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Abstract

It is a critical challenge to learn a single model
for massive languages. Prior methods focus
on increasing the model size and training data
size. However, large models are difficult to op-
timize efficiently even with distributed parallel
training and translation capacity can interfere
among languages. To address the challenge,
we propose LegoMT2, an efficient training ap-
proach with an asymmetric multi-way model
architecture for massive multilingual neural ma-
chine translation. LegoMT2 shards 435 lan-
guages into 8 language-centric groups and at-
tributes one local encoder for each group’s lan-
guages and a mix encoder-decoder for all lan-
guages. LegoMT2 trains the model through lo-
cal data parallel and asynchronous distributed
updating of parameters. LegoMT2 is 16.2×
faster than the distributed training method 1 for
M2M-100-12B (which only for 100 languages)
while improving the translation performance
by an average of 2.2 BLEU on Flores-101, es-
pecially performing better for low-resource lan-
guages 2.

1 Introduction

Recent years have witnessed great success in mul-
tilingual neural machine translation (MNMT; Ha
et al., 2016a; Johnson et al., 2017; Costa-jussà et al.,
2022 that uses a single model for translating all
directions. To construct an MNMT system that
supports high-quality translation for massive di-
rections, many efforts have been put into scaling
up the model size and training corpus (Liu et al.,
2020; Fan et al., 2021). For example, Costa-jussà
et al. (2022) constructed a 54.5B NLLB model to
support translation among 200 languages.

However, with the increasing model size, train-
ing a single model over massive data brings new
challenges. Specifically, the challenge is two-
fold: (1) huge training costs. Existing distributed

1https://github.com/CONE-MT/CONE
2https://huggingface.co/Lego-MT

training methods still exhibit large communica-
tion overhead (Rasley et al., 2020); (2) parame-
ter interference. Languages compete for model
capacity within an MNMT model. Mixture-of-
Experts (MoE; Shazeer et al., 2017; Costa-jussà
et al., 2022 is a popular solution to reduce param-
eter interference, but it also introduces substantial
memory and computational overheads.

To address these challenges, we propose
LegoMT2, an efficient approach to train massive
MNMT. LegoMT2 consists of three key designs:
a proper language-based data sharding scheme,
an asymmetric multi-way model architecture, and
asynchronous distributed updating.

First, LegoMT2 shards data into 8 carefully de-
signed language groups. Under this scheme, we
arrange all languages based on the size of the
language-centric data (sentence pairs that are from
or to a specific language) Each group’s data is
stored on a dedicated set of GPU servers, there-
fore no moving of training data is needed.

Second, we design an asymmetric multi-way
Transformer to alleviate parameter interference.
Our key insight is the separation of the model used
for training and inference and splitting language
capacity into different model components. Our
model consists of a mix encoder-decoder for all
languages and one language-specific encoder for
each shard. At inference time, it only uses the mix
encoder-decoder.

Third, we design an asynchronous distributed
updating algorithm to accelerate the training. Our
key insight is that at training time, we no longer
need to load all model parameters into all workers,
thanks to our sharding scheme and model archi-
tecture. We only load and train two encoders and
one decoder responsible for the shard. We only ag-
gregate a fraction of parameters using a parameter
server asynchronously. There is no need to trans-
fer language-specific encoders, thereby reducing
communication costs. Parameter communication
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is efficient and does not block the training on local
workers.

We construct a large-scale MNMT translation
dataset to train LegoMT2. The proposed dataset
contains 25B parallel pairs, covering 435 languages
and 22,613 translation directions. We use our
method to obtain a 1.6B LegoMT2 model for
435 languages. Our experiments on Flores-101
show that LegoMT2 achieves 16.2× speedups over
M2M-1001-12B and 2.2 BLEU gains over the prior
best approach NLLB of the similar size.

2 Related Work

The most common approach in MNMT is using a
single model to handle all translation directions (Ha
et al., 2016a; Johnson et al., 2017; Bapna et al.,
2019; Liu et al., 2020; Fan et al., 2021), which has
promising generalization abilities by transferring
knowledge from high-resources and low-resources.
Recently, scaling up the size of MNMT models has
brought significant quantitative improvements and
new qualitative capabilities (M2M-100, Fan et al.
2021; NLLB-200, Costa-jussà et al. 2022; inter
alia). However, employing a single model for all
translation directions (Ha et al., 2016a; Johnson
et al., 2017; Bapna et al., 2019; Lin et al., 2020;
Liu et al., 2020; Pan et al., 2021; Sun et al., 2021)
is often subject to capacity bottlenecks and trade-
offs between translation quality and the number of
languages (Aharoni et al., 2019; Zhang et al., 2020;
Ha et al., 2016b). To accelerate the training of mod-
els on large data with large models, there are some
existing acceleration strategies (Lee et al., 2022;
Shen et al., 2023; Li et al., 2020; Zhao et al., 2023).
Distributed Data Parallel (DDP Li et al., 2020) is a
method for distributed training that creates model
copies on each worker generates gradients inde-
pendently, and shares them to keep the models
consistent. Fully Shared Data Parallel (FSDP Zhao
et al., 2023) is a high-quality solution for train-
ing large models; Megatron-LM (Narayanan et al.,
2021) shows how combining different parallelism
methods to scale up to thousands of GPUs and
models with trillions of parameters. Nevertheless,
researchers (Aharoni et al., 2019) have observed
that there is a trade-off between translation quality
and language number when using a single model
for inference. Based on this, LaSS (Lin et al., 2021)
is designed to learn distinct sub-networks for each
language direction. And (Yuan et al., 2022) pro-
pose a detachable model architecture further en-

hancing the performance of machine translation by
language-specific module.

3 LegoMT2 Approach

We present LegoMT2 approach to train a single
unified model to translate a massive number of
languages (N = 435). Previous training meth-
ods such as distributed data parallel need to load
the full model parameter to each worker’s GPUs.
Our approach only selects part of the model and
trains them on each worker. These model shards
are communicated from and to a parameter server
asynchronously (Figure 1). This reduces the mem-
ory consumption during training and therefore en-
ables a larger batch size and lower communication
overhead during training.

3.1 Model Architecture

We adopt a multi-way architecture based on Trans-
former backbone (Dong et al., 2015; Firat et al.,
2016; Yuan et al., 2022). Different from previous
models, our architecture is asymmetric multi-way
Transformer. It consists of S + 1 encoders and one
decoder, where S is the number of shards (=8). In
our implementation, we use 24 Transformer layers
in both encoders and the decoder. Each of the first
S encoders, denoted as language-centric encoder,
is responsible for encoding text in a designated
set of languages. The grouping of languages will
be discussed later. The last encoder, denoted as
mix encoder, is responsible encoding all N = 435
languages. The only decoder is responsible for gen-
erating text for all languages. Our purpose is to
alleviate parameter interference among languages
for language-centric branches while maintaining
multilingual capability in the mix branch.

These encoders share a same encoding space
and can be combined with the decoder to translate.
There are two translation paths for each language
direction. For example, we can combine 1st en-
coder and the decoder to translate from English to
German, or we can combine mix encoder and the
decoder for the same purpose. Both paths will be
used in our distributed training, while only mix en-
coder and decoder combination will be used during
inference. Therefore our approach significantly re-
duces computational costs and decreases latency. It
proves to significantly improve the translation qual-
ity, especially in low-resource languages. Figure 1
illustrates a portion of the model architecture.

We construct a joint vocabulary of 491,706 to-
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Figure 1: Overview of LegoMT2. 1) Sharding: It partitions data into language-centric groups. e.g. all parallel
sentences from/to English, French, and Spanish are in Group 1 and stored in Worker 1. 2) Model: one language-
specific encoder, one mix encoder, and one mix decoder for each shard. 3) Training: Each worker trains using data
parallelism. Each worker stores its mix encoder-decoder parameters to the parameter server (PUSH) and loads
an average of these parameters from the server (PULL) at pre-determined intervals. Parameter communication is
asynchronous, which does not block local training.

kens using Byte-Pair-Encoding. We start from
NLLB’s vocabulary with 256,000 tokens (Costa-
jussà et al., 2022). Since NLLB only supports 201
languages, we construct 3,000 BPE tokens for each
of 234 new languages. We merge all tokens to-
gether and obtain a large multilingual vocabulary
with 491,706 tokens.
Parameters: We set token embedding size to be
1024. The total number of parameters for the em-
bedding amounts to 0.5 billion, #emb_param =
0.5B. The embedding parameters are shared
among all encoders and the decoder. A single en-
coder with 24 Transformer layers has a total of 0.5
billion parameters, #enc_param = 0.5B. The de-
coder with 24 Transformer layers has a total of 0.6
billion parameters, #dec_param = 0.6B. Dur-
ing training, the total number of model parameters
is: #emb_param + #enc_param × (S + 1) +
#dec_param = 0.5+0.5× 9+0.6 = 5.6B. Dur-
ing inference, we only use the mix encoder and the
decoder, therefore the total number of parameters is
#emb_param+#enc_param+#dec_param =
0.5+0.5+0.6 = 1.6B. The mix-encoder-decoder
has the same number of parameters as NLLB1.3B,
while the additional 0.3B parameters are due to the
additional tokens for extra 234 languages.

3.2 Language-based Model/Data Sharding

During training, we assign one language-specific
encoder, the mix encoder, and the decoder to form
a local partial model on each worker node. Each
worker is only responsible for training this local

partial model. In practice, we use 8 (the division
into 8 groups is based on the GPU nodes) worker
nodes, one for each shard.

We partition the training data for 435 languages
into 8 shards. We divide all languages into 8 sets,
denoted as Si, each with a different number of
non-overlapping languages. For example, the 1st
shard S1 contains English, Spanish, and French.
Each shard contains parallel sentence pairs from
and to a designated set of languages. Given a mul-
tilingual parallel dataset D with N = 435 lan-
guages D, we assign data to language-centric sub-
sets Dlang→· and D·→lang. Dlang→· contains par-
allel pairs from the language lang to other lan-
guages. D·→lang contains parallel pairs from other
languages to the language lang. Each data shard
D̃i is constructed by merging language-centric
pairs for languages belonging to the shard, i.e.
D̃i =

⋃
lg∈Si

Dlg→· ∪ D·→lg. For example, 1st
shard contains sentence pairs from English, Span-
ish, French to the rest 432 languages and from the
rest 432 languages to English, Spanish, French. No-
tice that each (directional) pair occur exactly twice
among these shards combined.

In our method, we group languages based on
the size of the language-centric data. Therefore
each resulting shard contains roughly equal size
of data. The languages for each shard are listed in
Appendix A.
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3.3 Dual-path Local Data Parallel Training
Each local worker only trains a local partial model,
which consists of a language-specific encoder, the
mix encoder, and the mix decoder. Since each
worker contains multiple GPUs (8 in our exper-
iment), we use a data parallel training approach.
Each shard is further divided into multiple paral-
lel batches that are trained together. The training
objective for shard i is:

minL(θemb, θ
i
enc, θmix_enc, θmix_dec) (1)

=Fi(θemb, θmix_enc, θmix_dec)

+Gi(θemb, θ
i
enc, θmix_dec)

where θemb, θienc, θmix_enc, and θmix_dec are pa-
rameters for token embeddings, i-th language-
specific encoder, the mix encoder, and the mix de-
coder. Our data go through the local model in two
paths, either from the language-specific encoder to
the mix decoder or from the mix encoder to the mix
decoder. These two paths have loss Fi and Gi.

The loss Fi is computed using the mix encoder
and the global decoder:

Fi =
∑

⟨x,y⟩∼D̃i

−logPθemb,θmix_enc,θmix_enc(y|x) (2)

where (x,y) is a sample from language-centric
data in the shard as defined above. Notice that this
loss only involves the mix encoder and the mix
decoder, therefore only the parameters for these
plus embeddings will be updated.

The second loss Gi is computed using i-th
language-specific encoder and the mix decoder.

Gi =
∑

⟨x,y⟩∼D̃i

−logPθemb,θ
i
enc,θmix_dec(y|x) (3)

where (x,y) is a sample from one-to-many
data D̃′

i. D̃′
i contains pairs from the languages

in i-th shard, i.e. D̃′
i =

⋃
lg∈Si

Dlg→·. Notice that
in this loss we only use half of the data on this
shard and only the parameters for embeddings, the
language-specific encoder, and the mix decoder
will be updated.

Our design of the loss and the data will encour-
age the language-specific encoder and the mix en-
coder to produce similar embeddings for the same
input in the language assigned to each shard. This
will result in a shared encoder embedding space.

3.4 Asynchronous Distributed Update
Large-scale training usually requires massive com-
munication costs to collect gradients from each

client. LegoMT2 develops an effective communica-
tion approach by exchanging and updating partial
parameters asynchronously. Since the language-
specific encoders are local to each worker, we do
not need to transfer and broadcast these parame-
ters to other workers. We only need to update the
parameters for embeddings, the mix encoder, and
the mix decoder. Therefore we only need to trans-
fer 1.6 billion parameters instead of a total of 5.6
billion, a saving of 71% in communication cost.

We adopt a parameter server to store 8 copies
of embeddings, the mix encoder, and the mix de-
coder parameters. In our implementation, we use
a networked file system as the parameter server.
Transferring 1.6 billion parameters from each work
to the parameter server only costs a few seconds.
The update operation comprises two main opera-
tions: PUSH and PULL.
PUSH: After a fixed local training interval α, each
worker stores the parameters of embeddings, the
mix encoder, and the mix decoder to the parame-
ter server. This saving operation is asynchronous
therefore each worker stores the parameters at dif-
ferent time. The parameter server keeps 8 different
copies of these parameters.
PULL: After a fixed number of local training in-
terval β, each worker loads all 8 copies of embed-
dings, mix encoder, mix decoder to local memory.
It then computes an average of these parameters
and update the local parameters. Notice that in this
procedure, the language-specific encoder parame-
ters are not updated since they are only computed
locally. This operation does not require any syn-
chronization, therefore each worker may obtain
different parameter values at different time.

LegoMT2 uses these two operations to com-
plete parameter communication across all workers.
Our asynchronous updating with partial parameters
largely eliminates overhead in distributed training.
These operations do not pause the training of local
clients, therefore largely improving the throughput
of training. The whole algorithm is listed in Alg. 1.

4 Experiments

4.1 Dataset, Models and Training Details
Training Data: We gather many-to-many dataset
from OPUS 3 (Tiedemann, 2012), an open corpus
that compiles numerous parallel sentences from
the internet, covering a wide range of domains,
from legislative to religious texts. The dataset we

3https://opus.nlpl.eu/
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Algorithm 1: Asynchronous Distributed Update
Data: S: number of workers. α: interval for pushing

parameters. β: interval for pulling parameters.
θ below refers to the parameters of
embeddings, the mix encoder, and the mix
decoder.

Parallel for worker i = 1 to S do
Shuffle local language-centric data on i-th worker

to obtain a new training sequence B ;
ts ← 0 and tl ← 0 ;
for batch b = 1 to B do

// on worker i
if current_time− ts ⩾ β then

PULL ({θ(1), θ(2), · · · , θ(S)})
θavg ← θ(1),θ(2),··· ,θ(S)

S
θi ← θavg
ts ← current_time

end
if current_time− tl ⩾ α then

PUSH (θi, i) tl ← current_time
end

end
end

constructed consists of 435 languages and approxi-
mately 22,000 language pairs, comprising around
25 billion sentence pairs. In the training set, over
11,000 language pairs contain more than 1,000 sen-
tence pairs, and 1,151 of them have more than 1
million sentence pairs. Among all the languages,
19 have more than 1 billion sentence pairs (see
more in Appendix B).
Metric: To evaluate the effectiveness of our model,
we have taken a comprehensive approach. Since
no dataset currently covers 435 languages, we have
partially followed the standard testing process and
assessed our model’s performance on the widely-
used multilingual dataset known as Flores-101. We
use the same evaluation metric of sentence piece
BLEU (abbreviated as spBLEU) to compare our
approach with strong baselines and present the aver-
age performance of the 86 languages4 that overlap
with Flores-101 for all M2M-100 models. Addi-
tionally, there is no parallel evaluation data for the
majority low-resource languages that are not in
Flores-101. we have employed back translation
(src-tgt-srcb) to evaluate our model’s performance
over 435 language translations. This process in-
volves translating text from the source language
(src) to the target language (tgt) and then back to
the source language (srcb). Back-spBLEU evalu-

4These 86 languages are: af, am, ar, ast, be, bg, bn, bs, ca,
ceb, cs, cy, da, de, el, en, es, et, fa, ff, fi, fr, ga, gl, gu, ha, he,
hi, hr, hu, hy, id, ig, is, it, ja, jv, ka, kk, km, kn, ko, lb, lg, ln,
lo, lt, lv, mk, ml, mn, mr, ms, my, ne, nl, no, ns, oc, or, pa, pl,
ps, pt, ro, ru, sd, sk, sl, so, sr, sv, sw, ta, th, tl, tr, uk, ur, uz, vi,
wo, xh, yo, zh, zu.

ates the spBLEU score between src and srcb. To
avoid counting direct copies, we also report the
translation performance between src and tgt.
Models: Flores-175MB / 615MB are two base-
lines released with the Flores-101 dataset (Goyal
et al., 2022), which are based on M2M-100 model.
M2M-100-1.2B (Fan et al., 2021) is a powerful
multilingual sequence-to-sequence model that can
translate between 100 languages in 9,900 direc-
tions. It is an encoder-decoder model trained for
Many-to-Many multilingual translation and built
using the Transformer architecture. M2M-100-
12B (Fan et al., 2021) is a multilingual encoder-
decoder model that builds on M2M-100-1.2B by
adding language-specific information. Its main pur-
pose is to perform translation tasks between any
of the 100 languages. NLLB-200-1.3B (Costa-
jussà et al., 2022) is a distilled variant of the
NLLB-200 model, which is a pre-trained MNMT
model that supports 200 languages. NLLB-200-
54.5B (Costa-jussà et al., 2022) is a Mixture of
Expert (MoE) model and is the largest MT model.
To ensure a fair comparison, we fine-tune the
NLLB-200-1.3B model with added 235k tokens
on our datasets using a standard centralized train-
ing method, recorded as Single-FT.
Training Details: For balanced training, we sort
all languages based on language-centric data and
uniformly split all languages into 8 groups. The
language details of 8 groups can be found in
Appendix A. The training code is developed on
fairseq5 repository. The model architecture follows
the design in Yuan et al. (2022), with different con-
figurations and vocabulary sizes. Both the global
and private models are initialized with NLLB-200-
1.3B weights. To synchronize the speed among dif-
ferent clients as much as possible, GPU resources
are allocated to each group as follows: each client
model is trained on 8 80G A100 using the Adam
optimizer with β1 = 0.9, β2 = 0.999, learning
rate 1e − 4, the maximum number of tokens in a
batch is 4, 000, update parameters every 48 batch,
when in an epoch. The interval of save α and load
β is set as 6 and 12, respectively. This setting pri-
marily considers the fault tolerance time for three
consecutive loading failures.

4.2 Main Results

LegoMT2 achieves 16× speedups over tradi-
tional distributed training Training a single

5https://github.com/facebookresearch/fairseq.
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Module Parallelism # Param Training
(training) Token/s Speedup

Single-FT DDP 1.6B 76,116 40.6×
M2M-100-12B DDP + Pipeline 12B 1,873.4 1.0×

LLaMA DDP + Tensor + Pipeline + Flash Attention 13B 7,091.3 3.8×
LegoMT2 Selective Asynchronous Sharded + DDP 5.6B 30,280.9 16.2×

Table 1: The training speed. The number of tokens a model can handle per second is represented by “Token/s”. The
analysis on training demonstrates that LegoMT2 can process more tokens per second with higher GPU efficiency.

model on multiple GPUs can result in signifi-
cant communication costs, limiting training effi-
ciency. Our LegoMT2 reduces the bottlenecks
caused by aggregation across GPUs. By split-
ting models into different workers, we can get
almost 10× speedups. With reduced communi-
cation costs in asynchronous update, LegoMT2
further achieves almost 1.6× speedups. Finally,
LegoMT2 brings almost 16× speedups. As shown
in Table 1, LegoMT2 can process more tokens per
second and has higher GPU efficiency than a big-
ger model with 12B parameters. We also compared
LegoMT2 with widely-used distributed training
acceleration frameworks, (e.g., deepspeed (Rajb-
handari et al., 2020) and megatron (Shoeybi et al.,
2019)), LegoMT2 also shows over 4× throughput
improvements. In baseline “Single-FT”, we im-
plement distributed data parallelism (DDP) and
pipeline parallelism (Huang et al., 2019) to ac-
celerate training using the released code training
NLLB. In addition, we also report an LLM base-
line LLaMA (Touvron et al., 2023) having a similar
model size with almost the SOTA distributed set-
ting: DDP + tensor parallelism and pipeline paral-
lelism. Additionally, we use an efficient version of
Transformer Flash Attention (Dao et al., 2022) for
faster inference. Compared to these advanced train-
ing methods, LegoMT2 is a simple but efficient
method.

LegoMT2 outperforms single-model fine-tuning
by a large margin. As illustrated in Table 2,
LegoMT2 outperforms Single-FT by a large marge
with 2.2 spBLEU on many-to-one translation and
2.5 spBLEU on one-to-many translation. For a fair
comparison, we only report results by using the
shared global encoder and global decoders for all
translation directions. With additional language-
specific parameters, LegoMT2 alleviates parameter
interference and brings better results. Furthermore,
unlike traditional synchronous aggregation meth-
ods, we adopt asynchronous aggregation to update
global parameters to reduce communication costs

and delays. The better results also demonstrate that
asynchronous training is an effective method for
training massive models.

LegoMT2 supports 435 languages, the most cov-
ered languages among all existing multilingual
machine translation systems. To build a fair
comparison, we conduct a large-scale multilingual
training set. Our approach balances the trade-off
between knowledge transferring and parameter in-
terference. Otherwise, involving more languages
would result in performance degeneration. Due
to the lack of high-quality test translations over
400+ languages, we adopt a practical unsupervised
metric, Back-spBLEU to compute the BLEU score
between source text and back-translated text. As
shown in Table 3, we sample several language-
centric results and LegoMT2 demonstrates an im-
provement in back-translation performance without
source copy (comparable src-trg scores).

Human evaluation results show that the perfor-
mance of LegoMT2 reaches commercial trans-
lators’ performance. We manually assessed the
performance of Google Translator, Baidu Trans-
lator, LegoMT2, and NLLB-200-1.3B models on
Chinese-centric translation tasks. The resulting
evaluation scores ranged from 0 to 5. A score of
0 meant that the language was not supported or
could not be translated at all. A score of 5 im-
plied that not only was the content preserved, but
the expression was also very smooth. The perfor-
mance of LegoMT2 is between Google and Baidu,
while largely better than NLLB-200-1.3B. More
human evaluation details are shown in Appendix E.
Among the overlapped languages, LegoMT2 has
an average translation score of 3.12, while Google
Translator has an average score of 3.64. Similarly,
LegoMT2’s average score is 3.03, while Baidu
Translator’s average score is 2.55.

LegoMT2 brings better performance improve-
ments on high-resource translation We find that
multi-way training benefits high-resource transla-
tion by relieving parameter interference. On high-
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Model H L H L H L H L H L H L H L AVG.X→ En X→ Pt X→ Hu X→ Da X→ Zh X→ Sw X→ Pa

NLLB-200-54.5B 44.9 39.0 35.8 30.8 27.8 22.8 34.6 28.7 17.3 16.7 28.4 25.4 30.7 27.0 29.3

Flores-175M 23.5 8.4 23.5 7.8 15.8 5.3 20.9 5.4 10.7 3.6 12.3 4.5 2.3 1.3 10.4
Flores-615M 30.9 12.8 30.1 11.8 22.0 8.0 27.5 9.6 15.9 6.2 18.6 7.4 3.7 2.1 14.8
M2M-100-1.2B 36.3 16.8 33.1 14.8 24.8 10.4 31.0 13.0 18.3 7.8 20.6 9.7 3.7 2.5 17.3
M2M-100-12B 38.2 18.6 34.8 17.0 26.1 12.2 32.2 14.5 18.3 8.7 23.9 12.9 12.5 7.0 19.8
NLLB-200-1.3B 41.6 35.9 34.0 28.5 23.9 19.3 32.1 25.9 14.5 13.7 27.5 24.3 29.4 25.9 26.9

Single-FT-1.6B 40.1 33.0 34.1 27.6 23.5 18.0 31.6 24.9 18.0 15.1 26.3 22.2 26.5 22.8 26.0
LegoMT2-435-1.6B 42.9 35.6 36.8 29.5 26.0 20.6 33.9 27.0 20.5 16.8 28.1 24.2 28.6 24.9 28.2

Model En→ X Pt→ X Hu→ X Da→ X Zh→ X Sw→ X Pa→ X AVG.

NLLB-200-54.5B 40.3 30.6 34.2 26.4 29.3 23.0 33.5 25.5 25.3 20.4 29.0 22.9 29.9 24.8 28.2

Flores-175M 21.2 4.8 20.3 4.4 16.4 3.4 20.2 4.1 12.4 2.7 12.9 3.2 3.2 1.1 9.3
Flores-615M 29.8 7.0 26.4 5.8 22.4 4.8 26.7 5.6 17.7 4.1 19.4 4.8 5.4 1.6 13.0
M2M-100-1.2B 33.8 9.6 29.2 7.7 25.4 6.5 29.2 7.4 20.8 5.5 21.5 6.6 9.7 3.1 15.4
M2M-100-12B 36.2 14.0 31.1 11.6 26.9 9.6 31.0 10.9 21.8 8.4 23.8 9.9 13.7 6.6 18.3
NLLB-200-1.3B 36.4 28.3 30.9 24.4 25.7 20.9 30.2 23.5 21.7 18.1 25.4 21.3 25.6 22.3 25.3

Single-FT-1.6B 35.8 24.6 30.2 21.0 24.9 18.2 30.1 21.2 22.0 17.0 25.0 19.5 25.1 18.6 23.8
LegoMT2-435-1.6B 38.6 27.5 32.5 23.3 28.3 20.7 32.9 23.2 23.6 18.2 28.2 21.9 27.5 21.4 26.3

Table 2: Result on the Flores-101 devtest. “Para.” refers to the number of parameters required for inference.
“H” and “L” represent average results from or to high/low-resource languages, where high-resource languages
include all languages in Groups 1-6 while low-resource languages include all languages in Groups 7-8. Single-FT
and LegoMT2 have the same training data and can be fairly compared. LegoMT2, supporting 435 languages,
outperforms Single-FT by a large margin.

Model S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑ S-T↓ S-Sb↑
En→X→En Pt→X→Pt Hu→X→Hu Da→X→Da Zh→X→Zh Mt→X→Mt Pa→X→Pa Lo→X→Lo

Single-FT 8.3 36.6 2.8 31.3 1.7 18.1 2.6 26.7 1.3 15.8 1.4 27.9 0.2 17.4 1.1 14.6
LegoMT2 9.6 43.2 3.0 37.7 1.8 22.2 2.7 33.0 1.3 20.1 1.5 35.0 0.2 22.3 1.2 18.3

Model Fr→X→Fr Nl→X→Nl Bg→X→Bg Sk→X→Sk Mk→X→Mk Is→X→Is Ig→X→Ig Li→X→Li

Single-FT 2.7 32.1 2.7 25.0 0.7 27.5 1.7 22.9 0.7 24.3 1.7 17.7 1.4 13.4 2.5 7.1
LegoMT2 2.8 38.4 2.9 31.5 0.9 31.1 1.8 28.0 0.8 30.3 1.9 22.5 1.5 14.6 2.4 9.8

Model Ja→X→Ja Es→X→Es Ar→X→Ar Lt→X→Lt Fo→X→Fo De→X→De Uk→X→Uk Zu→X→Zu

Single-FT 0.2 16.7 4.7 27.7 0.8 17.2 1.1 19.8 1.8 13.2 2.8 23.8 0.5 20.7 1.2 16.4
LegoMT2 0.3 21.6 4.1 33.0 0.8 21.8 1.2 24.5 1.6 12.9 2.9 30.8 0.6 26.9 1.5 20.4

Table 3: Back-translation evaluation results. Back-translation (src-trg-srcb) is an unsupervised evaluation method
that involves translating source text to target text src-trg (S-T, such as En→X) and then translating target text back
to source text src-srcb (S-Sb, such as En→X→En). Lower S-T and higher S-Sb are better. Results demonstrate that
LegoMT2 outperforms Single-FT on back-translation performance with almost the same src-trg (S-T) score.

resource translation, LegoMT2 outperforms NLLB-
200-1.3B with gains of 1.3 BLEU on many-to-one
translation and 2.0 BLEU on one-to-many trans-
lation. LegoMT2 largely narrows the gap with
the largest machine translation model, NLLB-200-
54.5B. Specifically, some results even approach the
NLLB-200-54.5B. Taking Group-5 as an example,
LegoMT2 yields +3.2% spBLEU improvements
over NLLB-200-54.5B on Group-5 on many-to-
one settings. Meanwhile, LegoMT2 is on par with
NLLB-200-1.3B on low-resource settings. It is
mainly because NLLB focuses on low-resource
settings and extremely optimizes low-resource set-
tings based on techniques like back-translation. We
only cover limited resources for each translation
pair to support more languages.

5 Analysis of LegoMT2

Why does asynchronous training work?
LegoMT2 introduces asynchronous training
to reduce communication delays to accelerate
training. Each client pulls the latest parameters
every α minutes and pushes current parameters
into the federated server every β minutes. It
represents that all clients do not always enjoy and
latest parameters. To prove whether such delay
affects final performance, we conduct experiments
by using global modules from other clients for
inference. Figure 2 shows that delayed global
parameters do not affect model training. The client
can use delayed global parameters from other
clients for inference without any performance
drops.
Impact of push/pull (α/β) intervals setting Test
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Figure 2: Analysis on deferred parameters for embed-
dings and mix encoder-decoder. Each worker uses de-
layed parameters from other worker for inference with-
out experiencing any decrease in performance. This ob-
servation substantiates the notion that the asynchronous
updating of partial parameters does not exert a negative
impact on model training.

Direction Setting Hr Bg Da AVG.

LG→X Similarity 14.7 14.9 16.1 15.2
Random 16.9 17.6 18.9 17.8

X→LG Similarity 12.9 18.5 19.1 16.8
Random 15.0 21.2 22.4 19.5

Table 4: The model trained using imbalanced shard-
ing (Similarity) is significantly inferior to the balanced
sharding (Random).

the effect of different save/load intervals on sys-
tem performance, i.e. the effect of α and β in
the algorithm. Theoretically, when α and β are
small enough, the localized training by LegoMT2
is approximately equal to synchronous training.
Here, we conduct two different settings: 1) α =
10min, β = 20min and 2) α = 20min, β =
40min. We test two settings LegoMT2 on the
Flores-101 devtest. Figure 3 shows the winning
rate of the first configuration over the second. The
results show that more frequent updates does im-
prove the performance at the cost of more commu-
nication.
Impact of language/data sharding In this work,
we sort languages based on the size of language-
centric data and split languages into different equal-
size groups. We adopt this split method because we
find that balanced training flows in different clients
help multilingual machine translation. In addition,
the common strategy of language clustering is by
similarity. Therefore, we use similarity clustering
to construct a baseline. Given an MNMT model,
here we use the single multilingual model to get lan-
guage id embedding, then directly apply kMeans
(by sklearn) on those embedding. The resulting

Figure 3: Impacts of push interval α and pull interval
β. 1) α = 10min and β = 20min; 2) α = 20min
and β = 40min. The figure shows the winning rate of
the first configuration over the second. More frequent
updates does improve the performance at the cost of
more communication.

Model X→En En→X AVG.
ChatGPT zero-shot 27.9 23.9 25.9
ChatGPT eight-shot 31.9 24.7 28.3
LegoMT2 38.3 31.6 35.0

Table 5: Comparison between ChatGPT and LegoMT2.
Both in the En→X and X→En direction, ChatGPT falls
behind LegoMT2 even with eight-shot.

number of languages varies significantly, therefore
the data in each group is highly imbalanced. The
clustering results are shown in Appendix D. Mean-
while, we also experiment by randomly splitting
language groups, which results in a balanced data
sharding. We train two models under these two
language/data sharding schemes. The result show
that the imbalanced data sharding (corresponding
to similarity in Table 4) hurts the system’s perfor-
mance.
Comparison between ChatGPT with LegoMT2
A comparative analysis between ChatGPT (GPT
3.5) and LegoMT2 on 100 samples in Flores-
101, as shown in Table 11, reveals that in zero-
shot and eight-shot performance, ChatGPT lags
behind LegoMT2 in the En→X and X→En di-
rection more than 6 points. The prompts uti-
lized for ChatGPT are “You are a helpful assis-
tant that translates {SOURCE_LANG} to {TAR-
GET_LANG}.” for the system and “Translate
the following {SOURCE_LANG} text to {TAR-
GET_LANG}: {SOURCE_TEXT}.” for the user.
The detailed results are shown in Appendix C.

6 Conclusion

The typical multilingual neural machine transla-
tion is training a single model for all directions
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with a centralized training schema, which faces
many challenges in practice including parameter
competition and efficiency problems. In this paper,
we propose a new MNMT pre-training framework
with federated learning, LegoMT2. Extensive ex-
periments verify the effectiveness of LegoMT2. It
brings 16.2× training speedups and large perfor-
mance gains. We build a translation system that
supports 435 languages, the supported language
number outperforming all existing open-source
multilingual machine translation systems.

Limitation

This paper also has several limitations. Firstly,
our analysis reveals that the augmentation of low-
resource translation through the use of language-
specific decoders (in Appendix F) and encoders
is not as effective as anticipated, necessitating a
deeper exploration of the interplay between param-
eter sharing and tension. Secondly, the assessment
of few-shot languages continues to pose a signifi-
cant challenge. Despite our training dataset encom-
passing 435 languages, our evaluation is limited
to back-translation performance, underscoring the
need for more rigorous benchmarks.
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A Sharding and Workers

The language group result as shown in Table 6.

We surprisingly find that low-resource language
groups harm pre-training During the training
process of LegoMT2, we include all clients to up-
date global parameters. However, we find that if we
directly combine low-resource languages in Group-
7 and Group-8 into pre-training, it will increase
the proportion of low-resource excessively, thus
reducing the performance of the entire system. As
shown in Figure 4, we conduct two experiments by
involving Group-7 and Group-8 or not and report
the performance improvements caused by remov-
ing Group-7 and Group-8 from pre-training. Ex-
periments show that low-resource languages bring
negative effects on pre-training by overestimating
the distribution of long-tailed languages.

B Dataset Construction

In this section, we will go through the details of
constructing a Many-to-Many dataset. The entire
pipeline is made up of six steps:

Step 1: Data Collection The unprocessed data
is obtained from OPUS6. It is an open corpus that
collects a large number of parallel sentences from
the Web and covers a wide range of domains from
legislative to religious texts.

Step 2: Data Unification OPUS has datasets
from several sources, which causes the two impor-
tant problems listed below.

1) Different Language Code: Language code is
the abbreviation for a language. In OPUS, there are
some languages has multiple language codes. One
of the causes is that different corpora follow dif-
ferent standards, including ISO 639-1, ISO 639-2,
ISO 639-3, or self-defined language codes. An-
other scenario is that some datasets use language
code and region code together. We take ISO 639-1
as the unique code and replaced ISO 639-2 and ISO
639-3 language codes with ISO 639-1 language
codes. All these language codes are released by
SIL International (formerly known as the Summer
Institute of Linguistics)7.

2) Inconsistent Operation: There are some in-
consistent operations in some datasets, for example,
pre-tokenize for Chinese and Japanese.

6https://opus.nlpl.eu/
7https://iso639-3.sil.org/sites/iso639-3/

files/downloads/iso-639-3.tab

To address the above issue, we first handle the
case where the language code ends with the re-
gion code by removing the region code. Then we
standardize all language codes by ISO 639-1. All
replaced language codes are listed in Table 7. For
the language codes out of ISO 639 series, we report
the detail of the language and the corpus that they
come from in Table 8. For ease of understanding,
we report all used languages with their full name
in Table 9. Finally, for the dataset with inconsis-
tent operations, we uniformly perform a removal
operation to restore them to natural text.

Step 3: Data Merging After unifying the lan-
guage code and operation, the parallel data with
the same language code will be merged into a file.

Step 4: Data Cleaning There are some low-
quality text in OPUS. They are mainly caused by
following reason.

1) Duplication: We apply fairseq8 deduplication
script for each language pair.

2) Missing Translation: Some low-quality paral-
lel data lacked the correct translation results. We
discard using the sentence where the source sen-
tence is without a corresponding target sentence
or simply repeat the source sentence as a target
sentence.

3) Length Mismatching: The length mismatch-
ing mainly focuses on the case where the difference
between the length of the source and the target is
too large. The length of a sentence is defined as the
number of words after segmenting with white space
(individual characters for Chinese and Japanese).
We reuse the filtering script from Moses9.

Step 5: Train-Dev-Test Split The train-dev-test
split scheme is specified by the data quantity.

1) A dataset has over 6.000 parallel sentences.
For a dataset, 2,000 randomly selected parallel sen-
tences are used as a test set, another 2000 randomly
selected parallel sentences are used as a validation
set, and the rest of the dataset is used as the training
set.

2) A dataset has less than 6.000 parallel sen-
tences. We use 80%, 10%, and 10% of all parallel
sentences as train, validation, and test set.

Meanwhile, we remove the sentence included
in the widely used benchmark (WMT, Flores-101)

8https://github.com/facebookresearch/fairseq/
edit/main/examples/backtranslation/deduplicate_
lines.py

9https://github.com/moses-smt/mosesdecoder
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Group 435 Languages

Group-1 fr, es, en
Group-2 nl, tr, pl, it, de, pt
Group-3 bg, ar, ru, fa, el, hu, ro, cs
Group-4 sk, da, uk, sl, he, fi, id, sv, vi
Group-5 ko, sq, hr, mk, sr, zh, no, bs, hi
Group-6 eo, mt, eu, sw, is, lv, ca, th, ms, zhtrad, bn, lt, et

Group-7 ig, km, ky, ps, tg, gv, nb, br, ss, sh, ze, zu, nn, pa, so, sn, kk, cy, mg, am, xh, az, gu , hy, kn, te,
ga, gl, be, mr, ne, si, af, ml, tl

Group-8 iro, kam, mvv, ofs, izh, ady, mic, osp, sg, sz, gan, gil, koi, nlv, tvl, kjh, mik, ngt, shy, bjn, hak, na,
non, ty, aoz, cdo, quz, bvy, ood, dng, myv, rap, akl, aln, niu, lkt, liv, mgm, ppl, pau, sdh, jam, hif,
phn, mo, ngu, ike, gbm, apc, xmf, acm, tly, bom, sma, sgs, pag, thv, iba, cycl, fro, zz, drt, ho,
udm, umb, tz, dws, ext, kv, rif, lut, pdc, evn, mww, moh, tpw, afh, sm, nch, afb, nog, hus, tpi,
yaq, min, luo, zlm, npi, zgh, hbo, luy, sat, cr, stq, ae, sux, pnb, ary, nah, ldn, qya, rue, mh, awa,
got, pcd, gsw, kik, hup, sjn, ain, cho, krl, egl, max, nv, tmr, haw, ik, frr, prg, vls, tw, fkv, hoc, qa,
lzh, hrx, cku, nst, sgn, kmr, enm, swh, frm, sah, nr, ota, nov, mad, gcf, grc, bzt, war, bho, kha,
orv, que, zam, tzl, to, swg, bnt, trv, kzj, bug, lij, sml, avk, cnh, mos, hai, qd, pam, dtp, bua, cu,
hil, brx, cbk, zhyue, bal, pi, din, fuv, nus, bh, zsm, tc, ksh, rup, nap, gos, fj, xal, efi, vo, lad, ry,
pmy, kj, gr, co, bm, ase, bi, iu, pms, azb, rn, hbs, dsb, av, scn, ve, miq, mfe, mus, mwl, nan, rm,
gn, lld, st, wuu, kr, tet, lmo, ce, ak, lfn, prs, cmn, pap, ber, inh, bem, tmp, ie, toki, shs, tlh, ab, cv,
aa, ltg, zhs, vec, zza, zht, qu, kl, ilo, bar, shn, ay, sco, szl, arz, gom, arq, ts, jbo, sc, ace, os, ks,
wae, ckb, frp, kw, zhtw, ti, sa, ns, bo, kg, ba, fo, io, dz, mhr, ang, ln, pot, tmh, om, fil, ia, lg, tk,
csb, yi, acu, ake, cb, jiv, se, dik, an, tn, agr, tt, kek, ojb, crp, pck, plt, dje, pes, lb, gbi, djk, cak,
mai, bsn, chq, quc, mam, ch, fur, ppk, cni, usp, jak, wal, amu, ee, lo, rw, nhg, shi, dop, wa, cx, li,
cjp, rom, quw, chr, cop, syr, ug, su, kab, hsb, kbh, hne, uz, nso, fy, ht, wo, crh, la, ny, or, gd, oc,
jv, nds, mn, as, ast

Table 6: Language groups. We sort languages based on the size of language-centric data and split them into 8
equal-size chunks.

from our training and validation set to keep the
fairness of comparison.

Step 6: Data Preprocessing The data prepro-
cessing consists of two main steps:

1) Sampling: Because the full dataset is huge, we
sample some data for our training. Our dataset con-
tains 435 languages and about 25B sentence pairs.
Table 10 shows the number of parallel sentences
in the training set for each language. We present
statistics on parallel sentence pairs for the top 100
languages in our constructed data, as shown in Fig-
ure 5. The dataset comprises 435 languages and
approximately 25 billion sentence pairs. Among
these, 19 languages have over 1 billion sentence
pairs, while for most languages, the total number
of sentence pairs in the dataset does not exceed 1
million.

2) Preprocessing: The data is preprocess using
the SentencePiece tokenizer provided by Costa-
jussà et al. (2022) with a expaned vocabulary of
size 491,404.

C Compare with ChatGPT

A comparison is made between the performance of
ChatGPT and LegoMT2 using the first 100 samples
extracted from the Flores-101 devtest. The effects

of both X→En and En→X are tested. For the sys-
tem, the given prompt for ChatGPT is: “You are a
helpful assistant that translates {SOURCE_LANG}
to {TARGET_LANG}.” For the sentences that
needed to be translated, the given prompt is:
“Translate the following {SOURCE_LANG} text
to {TARGET_LANG}: {SOURCE_TEXT}.” Both
zero-shot and eight-shot results are tested, with the
eight-shot samples being randomly extracted from
the Flores-101 dev.

For some language pairs, the performance of
ChatGPT is better than that of LegoMT2, such
as En→Zh, where ChatGPT scores 30.7 versus
LegoMT2 ’s 27.1. However, for the vast majority
of language pairs, LegoMT2 has an absolute advan-
tage. On average, ChatGPT lags behind LegoMT2
in both the En→X and X→En directions by more
than 6 points.

D Language Group by KMeans.

In this study, we categorize languages based on the
magnitude of language-specific data and partition
them into distinct groups of equivalent size. This
partitioning method was chosen due to our obser-
vation that balanced training flows among different
clients facilitate multilingual machine translation.
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Figure 4: Pre-training is negatively impacted by low-resource language groups. Two experiments were conducted
to determine the effects of including or excluding Group-7 and Group-8. The Y-axis displays the performance
improvements from pre-training.

Figure 5: We present an analysis of parallel sentence pairs for the top 100 languages in our constructed dataset.
Comprising 435 languages and approximately 25 billion sentence pairs, our dataset reveals that 19 languages have
over 1 billion sentence pairs. In contrast, the majority of languages have a total number of sentence pairs that do not
exceed 1 million.
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ak aka es es_HN pt pt_BR es es_CL kr kau tr tr_TR
am amh es es_EC pt pt_br es es_SV kv kpv ur ur_PK
ar ara es es_CO pt pt_PT es es_NI ln lin vi vi_VN
ar ar_SY fa fa_IR rn run es es_UY mg mlg wo wol
ar ar_TN fa fa_AF rw kin es es_PE ms ms_MY xh xho
ay aym ff ful sn sna es es_VE nb nb_NO yo yor
az az_IR fr fr_FR so som es es_AR nds nds_nl ze ze_zh
bg bg_BG fr fr_CA sr srp es es_MX nl nl_NL ze ze_en
bm bam fr fr_BE sr sr_ME es es_MX nl nl_NL ze ze_en
bn bn_IN fr fr_ca st sot es es_PA nl nl_BE zh zh_cn
ca cat ha hau sw swa es es_CR nn nn_NO zh zh_CN
da da_DK hi hi_IN ta ta_LK es es_PR no no_nb zhtrad zh_HK
de de_CH ig ibo tg tg_TJ es es_ES ny nya zhtrad zh_TW
de de_AT it it_IT ti tir es es_GT om orm zhtrad zh_tw
de de_DE jp jap tl tl_PH es es_DO pa pan zu zul

Table 7: Code Replacement List. We use the codes in the column “Original” to replace the codes in the column
“replaced” if these replaced codes exist in OPUS.

Furthermore, language clustering is commonly per-
formed based on similarity. While it is possible
to utilize existing linguistic knowledge for clas-
sification, this approach becomes labor-intensive

when dealing with more than 400 languages. As
such, we employ similarity clustering to establish a
baseline. Utilizing a single multilingual model, we
obtain language id embeddings and apply KMeans

23371



Code Dataset Code Dataset Code Dataset Code Dataset Code Dataset

crp bible-uedin cb MultiCCAligned sz MultiCCAligned sgn QED cycl Tatoeba
tc EUbookshop cx MultiCCAligned zz MultiCCAligned iro QED nah Tatoeba
zhs GlobalVoices ns MultiCCAligned ze OpenSubtitles mo QED,Ubuntu
zht GlobalVoices qd MultiCCAligned bh QED ber QED,Ubuntu
tmp GNOME qa MultiCCAligned bnt QED toki Tatoeba
gr GNOME tz MultiCCAligned ry QED kzj Tatoeba

Table 8: Unkown Language Codes, which are out of ISO 639 series. We can’t confirm their full names.

Language Code Language Code Language Code Language Code Language Code Language Code

Abkhazian ab Corsican co Iban iba Lower Sorbian dsb Ossetian os Swahili (macrolanguage) sw
Achinese ace Cree cr Icelandic is Lukpa dop Ottoman Turkish (1500-1928) ota Swati ss
Achuar-Shiwiar acu Creek mus Ido io Luo (Kenya and Tanzania) luo Paite Chin pck Swedish sv
Adyghe ady Crimean Tatar crh Igbo ig Lushootseed lut Palauan pau Swiss German gsw
Afar aa Croatian hr Iloko ilo Luxembourgish lb Pali pi Syriac syr
Afrihili afh Cusco Quechua quz Indonesian id Luyia luy Pampanga pam Tachawit shy
Afrikaans af Czech cs Ingrian izh Macedonian mk Pangasinan pag Tachelhit shi
Aguaruna agr Danish da Ingush inh Macedo-Romanian rup Panjabi pa Tagal Murut mvv
Ainu (Japan) ain Dari prs Interlingua ia Madurese mad Papiamento pap Tagalog tl
Akan ak Dinka din Interlingue ie Maithili mai Papuan Malay pmy Tahaggart Tamahaq thv
Akawaio ake Drents drt Inuktitut iu Malagasy mg Pedi nso Tahitian ty
Aklanon akl Dungan dng Inupiaq ik Malay (individual language) zlm Pennsylvania German pdc Tajik tg
Albanian sq Dutch nl Iranian Persian pes Malay (macrolanguage) ms Persian fa Talossan tzl
Algerian Arabic arq Dutton World Speedwords dws Irish ga Malayalam ml Phoenician phn Talysh tly
American Sign Language ase Dzongkha dz Italian it Maltese mt Picard pcd Tamashek tmh
Amharic am Eastern Canadian Inuktitut ike Jakun jak Mam mam Piemontese pms Tamil ta
Ancient Greek (to 1453) grc Eastern Mari mhr Jamaican Creole English jam Mambae mgm Pipil ppl Tarifit rif
Ancient Hebrew hbo Eastern Maroon Creole djk Japanese ja Mandarin Chinese cmn Plateau Malagasy plt Tase Naga nst
Arabic ar Efik efi Javanese jv Manx gv Polish pl Tatar tt
Aragonese an Egyptian Arabic arz Jewish Babylonian Aramaic tmr Maori mi Portuguese pt Telugu te
Armenian hy Emilian egl Kabyle kab Marathi mr Potawatomi pot Tena Lowland Quichua quw
Arpitan frp English en Kadazan Dusun dtp Marshallese mh Prussian prg Tetelcingo Nahuatl nhg
Asháninka cni Erzya myv Kalaallisut kl Mesopotamian Arabic acm Pushto ps Tetum tet
Assamese as Esperanto eo Kalmyk xal Miahuatlán Zapotec zam Quechua qu Thai th
Asturian ast Estonian et Kamba (Kenya) kam Middle English (1100-1500) enm Quenya qya Tibetan bo
Avaric av Evenki evn Kannada kn Middle French (ca. 1400-1600) frm Quiotepec Chinantec chq Tigrinya ti
Avestan ae Ewe ee Kanuri kr Mikasuki mik Rapanui rap Tohono O’odham ood
Awadhi awa Extremaduran ext Kaqchikel cak Mi’kmaq mic Romanian ro Tok Pisin tpi
Aymara ay Faroese fo Karelian krl Min Dong Chinese cdo Romansh rm Tonga (Tonga Islands) to
Azerbaijani az Fiji Hindi hif Kashmiri ks Min Nan Chinese nan Romany rom Traditional Chinese zhtrad
Baluchi bal Fijian fj Kashubian csb Minangkabau min Rundi rn Tsonga ts
Bambara bm Filipino fil Kazakh kk Mingrelian xmf Russian ru Tswana tn
Banjar bjn Finnish fi Kekchí kek Mirandese mwl Rusyn rue Tupí tpw
Barasana-Eduria bsn French fr Khakas kjh Mískito miq Samoan sm Turkish tr
Bashkir ba Friulian fur Khasi kha Modern Greek (1453-) el Samogitian sgs Turkmen tk
Basque eu Fulah ff Khmer km Mohawk moh Sango sg Tuvalu tvl
Bavarian bar Galela gbi K’iche’ quc Mongolian mn Sanskrit sa Twi tw
Baybayanon bvy Galician gl Kikuyu kik Morisyen mfe Santali sat Uab Meto aoz
Belarusian be Gan Chinese gan Kinyarwanda rw Moroccan Arabic ary Sardinian sc Udmurt udm
Bemba (Zambia) bem Ganda lg Kirghiz ky Mossi mos Saterfriesisch stq Uighur ug
Bengali bn Garhwali gbm Klingon tlh Nauru na Scots sco Ukrainian uk
Berom bom Georgian ka Koasati cku Navajo nv Scottish Gaelic gd Uma ppk
Bhojpuri bho German de Kölsch ksh Neapolitan nap Sediq trv Umbundu umb
Bislama bi Gheg Albanian aln Komi kv Nepali (individual language) npi Serbian sr Upper Sorbian hsb
Bodo (India) brx Gilbertese gil Komi-Permyak koi Nepali (macrolanguage) ne Serbo-Croatian sh Urdu ur
Bosnian bs Goan Konkani gom Kongo kg Nigerian Fulfulde fuv Shan shn Uspanteco usp
Breton br Gothic got Korean ko Niuean niu Shona sn Uzbek uz
Brithenig bzt Gronings gos Kotava avk Nogai nog Shuar jiv Venda ve
Buginese bug Guadeloupean Creole French gcf Kriang ngt North Levantine Arabic apc Shuswap shs Venetian vec
Bulgarian bg Guarani gn Kuanyama kj North Moluccan Malay max Sicilian scn Vietnamese vi
Buriat bua Guerrero Amuzgo amu Kurdish ku Northern Frisian frr Silesian szl Vlaams vls
Burmese my Guerrero Nahuatl ngu Kven Finnish fkv Northern Kurdish kmr Sindarin sjn Volapük vo
Cabécar cjp Gujarati gu Láadan ldn Northern Sami se Sindhi sd Walloon wa
Camsá kbh Gulf Arabic afb Ladin lld Northwestern Ojibwa ojb Sinhala si Walser wae
Catalan ca Haida hai Ladino lad Norwegian no Slovak sk Waray (Philippines) war
Cebuano ceb Haitian ht Lakota lkt Norwegian Bokmål nb Slovenian sl Welsh cy
Central Huasteca Nahuatl nch Hakha Chin cnh Lao lo Norwegian Nynorsk nn Somali so Western Frisian fy
Central Kurdish ckb Hakka Chinese hak Latgalian ltg Novial nov South Azerbaijani azb Western Panjabi pnb
Central Sama sml Hausa ha Latin la Nuer nus South Ndebele nr Wolaytta wal
Chamorro ch Hawaiian haw Latvian lv Nyanja ny Southern Kurdish sdh Wolof wo
Chavacano cbk Hebrew he Ligurian lij Occitan (post 1500) oc Southern Sami sma Wu Chinese wuu
Chechen ce Hiligaynon hil Limburgan li Old English (ca. 450-1100) ang Southern Sotho st Xhosa xh
Cherokee chr Hindi hi Lingala ln Old French (842-ca. 1400) fro Southwestern Dinka dik Yakut sah
Chhattisgarhi hne Hiri Motu ho Lingua Franca Nova lfn Old Frisian ofs Spanish es Yaqui yaq
Chinese zh Hmong Daw mww Literary Chinese lzh Old Norse non Standard Malay zsm Yiddish yi
Choctaw cho Ho hoc Lithuanian lt Old Russian orv Standard Moroccan Tamazight zgh Yoruba yo
Church Slavic cu Huastec hus Liv liv Old Spanish osp Sumerian sux Zarma dje
Chuvash cv Hungarian hu Lojban jbo Oriya (macrolanguage) or Sundanese su Zaza zza
Coptic cop Hunsrik hrx Lombard lmo Orizaba Nahuatl nlv Swabian swg Zulu zu
Cornish kw Hupa hup Low German nds Oromo om Swahili (individual language) swh

Table 9: List of Languages. Our dataset mainly use ISO 639 series as language code. For traditional Chinese, we
define “zhtrad” as code.

clustering to them. The results of this clustering
are depicted in Figure 6, which clearly illustrates
the variation in the number of languages across
different clusters. We also conduct an experiment
in which language groups are randomly split. Our
findings indicate that a severely unbalanced distri-
bution of clients negatively impacts system perfor-
mance.

E Human Evaluation Performance

Human evaluation results show that the perfor-
mance of LegoMT2 far exceeds that of Baidu and is
on par with Google. We manually assessed the per-
formance of Google Translator, Baidu Translator,

LegoMT2, and NLLB-1.3B models on Chinese-
centric translation tasks and found that, on aver-
age, Google Translator outperformed LegoMT2.
LegoMT2 performed better than Baidu Translator
and NLLB-1.3B, as shown in Table 12. Here are
the specifics of our human evaluation:

1) Data source: We evaluated a total of 100 raw
data samples, including 58 samples from the Flores-
101 dataset and 42 samples from the domains of
sports, entertainment, and financial news.

2) Annotation method: To better evaluate the
quality of large-scale translation, we adopted a
translation and back-translation method in our hu-
man evaluation. For instance, we presented a Chi-
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code sentence pairs code sentence pairs code sentence pairs code sentence pairs code sentence pairs code sentence pairs

aa 25190 cni 366213 he 768039586 lo 2934940 pag 41 swg 1485
ab 24734 co 5679 hi 218864052 lt 467441039 pam 1897 swh 767
ace 55744 cop 392871 hif 30 ltg 25791 pap 16428 syr 393273
acm 38 cr 128 hil 2044 luo 91 pau 28 sz 10
acu 275510 crh 583965 hne 3624732 lut 61 pcd 238 szl 45989
ady 10 crp 1698290 ho 51 luy 105 pck 1722862 ta 90971643
ae 139 cs 1457869889 hoc 517 lv 355693685 pdc 63 tc 2831
af 55335682 csb 1087185 hr 737162068 lzh 540 pes 1744278 te 20088988
afb 77 cu 1996 hrx 558 mad 947 phn 30 tet 12255
afh 73 cv 24927 hsb 662844 mai 1969608 pi 2306 tg 11994239
agr 296459 cx 2852903 ht 12715844 mam 358606 pl 1650606708 th 111068105
ain 306 cy 15839521 hu 1254849755 max 345 plt 1715974 thv 41
ak 13593 cycl 43 hup 287 mfe 8944 pms 6128 ti 98816
ake 278088 da 1024948205 hus 81 mg 18564176 pmy 5324 tk 237791
akl 23 de 2564377381 hy 19095048 mgm 27 pnb 154 tl 62019683
aln 23 dik 290563 ia 243295 mh 188 pot 163018 tlh 22430
am 12065296 din 2457 iba 42 mhr 150906 ppk 363985 tly 38
amu 375783 dje 1728497 id 697068570 mi 5753968 ppl 27 tmh 166643
an 457768 djk 354595 ie 19196 mic 10 prg 407 tmp 19110
ang 151166 dng 22 ig 4802381 mik 15 prs 14123 tmr 380
aoz 20 dop 381489 ik 393 min 84 ps 7700300 tn 488012
apc 35 drt 46 ike 32 miq 8506 pt 2812386990 to 1479
ar 1079338710 dsb 7157 ilo 891090 mk 177474445 qa 521 toki 37627
arq 50647 dtp 1911 inh 17366 ml 57004885 qd 1896 tpi 81
ary 155 dws 56 io 149762 mn 11603195 qu 31780 tpw 72
arz 78593 dz 161086 iro 8 mo 31 quc 358962 tr 1193231266
as 2307772 ee 376963 is 104661362 moh 72 quw 391236 trv 1535
ase 6084 efi 4358 it 2093054002 mos 1864 quz 20 ts 51109
ast 12083731 egl 322 iu 6120 mr 31855664 qya 171 tt 1501339
av 7398 el 1258104866 izh 9 ms 149607728 rap 22 tvl 13
avk 1757 en 5781922682 ja 434118540 mt 82700941 rif 60 tw 479
awa 225 enm 741 jak 368614 mus 9229 rm 10037 ty 17
ay 43034 eo 71211656 jam 29 mvv 8 rn 6358 tz 55
az 22317802 es 3911731697 jbo 53616 mwl 36153 ro 1335221001 tzl 1415
azb 6270 et 647382971 jiv 278960 mww 65 rom 391669 udm 53
ba 414706 eu 79865761 jv 12235804 my 9517618 ru 1460007489 ug 915049
bal 2285 evn 64 ka 23136675 myv 22 rue 175 uk 280561930
bar 75324 ext 57 kab 469669 na 16 rup 2965 umb 54
be 41361204 fa 383151473 kam 8 nah 160 rw 1271784 ur 47703807
bem 19058 ff 329791 kbh 407244 nan 9666 ry 5054 usp 368078
ber 192407 fi 1081684445 kek 1674772 nap 3093 sa 93931 uz 3381954
bg 1130459221 fil 1091348 kg 131420 nb 27802066 sah 835 ve 8057
bh 2613 fj 3443 kha 1282 nch 75 sat 114 vec 26482
bho 1263 fkv 498 kik 267 nds 6525803 sc 55166 vi 500458007
bi 6112 fo 228021 kj 5446 ne 36233624 scn 7790 vls 430
bjn 16 fr 3412558369 kjh 15 ngt 15 sco 44793 vo 4484
bm 5993 frm 827 kk 16875999 ngu 31 sd 2816050 wa 2659876
bn 156924699 fro 44 kl 33411 nhg 376653 sdh 28 wae 74267
bnt 1534 frp 82087 km 11875237 niu 24 se 1912829 wal 374085
bo 108249 frr 402 kmr 714 nl 1777745084 sg 10 war 1230
bom 39 fur 328314 kn 5999187 nlv 12 sgn 688 wo 983607
br 4839927 fuv 2482 ko 285583000 nn 6036066 sgs 40 wuu 10993
brx 2126 fy 6208767 koi 12 no 698491446 sh 22711333 xal 3583
bs 221212239 ga 21763185 kr 11412 nog 79 shi 378312 xh 8640822
bsn 325256 gan 12 krl 314 non 16 shn 40453 xmf 36
bua 1948 gbi 350547 ks 64356 nov 919 shs 20833 yaq 81
bug 1659 gbm 33 ksh 2892 npi 93 shy 15 yi 1038001
bvy 21 gcf 1009 ku 6566496 nr 874 si 52111630 yo 5433688
bzt 1196 gd 833984 kv 59 ns 103879 sjn 293 zam 1379
ca 303844363 gil 12 kw 82917 nso 427594 sk 809520471 ze 25667080
cak 355513 gl 110969736 ky 7814500 nst 644 sl 834996012 zgh 97
cb 354133 gn 10158 kzj 1543 nus 2496 sm 73 zh 660697725
cbk 2141 gom 49256 la 6202902 nv 358 sma 39 zhs 37264
cdo 20 gos 3382 lad 4634 ny 4130938 sml 1711 zht 39547
ce 13338 got 234 lb 13159469 oc 8708362 sn 4557031 zhtrad 143676341
ceb 3534028 gr 5607 ldn 163 ofs 8 so 9082662 zlm 92
ch 356694 grc 1105 lfn 13823 ojb 299926 sq 203389893 zsm 2719
cho 309 gsw 247 lg 248315 om 203313 sr 825444520 zu 3516139
chq 356343 gu 7015993 li 365187 ood 21 ss 672164 zz 44
chr 392260 gv 537765 lij 1673 or 1005953 st 10364 zza 27246
cjp 389090 ha 8504550 liv 27 orv 1348 stq 128
ckb 78358 hai 1866 lkt 25 os 61302 su 10421463
cku 571 hak 16 lld 10268 osp 10 sux 153
cmn 16159 haw 385 lmo 13318 ota 880 sv 1297167012
cnh 1784 hbo 101 ln 171241 pa 7181860 sw 87842873

Table 10: Statistics of the constructed dataset. Upon further quality assessment, we identified that the data for the
following ten languages: iro, kam, mvv, ofs, izh, ady, mic, osp, sg, sz, were incorrect as they were all in English. As
a result, we have decided to exclude these from our model.

nese input text to the models and asked them to
produce a translated text and a back-translated Chi-
nese text. The annotators assessed the degree of
information overlap between the input text and the
back-translated Chinese text.

3) Annotation process: To ensure inter-annotator

agreement, we assigned each sample to two dis-
tinct annotators at a cost of $0.028 per datum. The
resulting evaluation scores ranged from 0 to 5. A
score of 0 meant that the language was not sup-
ported or could not be translated at all. A score of
5 implied that not only was the content preserved,

23373



X→En ChatGPT LegoMT2 X→En ChatGPT LegoMT2 X→En ChatGPT LegoMT2 X→En ChatGPT LegoMT2

af 54.9 58.9 gu 20.0 39.1 lo 9.8 37.3 ru 32.6 36.8
am 2.7 32.4 ha 13.4 31.3 lt 30.9 35.4 sd 13.0 22.0
ar 33.7 41.6 he 32.6 41.5 luo 8.1 27.5 sk 35.5 41.6
as 12.9 31.1 hi 33.9 47.1 lv 30.5 35.7 sl 33.7 36.7
ast 38.3 33.3 hr 36.9 39.5 mi 19.4 30.0 sn 13.2 30.5
az 18.7 27.7 hu 32.6 35.6 mk 37.6 43.0 so 14.3 32.5
be 19.2 19.9 hy 14.5 39.0 ml 18.5 41.0 sr 35.2 40.7
bg 37.1 41.4 id 40.1 45.0 mn 11.1 30.2 sv 46.3 49.4
bn 21.2 38.5 ig 8.7 28.4 mr 20.4 39.6 sw 40.4 47.0
bs 41.3 44.6 is 28.9 35.0 ms 43.8 47.6 ta 13.6 32.5
ca 43.1 46.3 it 34.4 35.5 mt 42.8 60.5 te 18.6 42.1

ceb 37.5 45.0 ja 26.5 30.5 my 2.8 30.2 tg 13.4 32.9
cs 38.2 43.7 jv 27.4 45.1 ne 21.2 40.5 th 21.9 33.6
cy 44.0 54.6 ka 12.1 27.6 nl 34.8 36.2 tl 41.9 51.4
da 47.6 51.3 kam 9.8 19.6 no 41.3 45.7 tr 36.0 39.0
de 41.4 44.4 kea 33.7 51.2 ns 13.9 43.2 uk 37.2 41.5
el 33.9 39.1 kk 18.6 35.6 ny 15.1 32.4 umb 5.0 14.8
es 29.9 31.4 km 13.6 36.8 oc 45.3 56.8 ur 24.6 38.5
et 35.9 38.7 kn 20.0 35.1 om 4.9 22.6 uz 19.3 34.6
fa 30.4 37.2 ko 26.1 28.3 or 14.0 36.3 vi 33.3 42.0
ff 7.3 12.0 ku 9.6 35.7 pa 24.0 44.2 wo 8.5 21.5
fi 31.5 33.9 ky 10.7 26.9 pl 29.9 33.6 xh 17.1 39.6
fr 43.9 46.9 lb 39.6 45.5 ps 10.6 35.6 yo 9.8 26.0
ga 33.2 43.3 lg 11.1 23.1 pt 47.5 50.5 zh 28.3 30.5
gl 39.2 40.5 ln 10.6 28.7 ro 42.7 48.1 zu 18.0 41.5

EN→X ChatGPT LegoMT2 EN→X ChatGPT LegoMT2 EN→X ChatGPT LegoMT2 EN→X ChatGPT LegoMT2
af 44.3 45.3 gu 19.0 34.8 lo 4.0 28.9 ru 36.0 39.0
am 2.9 26.9 ha 8.1 26.9 lt 27.2 33.5 sd 8.4 33.3
ar 31.6 36.1 he 27.0 37.2 luo 4.2 18.3 sk 34.5 38.9
as 7.3 24.6 hi 29.2 46.6 lv 27.9 23.2 sl 32.5 37.1
ast 29.8 30.3 hr 34.4 35.7 mi 16.0 19.8 sn 5.8 19.5
az 11.8 20.4 hu 27.2 34.9 mk 33.1 43.4 so 6.4 18.2
be 16.4 23.4 hy 10.5 33.1 ml 12.0 38.0 sr 1.5 29.3
bg 38.7 49.3 id 45.4 46.6 mn 5.5 18.8 sv 46.5 46.6
bn 18.4 33.7 ig 6.2 19.9 mr 10.4 27.4 sw 37.5 40.1
bs 34.0 35.1 is 22.0 30.2 ms 39.2 47.2 ta 10.2 20.8
ca 46.8 48.9 it 35.8 36.5 mt 31.6 64.4 te 13.2 41.6

ceb 24.5 18.9 ja 29.7 33.5 my 2.5 15.5 tg 11.0 32.5
cs 36.7 40.5 jv 15.6 30.3 ne 15.0 26.4 th 22.1 21.1
cy 44.0 43.8 ka 11.1 23.0 nl 31.7 31.9 tl 31.2 34.9
da 45.4 45.5 kam 4.9 7.4 no 36.6 37.2 tr 34.5 36.4
de 40.3 41.7 kea 11.5 17.5 ns 6.6 26.8 uk 33.3 40.1
el 30.9 34.5 kk 11.1 33.7 ny 6.3 23.8 umb 2.8 2.9
es 32.3 30.7 km 4.4 15.9 oc 28.2 44.0 ur 16.8 27.4
et 33.6 34.4 kn 14.3 31.6 om 1.7 10.8 uz 15.8 27.3
fa 25.4 35.0 ko 25.0 26.0 or 11.3 32.3 vi 38.7 43.2
ff 3.0 0.1 ku 5.0 3.5 pa 20.3 36.1 wo 5.1 6.3
fi 33.3 31.2 ky 7.2 24.4 pl 29.3 31.9 xh 6.4 28.9
fr 53.2 56.8 lb 24.2 1.1 ps 3.4 22.0 yo 3.4 4.2
ga 26.9 3.7 lg 3.6 12.5 pt 54.6 55.4 zh 30.7 27.1
gl 36.3 38.2 ln 5.8 26.0 ro 44.4 48.2 zu 6.6 32.2

Table 11: Comparison of ChatGPT and LegoMT2: While ChatGPT outperforms LegoMT2 for some language pairs,
LegoMT2 has an absolute advantage for the vast majority. On average, ChatGPT lags behind LegoMT2 in both the
En→X and X→En directions by more than 6 points.

but the expression was also very smooth. The av-
erage inter-annotator agreement score was 0.79,
indicating good evaluation quality.

Among the overlapping languages, LegoMT2
had an average translation score of 3.12, while
Google Translator had an average score of
3.64. Among the non-overlapping languages,
LegoMT2’s average score was 3.03, while Baidu
Translator’s average score was 2.55.

F Language-specific decoder enhances
model performance

According to our results, we find that Dec-Flow
largely improves low-resource inference results.
To enhance low-resource translation performance,
we train Family-7 and Family-8 via Dec-Flows in
the second training stage. Table 13 shows that
the introduction of Dec-Flow helps low-resource
translation.

G Providing statistics after aggregating
the data by group.

Due to the substantial volume of data and our con-
strained computational resources, we cannot load
all of it into memory simultaneously. Following
the methodology employed in fairseq, we partition
our data into multiple shards and run the model on
each shard. The statistics of each shard we utilized
are shown in Table 14.

H Used Scientific Artifacts

Below lists scientific artifacts that are used in our
work. For the sake of ethic, our use of these arti-
facts is consistent with their intended use.

• Fairseq (MIT license), a project taht aim to
build a more efficient NLP system.

• Transformers (Apache-2.0 license), a frame-
work that provides thousands of pretrained
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Translator En Es Fr Pt De It Nl Pl Ru Da Kn Mr Ka Ja Fa

LegoMT2 3.96 2.99 3.34 3.74 3.61 3.53 2.94 3.58 3.64 3.63 3.29 3.57 2.78 3.63 2.90
NLLB-200-1.3B 2.52 2.16 2.31 2.44 2.43 2.10 1.86 2.10 2.39 2.16 2.52 2.57 1.87 2.30 2.32

Google 4.32 3.33 3.46 3.95 3.88 3.96 3.32 3.82 3.84 4.25 3.80 3.96 3.81 3.66 3.10
Baidu 4.32 3.18 3.51 3.94 3.87 3.93 3.30 3.72 3.80 4.02 1.95 2.70 1.95 4.14 2.79

Correlation 0.70 0.44 0.41 0.68 0.62 0.79 0.72 0.69 0.7 0.71 0.83 0.51 0.83 0.76 0.27

Translator Sr Sk He Hr No Id Et Vi Lt Ms Yo Te Hy Ca Ko

LegoMT2 3.23 3.28 3.54 3.47 2.70 3.76 2.87 3.95 3.69 3.41 3.18 3.46 3.48 3.45 3.24
NLLB-200-1.3B 2.27 1.88 1.88 1.86 2.03 2.49 2.02 2.70 2.33 2.34 2.44 2.32 2.12 2.47 2.35

Google 3.74 3.72 3.90 3.70 3.32 3.87 3.16 4.23 4.06 4.00 3.74 4.01 3.59 3.72 3.69
Baidu 3.26 3.29 3.39 3.55 2.62 3.73 3.15 4.10 3.77 3.63 1.67 1.87 3.29 3.48 4.20

Correlation 0.62 0.60 0.72 0.7 0.66 0.64 0.45 0.63 0.65 0.6 0.74 0.76 0.71 0.56 0.76

Translator Th Gl Is Mt Tl Ml Af Ur Be Tg Ig Kk Cy Uk Bs

LegoMT2 3.49 2.80 3.28 3.44 3.40 3.58 3.39 3.13 1.60 3.51 3.29 3.30 3.14 3.55 3.32
NLLB-200-1.3B 2.18 2.08 1.92 2.54 2.36 2.72 1.71 2.72 1.91 2.37 2.20 2.16 2.20 2.31 2.08

Google 3.75 2.94 4.09 4.14 3.94 4.05 3.63 3.99 3.26 3.94 3.42 3.73 3.43 3.91 3.79
Baidu 3.91 2.93 3.12 3.82 3.25 2.77 3.03 2.81 2.89 2.54 2.23 0.00 3.05 3.45 3.59

Correlation 0.66 0.47 0.77 0.61 0.65 0.68 0.6 0.63 0.69 0.65 0.69 0.94 0.61 0.66 0.74

Translator Km My So Oc Xh Ha Ky Pa Gu Ln Sn Jv Ast Hi Mk

LegoMT2 2.92 2.83 2.75 2.82 3.52 2.98 3.19 3.37 3.49 3.21 2.85 3.26 2.41 3.37 3.71
NLLB-200-1.3B 2.15 1.86 2.10 2.55 2.61 2.40 1.98 2.73 2.60 2.45 2.20 2.40 1.36 2.55 2.59

Google 3.43 3.20 3.12 0.00 3.83 3.44 3.83 3.92 3.74 3.88 3.22 3.70 0.00 3.73 4.15
Baidu 1.75 1.90 1.99 2.67 2.85 1.89 2.31 1.91 2.13 1.09 1.83 1.12 3.29 2.48 3.84

Correlation 0.83 0.74 0.45 0.92 0.58 0.6 0.78 0.72 0.71 0.82 0.53 0.88 0.85 0.63 0.67

Translator Cs Ro Sv El Hu Tr Bg Fi Ar Lg Ny Am Lo Bn As

LegoMT2 3.50 3.41 3.42 3.64 3.72 3.84 3.06 2.97 3.18 2.24 2.86 3.07 3.60 3.42 2.64
NLLB-200-1.3B 2.09 2.40 2.15 2.24 2.03 2.21 1.55 2.16 1.62 1.98 2.34 1.99 2.84 2.42 2.00

Google 3.75 3.80 3.99 3.94 3.80 4.04 3.34 3.24 3.45 3.66 3.08 3.30 3.97 3.68 3.41
Baidu 3.75 1.93 3.85 3.78 3.76 3.44 3.27 3.13 2.93 2.20 1.01 1.74 1.73 2.59 1.72

Correlation 0.72 0.72 0.64 0.61 0.69 0.59 0.59 0.28 0.54 0.83 0.83 0.49 0.59 0.68 0.63

Table 12: Human evaluation result on Zh→X direction. Manually comparing the performance of LegoMT2 with
NLLB-200-1.3B, Google, and Baidu translators, respectively. Based on the results of human evaluation, it has been
found that LegoMT2’s performance surpasses that of Baidu by a substantial margin and is on par with Google’s
performance.
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Module X→Ne X→Mi X→Be X→Km AVG.

Mix-Flow 27.2 19.0 18.7 14.3 19.8
Dec-Flow 28.7 18.5 20.0 16.9 21.0

Table 13: Using Dec-Flow, translation performance
on Flores-101 devtest can be improved even for low-
resource languages.

Figure 6: Language clustering results. After obtaining
the model through single-model fine-tuning, we extract
embedding vectors corresponding to all language IDs.
Then perform K-means clustering on this embedding
matrix and visualize the clustering results using PCA.
The results show that the clustering quantity is unbal-
anced between clusters.

Group # Data in one shard Group # Data in one shard

Group 1 24M Group 5 34M
Group 2 31M Group 6 33M
Group 3 34M Group 7 31M
Group 4 35M Group 8 31M

Table 14: The statistics of each shard we utilized in a
single shared.

models to perform tasks on different modali-
ties such as text, vision, and audio.
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