6.3\\ 28.9\\ 4.2 \end{array}$
af am ar as ast be bg bn bs ca ceb cs cy da de el es et fa ff	$\begin{array}{c} 44.3\\ 2.9\\ 31.6\\ 7.3\\ 29.8\\ 11.8\\ 16.4\\ 38.7\\ 18.4\\ 34.0\\ 46.8\\ 24.5\\ 36.7\\ 44.0\\ 45.4\\ 40.3\\ 30.9\\ 32.3\\ 33.6\\ 25.4\\ 3.0\\ 33.3\end{array}$	$\begin{array}{c} 45.3\\ 26.9\\ 36.1\\ 24.6\\ 30.3\\ 20.4\\ 49.3\\ 33.7\\ 35.1\\ 48.9\\ 18.9\\ 40.5\\ 43.8\\ 45.5\\ 41.7\\ 34.5\\ 30.7\\ 34.4\\ 35.0\\ 0.1\\ 31.2\end{array}$	gu ha he hi hy id ig is it jv ka ka kk kk kk kn ko ku ky	$\begin{array}{c} 19.0\\ 8.1\\ 27.0\\ 29.2\\ 34.4\\ 27.2\\ 10.5\\ 45.4\\ 6.2\\ 22.0\\ 35.8\\ 29.7\\ 15.6\\ 11.1\\ 4.9\\ 11.5\\ 11.1\\ 4.4\\ 14.3\\ 25.0\\ 5.0\\ 7.2 \end{array}$	$\begin{array}{c} 34.8\\ 26.9\\ 37.2\\ 46.6\\ 35.7\\ 34.9\\ 33.1\\ 46.6\\ 19.9\\ 30.2\\ 36.5\\ 33.5\\ 30.3\\ 23.0\\ 7.4\\ 17.5\\ 33.7\\ 15.9\\ 31.6\\ 26.0\\ 3.5\\ 24.4 \end{array}$	lo lt luo lv mi mk ml mn mr ms mt my ne nl no ns ny oc om or pa pl	$\begin{array}{c} 4.0\\ 27.2\\ 4.2\\ 27.9\\ 16.0\\ 33.1\\ 12.0\\ 5.5\\ 10.4\\ 39.2\\ 31.6\\ 2.5\\ 15.0\\ 31.7\\ 36.6\\ 6.6\\ 6.3\\ 28.2\\ 1.7\\ 11.3\\ 20.3\\ 29.3\\ \end{array}$	$\begin{array}{c} 28.9\\ 33.5\\ 18.3\\ 23.2\\ 19.8\\ 43.4\\ 38.0\\ 18.8\\ 27.4\\ 47.2\\ 64.4\\ 15.5\\ 26.4\\ 31.9\\ 37.2\\ 26.8\\ 23.8\\ 44.0\\ 10.8\\ 32.3\\ 36.1\\ 31.9\end{array}$	ru sd sk sl sn so sr sv ta te tg th tl tr uk umb ur vi wo xh	36.0 8.4 34.5 32.5 5.8 6.4 1.5 46.5 37.5 10.2 13.2 11.0 22.1 31.2 34.5 33.3 2.8 16.8 15.8 38.7 5.1 6.4	$\begin{array}{c} 39.0\\ 33.3\\ 38.9\\ 37.1\\ 19.5\\ 18.2\\ 29.3\\ 46.6\\ 40.1\\ 20.8\\ 41.6\\ 32.5\\ 21.1\\ 34.9\\ 36.4\\ 40.1\\ 2.9\\ 27.4\\ 27.3\\ 43.2\\ 6.3\\ 28.9 \end{array}$

Table 11: Comparison of ChatGPT and LegoMT2: While ChatGPT outperforms LegoMT2 for some language pairs, LegoMT2 has an absolute advantage for the vast majority. On average, ChatGPT lags behind LegoMT2 in both the $En \rightarrow X$ and $X \rightarrow En$ directions by more than 6 points.

but the expression was also very smooth. The average inter-annotator agreement score was 0.79, indicating good evaluation quality.

Among the overlapping languages, LegoMT2 had an average translation score of 3.12, while Google Translator had an average score of 3.64. Among the non-overlapping languages, LegoMT2's average score was 3.03, while Baidu Translator's average score was 2.55.

F Language-specific decoder enhances model performance

According to our results, we find that Dec-Flow largely improves low-resource inference results. To enhance low-resource translation performance, we train Family-7 and Family-8 via Dec-Flows in the second training stage. Table 13 shows that the introduction of Dec-Flow helps low-resource translation.

G Providing statistics after aggregating the data by group.

Due to the substantial volume of data and our constrained computational resources, we cannot load all of it into memory simultaneously. Following the methodology employed in fairseq, we partition our data into multiple shards and run the model on each shard. The statistics of each shard we utilized are shown in Table 14.

H Used Scientific Artifacts

Below lists scientific artifacts that are used in our work. For the sake of ethic, our use of these artifacts is consistent with their intended use.

- *Fairseq (MIT license)*, a project taht aim to build a more efficient NLP system.
- *Transformers (Apache-2.0 license)*, a framework that provides thousands of pretrained

Translator	En	Es	Fr	Pt	De	It	NI	Pl	Ru	Da	Kn	Mr	Ka	Ja	Fa
LegoMT2	3.96	2.99	3.34	3.74	3.61	3.53	2.94	3.58	3.64	3.63	3.29	3.57	2.78	3.63	2.90
NLLB-200-1.3B	2.52	2.16	2.31	2.44	2.43	2.10	1.86	2.10	2.39	2.16	2.52	2.57	1.87	2.30	2.32
Google	4.32	3.33	3.46	3.95	3.88	3.96	3.32	3.82	3.84	4.25	3.80	3.96	3.81	3.66	3.10
Baidu	4.32	3.18	3.51	3.94	3.87	3.93	3.30	3.72	3.80	4.02	1.95	2.70	1.95	4.14	2.79
Correlation	0.70	0.44	0.41	0.68	0.62	0.79	0.72	0.69	0.7	0.71	0.83	0.51	0.83	0.76	0.27
Translator	Sr	Sk	He	Hr	No	Id	Et	Vi	Lt	Ms	Yo	Те	Ну	Ca	Ко
LegoMT2	3.23	3.28	3.54	3.47	2.70	3.76	2.87	3.95	3.69	3.41	3.18	3.46	3.48	3.45	3.24
NLLB-200-1.3B	2.27	1.88	1.88	1.86	2.03	2.49	2.02	2.70	2.33	2.34	2.44	2.32	2.12	2.47	2.35
Google	3.74	3.72	3.90	3.70	3.32	3.87	3.16	4.23	4.06	4.00	3.74	4.01	3.59	3.72	3.69
Baidu	3.26	3.29	3.39	3.55	2.62	3.73	3.15	4.10	3.77	3.63	1.67	1.87	3.29	3.48	4.20
Correlation	0.62	0.60	0.72	0.7	0.66	0.64	0.45	0.63	0.65	0.6	0.74	0.76	0.71	0.56	0.76
Translator	Th	Gl	Is	Mt	Tl	Ml	Af	Ur	Be	Tg	Ig	Kk	Су	Uk	Bs
LegoMT2	3.49	2.80	3.28	3.44	3.40	3.58	3.39	3.13	1.60	3.51	3.29	3.30	3.14	3.55	3.32
NLLB-200-1.3B	2.18	2.08	1.92	2.54	2.36	2.72	1.71	2.72	1.91	2.37	2.20	2.16	2.20	2.31	2.08
Google	3.75	2.94	4.09	4.14	3.94	4.05	3.63	3.99	3.26	3.94	3.42	3.73	3.43	3.91	3.79
Baidu	3.91	2.93	3.12	3.82	3.25	2.77	3.03	2.81	2.89	2.54	2.23	0.00	3.05	3.45	3.59
Correlation	0.66	0.47	0.77	0.61	0.65	0.68	0.6	0.63	0.69	0.65	0.69	0.94	0.61	0.66	0.74
Translator	Km	My	So	Oc	Xh	На	Ку	Pa	Gu	Ln	Sn	Jv	Ast	Hi	Mk
LegoMT2	2.92	2.83	2.75	2.82	3.52	2.98	3.19	3.37	3.49	3.21	2.85	3.26	2.41	3.37	3.71
NLLB-200-1.3B	2.15	1.86	2.10	2.55	2.61	2.40	1.98	2.73	2.60	2.45	2.20	2.40	1.36	2.55	2.59
Google	3.43	3.20	3.12	0.00	3.83	3.44	3.83	3.92	3.74	3.88	3.22	3.70	0.00	3.73	4.15
Baidu	1.75	1.90	1.99	2.67	2.85	1.89	2.31	1.91	2.13	1.09	1.83	1.12	3.29	2.48	3.84
Correlation	0.83	0.74	0.45	0.92	0.58	0.6	0.78	0.72	0.71	0.82	0.53	0.88	0.85	0.63	0.67
Translator	Cs	Ro	Sv	El	Hu	Tr	Bg	Fi	Ar	Lg	Ny	Am	Lo	Bn	As
LegoMT2	3.50	3.41	3.42	3.64	3.72	3.84	3.06	2.97	3.18	2.24	2.86	3.07	3.60	3.42	2.64
NLLB-200-1.3B	2.09	2.40	2.15	2.24	2.03	2.21	1.55	2.16	1.62	1.98	2.34	1.99	2.84	2.42	2.00
Google	3.75	3.80	3.99	3.94	3.80	4.04	3.34	3.24	3.45	3.66	3.08	3.30	3.97	3.68	3.41
Baidu	3.75	1.93	3.85	3.78	3.76	3.44	3.27	3.13	2.93	2.20	1.01	1.74	1.73	2.59	1.72
Correlation	0.72	0.72	0.64	0.61	0.69	0.59	0.59	0.28	0.54	0.83	0.83	0.49	0.59	0.68	0.63

Table 12: Human evaluation result on $Zh \rightarrow X$ direction. Manually comparing the performance of LegoMT2 with NLLB-200-1.3B, Google, and Baidu translators, respectively. Based on the results of human evaluation, it has been found that LegoMT2's performance surpasses that of Baidu by a substantial margin and is on par with Google's performance.

Module	X→Ne	$X {\rightarrow} Mi$	X→Be	$X {\rightarrow} Km$	AVG.
Mix-Flow	27.2	19.0	18.7	14.3	19.8
Dec-Flow	28.7	18.5	20.0	16.9	21.0

Table 13: Using Dec-Flow, translation performance on *Flores-101* devtest can be improved even for low-resource languages.

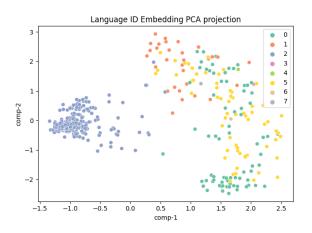


Figure 6: Language clustering results. After obtaining the model through single-model fine-tuning, we extract embedding vectors corresponding to all language IDs. Then perform K-means clustering on this embedding matrix and visualize the clustering results using PCA. The results show that the clustering quantity is unbalanced between clusters.

Group	# Data in one shard	Group	# Data in one shard
Group 1	24M	Group 5	34M
Group 2	31M	Group 6	33M
Group 3	34M	Group 7	31M
Group 4	35M	Group 5 Group 6 Group 7 Group 8	31M

Table 14: The statistics of each shard we utilized in a single shared.

models to perform tasks on different modalities such as text, vision, and audio.