Drop Dropout on Single-Epoch Language Model Pretraining

Houjun Liu*, John Bauer and Christopher D. Manning
Stanford University
*houjun@stanford.edu

Abstract

Originally, dropout was seen as a breakthrough
regularization technique that reduced overfit-
ting and improved performance in almost all
applications of deep learning by reducing over-
fitting. Yet, single-epoch pretraining tasks com-
mon to modern LLMs yield minimal overfit-
ting, leading to dropout not being used for
large LLMs. Nevertheless, no thorough em-
pirical investigation has been done on the role
of dropout in LM pretraining. Through ex-
periments in single-epoch pretraining of both
masked (BERT) and autoregressive (Pythia
160M and 1.4B) LMs with varying levels
of dropout, we find that downstream perfor-
mance in language modeling, morpho-syntax
(BLiMP), question answering (SQuAD), and
natural-language inference (MNLI) improves
when dropout is not applied during pretrain-
ing. We additionally find that the recently-
introduced “‘early dropout” also degrades per-
formance over applying no dropout at all. We
further investigate the models’ editability, and
find that models trained without dropout are
more successful in gradient-based model edit-
ing (MEND) and equivalent in representation-
based model editing (ReFT). Therefore, we ad-
vocate to drop dropout during single-epoch
pretraining.

1 Introduction

Dropout (Hinton et al., 2012; Srivastava et al.,
2014) is the method of randomly removing a
certain percentage of features during each train-
ing pass. For the decade after the introduction
of AlexNet (Krizhevsky et al., 2012), the use of
dropout became standard as a simple, highly effec-
tive regularization mechanism for very deep neural
networks. Dropout helps create more robust fea-
ture representations, in particular, reducing feature
co-adaptations (Hinton et al., 2012), enabling the
network to learn to make independent predictions
from features and leading to more robust networks.

Dropout was originally introduced at a large rate
of p = 0.5 (Hinton et al., 2012), but the dropout
rate used in NLP is steadily reducing in the decade
that follows. The original transformer architecture
(Vaswani et al., 2017) applies dropout p = 0.3 at
each of its network layers. BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), and TS (Raftel
et al., 2020) all used dropout p = 0.1. Recent open
language models such as LL.aMA (Touvron et al.,
2023) do not report any dropout use.

Alternate uses of dropout have emerged beyond
regularization. Liu et al. (2023) highlights a novel
use of “early dropout” as a stabilisation approach
to reduce early underfitting. The authors found
that applying dropout early reduces downstream
underfitting, but this effect is reduced when dropout
is applied throughout training.

In our study, we examine the use of dropout,
including early dropout, within the context of pre-
training by investigating the effects of both stan-
dard and early dropout in pretrained language mod-
els. We pretrain both masked and decoder language
models (MLMs and LMs), in particular, BERT-
base (Devlin et al., 2019) and Pythia 160M and
1.4B (Biderman et al., 2023), with varying levels
of dropout at p = 0.0, p = 0.1, and p = 0.3. Ad-
ditionally, we apply early dropout (as in Liu et al.
2023) during the first 35% of training; we then
measure the downstream capabilities of these mod-
els at varying checkpoints. We measure morpho-
syntactic understanding of linguistic minimal pairs
(average BLiMP score) for decoder LMs and eval-
uate question answering for masked LMs. For all
architectures, we additionally measure LM loss.
We find that the complete removal of dropout (in-
cluding early dropout) during pretraining yielded
the most capable models across all measures.

Recent investigations of LMs also show that their
performance varies based on the degree of consis-
tency with which they process inputs (Elazar et al.,
2021), pointing to the tension between having mul-

2157

Findings of the Association for Computational Linguistics: ACL 2025, pages 2157-2166
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

tiple distributed representations which dropout in-
duces (Hinton, 1984) and more localist approaches.
We investigate this by measuring the means by
which MLMs store factual knowledge through per-
forming interventions on latent embeddings. By
editing an MLM’s embeddings through MEND
(Mitchell et al., 2022), a gradient-based model edit-
ing technique, as well as ReFT (Wu et al., 2024), a
representation-based model editing technique, we
find that models trained without dropout can be
more easily edited.

Finally, we discuss and contextualize the impli-
cations of this result. We release code and pre-
trained models. '

2 Related Work

Dropout The dropout mechanism (Hinton et al.,
2012) has been extensively studied as a means to
reduce feature co-adaptation, create ensembles, reg-
ularize, and improve gradient alignment (Srivastava
etal., 2014; Baldi and Sadowski, 2013; Wager et al.,
2013; Gal and Ghahramani, 2016; Liu et al., 2023).

Knowledge Localization We take the view that
factual “knowledge” can be stored and elicited
from neural networks (Petroni et al., 2019), specif-
ically, in the Multi-Layer Perceptron (MLP) after
each layer’s attention block (Geva et al., 2021).
Methods exist to measure the correctness and con-
sistency (Elazar et al., 2021) of the stored knowl-
edge and to probe for their stored location in terms
of MLP activations (Dai et al., 2022) as well as
MLP parameters (Csordds et al., 2023).

Factual Editing Methods exist to edit “knowl-
edge” stored in LMs, including tuning a low-rank
subspace of the network (Hu et al., 2022), learning
a parameter update through a surrogate network
(De Cao et al., 2021), projecting tuning gradients
into edits (Mitchell et al., 2022), probing orthogo-
nal subspaces of representations (Wu et al., 2024),
or causal methods specific to mutating information
flow in decoder models (Meng et al., 2022).

3 Approach

We first investigate the effects of dropout on both
the pretraining objective and downstream capabili-
ties of masked and decoder language models. To
do this, we first pretrain two sets of language mod-
els with varying levels of dropout (Section 3.1) and

"https://github.com/Jemoka/dropfree

then evaluate their capabilities through varying met-
rics (Section 3.2). Finally, we perform embedding
and editing experiments on the pretrained BERT
models to investigate the causal influence of apply-
ing dropout in pretraining (Section 3.3).

3.1 Pretraining

We train two sets of models: BERT-base (Devlin
et al., 2019) MLMs, and Pythia 160M and 1.4B
decoder LMs (Biderman et al., 2023). The BERT
models are trained using the masked language mod-
eling objective using the 10-billon-token slice of
Huggingface FineWeb (HuggingFaceFW, 2024)
following the optimization procedure given in Ap-
pendix B; the Pythia models are trained using The
Pile Deduplicated (Gao et al., 2020) dataset (to
match the original Pythia models) up to 1.5 mil-
lion steps using the optimization procedure given
in Appendix C.

We apply pretraining dropout at p = 0.0, p =
0.1, and p = 0.3 on the attention and MLP blocks.
We experiment with both static dropout as well as
“early dropout” following Liu et al. (2023) whereby
dropout is scheduled on the first 35% of training
before being disabled. Details on the early dropout
implementation are discussed in Appendix D.

3.2 Capabilities Evaluations

Our primary goal is to investigate how pretraining
with dropout on single-epoch training affects the
downstream performance of language models. To
do this, we perform the following measurements:

(M)LM Loss First, we measure the loss of our
models on the pretraining objective on a withheld
subset of the pretraining distribution. For decoder-
LMs, this is simple cross-entropy loss. For MLLMs,
this is cross-entropy loss on the masked training ob-
jective (i.e., the 15% masked cloze task described
in Appendix B). This simple measure has been
widely reported as correlating with fluent natural
language generation matching human-like distribu-
tions (Goodkind and Bicknell, 2018; Wilcox et al.,
2020). Hence, it serves as a simple baseline for
(M)LM capabilities.

Morpho-syntactic Phenomena For the decoder
LMs (i.e., models that can be used in the conven-
tional sense as a sequence “language model”), we
evaluate linguistic knowledge using the BLiMP
dataset (Warstadt et al., 2020). BLiMP is an evalua-
tion dataset of 67 different grammatical phenomena
and consists of linguistic minimal pairs, exactly one

2158

6.0 Dropout

5.00

i 12 Dropout g Dropout
03 . 00 =47 — 00
@ 5P : = 0.3 = .
E N £ 10 2 1450)
< S S
o = -
= 5.0 = — 425
2 ps =
S g = 4.00
— 45 = a6 3
=] E h 5375
40 3.4 2 350
3.5 32 2 325 N
0.0 02 04 06 08 10 12 50000 100000 150000 200000 0 50000 100000 150000 200000
Step %100 Step Step
075 Dropout e 0.74 o—e S om _e—e,
_e *o—o ° = 0 g No—o®
& -0~ 0.0 » —_ _e O / % 072 . ® '0—o
= 03 o = 2~ e o—¢' & S—e
=070 o 3 072 5 010 /
% / < o—¢ < ¢
< o ;‘:J: Dropout a, 0.68 Dropout
) = =
Z 0.65 3 0.70 -0= 0.0 = 066 -0- 0.0
< Z 0.3 2 0.3
% =] ® = 0.64
= 2 0.6 15}
2060 @ = 068 £ 0.62
= = 2
2 0.60
0.66 2
0.2 04 0.6 0.8 1.0 1.2 50000 100000 150000 200000 & 50000 100000 150000 200000
Checkpoint x 100 Checkpoint Checkpoint
74 °
1.425 Dropout Dropout \Q 0.80 o====—=0
79 | =@= 0.0 = -
1.400 ====3-0.0 © 2 -
= 0.1 0.1 < /
S 1375 = 70 g 075 »
- ~
> 1.350 a g
2 =
8 = 68 d £ 070
— 1.325 < 4 =
- 7 2
3 1 " z
2 1.300 66 = 065 Dropout
1.275 = / -e- 0.0
64 - P 0.1
1.250 0.60
50000 100000 150000 200000 250000 50000 100000 150000 200000 250000 300000 0 25000 50000 75000 100000 125000 150000
Step Checkpoint Checkpoint

Figure 1: top: language modeling loss with dropout p = 0.0, p = 0.3, and early dropout for decoder LMs; middle:
mean BLiMP scores for these models; bottom: masked language modeling loss with dropout p = 0.0, p = 0.1,
SQuAD F1 (answerable) dev-set scores, and matched MNLI scores.

of which is grammatically acceptable. We evalu-
ate the emergence of morphology and syntax in
the pretrained LMs by assessing whether the mod-
els assign a higher probability to the acceptable
sequence than to the unacceptable one.

Fine Tuning with SQuAD The previous two
measures evaluate the pretrained LM on various
tasks directly relating to the task distribution. How-
ever, LM capabilities can be unlocked through fine-
tuning (Wei et al., 2022). To investigate this, we
fine-tune our MLMs on the SQuAD V2 dataset
(Rajpurkar et al., 2018) following standard proce-
dures described in detail in Appendix G (in particu-
lar, with dropout enabled tuning time regardless of
whether it is on in pretraining, since we fine-tune
SQuAD for more than one epoch). We report the
F1 score obtained by the fine-tuned model.

Fine Tuning with MNLI In addition to the
SQuAD results above, we further investigate the
fine-tuned capability of our MLMs on the Multi-
NLI (MNLI) dataset (Williams et al., 2018) follow-

ing procedures detailed in Appendix H. As with
SQuAD, we enable dropout in the model at a rate
of 0.15 regardless of whether or not it is enabled
for pretraining. We report the overall 3-class classi-
fication accuracy (“‘contradiction”, “neutral”, and

“entailment”) obtained by the fine-tuned model.

3.3 Causal and Embedding Analysis

To gain further insight into the causal influence of
dropout on the language models’ pretraining pro-
cess, we conduct Causal embedding-level analysis
on the pretrained MLMs. One lens with which
to approach this investigation is to study the way
LM embeddings store “knowledge”: recent litera-
ture highlights that the storage of factual “knowl-
edge” can be treated as a key-value lookup in the
post-attention MLP (Geva et al., 2021) subject to
input features; hence if dropout reduces feature
co-adaptations (Hinton et al., 2012), we hypothe-
size that dropout is likely to reduce the consistency
with which knowledge is stored and elicited. Ap-
pendix A provides detail on this hypothesis.

2159

0.997 Dropout /.\.
o} - -
z ®- 0.0 pe
g 0.99 0.1 /
n ()
o0 0.995 /
% 0.994 4
a 0.993
=)
= 0.992
°
50000 100000 150000 200000 250000 300000
Checkpoint
0.9400
Dropout
0375
% 0.9375 -8- 00
@
g 0.9350 0.1 .
N 4o
op 0:9325
£ 0.9300 /v
E 0.9275 /... ®
@ 0.9250

0.9225

50000 100000 150000 200000 250000 300000

Checkpoint

Figure 2: top: MEND edit success rate for MLM at
varying levels of dropout ((p < 0.0001) across 5 seeds
and edited concepts; margin of error are within floating
point differences); bottom: ReFT edit success rate for
MLM at varying levels of dropout (no significant differ-
ence across S seeds and edited concepts).

Formalism In this work, we define “knowl-
edge” as tuples (a, 7, b) (“subject-relation-object”);
then, if a model M has “stored” particular knowl-
edge, we can find some mapping f that learns
f(M)(a,r) = bbut learning f(a,r) = b without
M may be difficult.

We follow the definition given in (Elazar et al.,
2021) to impose additional constraints for human
languages. We define: (1) f as the cloze (mask-fill)
task on the set of masked phrases (e.g. [B] is the
[R] of [A]) which are quasi-paraphrases (Bhagat
and Hovy, 2013) of each other; and (2) M tobe a
masked-language model, in particular, a BERT.

Knowledge in BERT-Sized Models One measur-
able effect of consistent and localized embedding
of knowledge is the increased ease of model edit-
ing. If “knowledge” is more localized, then one
needs to edit a smaller area of the MLP to corrupt
or change it.

Therefore, we measure the effects that pretrain-
ing with and without dropout has on the editability

of downstream models. We define “editing” here
as changing a pattern (i.e. (a,r,b) to (a,r,b") with
b # V') under all choices H. We obtain these pat-
terns from the Pararel (Elazar et al., 2021) dataset,
which consists of varying syntactic frames for ex-
pressing the same relational concept. We randomly
rearrange objects within each relation category and
edit the model to generate the newly paired object
for each relation. We then evaluate the model’s
prediction test accuracy on masked tokens with a
balanced mix of permuted and unrelated relations.

We train two model editing techniques: Repre-
sentation Fine Tuning (ReFT) (Wu et al., 2024)
and MEND (Mitchell et al., 2022). Further details
of these approaches are given in Appendix F and
Appendix E respectively.

4 Results

Removing dropout makes more capable models
Across all evaluations of capabilities described
in Section 3.2, models pretrained with dropout,
including early dropout, performed worse than
those pretrained without dropout. As Fig. 1 shows,
the mean LM loss of the models trained with-
out dropout is lower than those trained with any
dropout. The models trained without dropout also
scored higher on both BLiMP, and SQuAD F1
while performing marginally better on MNLI accu-
racy. Furthermore, we discover that dropout rate
correlates with its effect size on LM performance;
we discuss this effect in Appendix J.

...that are slightly more editable As shown in
Fig. 2, given sufficient training steps, the model
trained without dropout is statistically more suc-
cessful in editing using MEND and did not have
notable editing differences by ReFT. Appendix I
discusses this result in detail: we believe applying
dropout yielded little difference in ReFT perfor-
mance because ReFT edits orthogonal subspaces,
meaning the distance between stored knowledge
disturbed by dropout is less important.

5 Conclusion and Discussion

Although it has been standard practice to apply
dropout to regularize neural network training, we
find—consistent with the recent trend of removing
dropout in massive LM pretraining—that dropout
in a single-epoch pretraining regime is not nec-
essary and hurts performance. In particular, we
find that the models pretrained without dropout
score consistently more favorably in capability

2160

measures of LM loss, morpho-syntax generaliza-
tion in BLiMP, and fine-tuned SQuAD. These re-
sults hold even with the early-dropout technique
(Liu et al., 2023). Furthermore, we note that the
models trained without dropout improve in editabil-
ity after training with sufficient scale with MEND.
We hypothesize that this is because dropout non-
discriminately limits co-adaptation in input features
(Hinton et al., 2012), leading to less localized rep-
resentations of “knowledge”, resulting in multiple
independent copies of facts stored. This ultimately
makes models less amenable to editing.

Taken together, our conclusions indicate that,
with single epoch LM pretraining, one should drop
dropout.

6 Limitations

Statistical-Theoretical Grounding Though this
work provides a strong empirical framework and
evidence for removing dropout, it attempts to make
no theoretical claims about the expected behavior
of dropout. Such an evaluation is difficult naively
because the expected value of dropout converges to
the identity (Baldi and Sadowski, 2013). However,
if taking a lens of dropout as a regularizer in the first
order (Wager et al., 2013), this would be a fruitful
avenue for future work which is made possible to
validate by the empirical evidence here.

Scaling Laws The emergence of overfitting
scales with the parameter count of the model. Due
to resource limitations (i.e. the fact that this exper-
imental setup requires pretraining multiple seeds
of an LM), it is difficult to directly measure how
the result scales. However, given the replication
from MLMs and decoder LMs ranging from 160M
to 1.4B parameters, and the previously reported
effects of dropout strengthen as models scale (Liu
et al., 2023), we believe these results are applicable
for pretraining in similar settings.

Activation and ROME-style Probes We elected
to use neither integrated-gradient style activation
probes nor causal corruption probes in this work
due to recent evidence that those probes are fairly
input-dependent, not easily localized, and not able
to cleanly probe stored “knowledge” in a network
(Niu et al., 2024; Hase et al., 2024).

Acknowledgements

We would like to thank our colleagues across
Stanford NLP for their insights. In particular,

we would like to acknowledge Rébert Csordés,
Shikhar Murty, Amelia F. Hardy, Julie Kallini,
Liam Kruse, and Ethan Hsu for their valuable time
and ideas. We would finally like to thank the anony-
mous reviewers and editors for their gracious feed-
back. Houjun Liu was supported in part by the Stan-
ford CURIS program during this work. Christopher
D. Manning is a CIFAR fellow.

References

Ashish Agarwal, Clara Wong-Fannjiang, David Sussillo,
Katherine Lee, and Orhan Firat. 2018. Hallucinations
in neural machine translation. In /CLR.

Pierre Baldi and Peter J Sadowski. 2013. Understanding
dropout. Advances in neural information processing
systems, 26.

Rahul Bhagat and Eduard Hovy. 2013. Squibs: What is
aparaphrase? Computational Linguistics, 39(3):463—
472.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, Aviya Skowron, Lintang
Sutawika, and Oskar Van Der Wal. 2023. Pythia:
a suite for analyzing large language models across
training and scaling. In Proceedings of the 40th Inter-
national Conference on Machine Learning, ICML’23.
JMLR.org.

Rébert Csordds, Sjoerd van Steenkiste, and Jiirgen
Schmidhuber. 2023. Are neural nets modular? In-
specting functional modularity through differentiable
weight masks. ICLR.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493—
8502, Dublin, Ireland. Association for Computational
Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491—
6506, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

2161

https://doi.org/10.1162/COLI_a_00166
https://doi.org/10.1162/COLI_a_00166
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2022.acl-long.581
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schiitze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012-1031.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In International Conference
on Machine Learning.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 5484-5495, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Adam Goodkind and Klinton Bicknell. 2018. Predictive
power of word surprisal for reading times is a linear
function of language model quality. In Proceedings
of the 8th Workshop on Cognitive Modeling and Com-
putational Linguistics (CMCL 2018), pages 10-18,
Salt Lake City, Utah. Association for Computational
Linguistics.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2024. Does localization inform editing?
Surprising differences in causality-based localization
vs. knowledge editing in language models. Advances
in Neural Information Processing Systems, 36.

G. E. Hinton, N. Srivastava, A. Krizhevsky, 1. Sutskever,
and R. R. Salakhutdinov. 2012. Improving neural
networks by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580.

Geoffrey E Hinton. 1984. Distributed representations.
Technical Report CMU-CS-84-157, Carnegie Mellon
University.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2022. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

HuggingFaceFW. 2024. fineweb (revision af075be).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. Advances in neural infor-
mation processing systems, 25.

Zhuang Liu, Zhiqiu Xu, Joseph Jin, Zhiqgiang Shen, and
Trevor Darrell. 2023. Dropout reduces underfitting.
In International Conference on Machine Learning,
pages 22233-22248. PMLR.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. ICLR.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 35:17359-17372.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022. Fast model
editing at scale. ICLR.

Jingcheng Niu, Andrew Liu, Zining Zhu, and Gerald
Penn. 2024. What does the knowledge neuron thesis
have to do with knowledge? ICLR.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463-2473, Hong Kong, China. Association
for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuUAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784—789,
Melbourne, Australia. Association for Computational
Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929-1958.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30.

2162

https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.57967/hf/2493
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Stefan Wager, Sida Wang, and Percy S Liang. 2013.
Dropout training as adaptive regularization. Ad-
vances in neural information processing systems, 26.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the

Association for Computational Linguistics, 8:377—
392.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Ethan G Wilcox, Jon Gauthier, Jennifer Hu, Peng Qian,
and Roger P Levy. 2020. On the Predictive Power
of Neural Language Models for Human Real-Time
Comprehension Behavior. Proceedings of CogSci,
pages 1707-1713.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atti-
cus Geiger, Dan Jurafsky, Christopher D Manning,
and Christopher Potts. 2024. Reft: Representa-
tion finetuning for language models. arXiv preprint
arXiv:2404.03592.

A Motivating the Studying of Dropout
Through Knowledge Storage

The central claim of Hinton et al. (2012) is that
dropout reduces feature co-adaptations. Framing
dropout under this lens implies that dropout would
modulate the way knowledge is elicited under per-
mutation of the selection of h. The application
of dropout would lead the model to learn multiple
independent pathways to represent a, r instead of
relying on co-adapted features across all existing

h(a,r). While this implies our model may be more
robust to previously unseen A’ that do not share the
co-adapted features of the training set, it could also
then result in multiple, independent representations
of a, r being built under the choice of h;—leading
to possible inconsistency.

Specific to human language modeling, the for-
mer lens (dropout leads to more robust models un-
der input sequence permutation) would imply that
a model that uses dropout would be more consis-
tent and less likely to hallucinate—a result that has
been discussed in literature (Agarwal et al., 2018);
the latter lens would imply that a model which uses
dropout would build unrelated representations of
knowledge that may not be consistent—a result
that also has been discussed (Elazar et al., 2021).
This work seeks to resolve this tension between
two lenses.

B BERT Pretraining Details

We used the Huggingface (Wolf et al., 2020) im-
plementation of BERT-Large (Devlin et al., 2019),
and only modified it to disable attention and MLP
dropout globally. When MLP dropout is used,
p = 0.1. Optimization was done with regulariza-
tion using AdamW (Loshchilov and Hutter, 2019)
following published parameters:

Parameter Value

LR linear warmup 10k, linear decay, peak 1 x 10~*
Adam 8 (0.9, 0.999)
Adame 1x107°

Table 1: Details of the Small Scale Model

The model was trained on the officially sam-
pled 10BT slice of Huggingface FineWeb (Hug-
gingFaceFW, 2024), running with fully-sharded
data-parallel over 4 GPUs for a joint batch size of
4 x 96 = 384. Batching was done sequentially
with the Pytorch Data Loader, sequence lengths
are capped at 512 tokens. The pretrained tokenizer
for BERT-large available on Huggingface was used
instead of training a tokenizer from scratch; se-
quences are wrapped with usual start and end se-
quence tokens. The model was optimized over 8
days on Nvidia A100 GPUs.

The modeling objective was a span-corruption
loss, which uses official sampling rates for inci-
dences of corruption and cloze. Tokens are selected
for corruption with 15% chance, and of which 10%
are shuffled, 80% are masked, and the rest are re-

2163

https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

turned normally. Sampling is done dynamically
with a fixed seed for each run.

C Pythia Pretraining Details

As with Appendix B, we used the Huggingface
(Wolf et al., 2020) implementation of the Pythia
suite of models (Biderman et al., 2023); the only
modifications we performed involves modulating
attention and MLP dropout globally as needed for
each experiment. Optimization was done with reg-
ularization using AdamW (Loshchilov and Hutter,
2019) following published parameters:

Parameter Value
LR linear warmup 10%, linear decay, peak 6 x 10™%
Adam 5 (0.9, 0.999)
Adame 1x107°

Table 2: Details of the Small Scale Model

We trained both the 160M and 1.4B variants of
the Pythia models on the first 1.5 million steps
(around 1.1BT) of The Pile Deduplicated (Gao
et al., 2020) dataset, running with fully-sharded
data-parallel over 2 GPUs for a joint batch size of
2 x 16 = 32 for the smaller variant and 2 x 2 = 4
for the larger variant. Batching was done in local-
shuffle random order with a buffer size of 1,000,
and sequence lengths are truncated to the models’
maximum length, being 2048. The pretrained to-
kenizer for each of the models were used instead
of training a tokenizer on scratch. The model was
optimized over 8 days on Nvidia A100 GPUs.

The model objective used was standard cross-
entropy language modeling loss.

D Early Dropout Implementation

We used a simple binary early dropout schedule
described in Appendix D of (Liu et al., 2023) in
addition to the training parameters of the Pythia
suite of models described in Appendix C. In par-
ticular, we disabled dropout at 35% of training as
a hard cutoff, having trained the model for 77,821
of roughly 220,000 steps of the training corpus.
No other training parameters (including optimizer
states) are reset after disabling dropout, and train-
ing continues as usual.

E MEND Implementation

MEND (Mitchell et al., 2022) is a model edit-
ing technique that projects the fine-tuning gradi-
ent of a model to weight updates that result in

well-localized edits (i.e. edits which do not affect
non-edited facts). For target knowledge to store
(a,r,b) and unrelated knowledge which we don’t
want changed (a’, 7/, b'), it does this by learning a
function f : U(a,r)xA(a,r,b) — VW that takes
the pre-MLP activations u(a,) and post-MLP fine-
tuning gradient for the layer (a, r, b) and produces
the appropriate MLP weight difference VIW. To
learn fa, we optimize for an objective which mini-
mizes a joint loss:

L= CeditLedit + Lloc (1)

whereby L.4;; is the negative log-likelihood of
the desired post-edit token — 1og ppost edit(bla,)
and L, is the KL-divergence of the poste-
rior distribution of the model against reference
KL(pref(b/|a/a T/) ’ ‘ppost edit(b/‘a/; 7'/))-

f is an identity-like projection that takes a vector
inV =U(a,r) x A(a,r,b) (the pre-layer activa-
tion concatenated with the post-layer fine-tuning
gradient) and maps it in the following manner:

>
—

<
~—

I

ReLU (U1 Vh norm(v)) + norm(v) (2)
f(v) = ReLU(U2V2 h(v)) + h(v) 3)

notably, V; are Xavier initialied while Uj is zero-
initialised, making this function f the identity prior
to tuning. Uj, Vj is learned.

To learn the edit, we shuffle the targets for each
“knowledge” given in the Pararel patterns (Elazar
et al., 2021) (i.e. for tuple (a,r,b), we switch b
to something else sampled in the dataset). We then
split the patterns (i.e. h in the formalism given in
Section 3.3, the quasi-rephrasing) into a 95% —
5% train-test split for each knowledge. Edits are
learned from all train splits at once, and are tested
on all test splits at once to report edit success. Only
the accuracy on the target token is reported.

We learn the edits using a learning rate of
5 x 10~°, with a batch size of 12 and an Adam
optimizer. Optimization was done over 3 hours on
Nvidia RTX a6000 Ada Generation GPUs. The pre-
trained models on which the edits were performed
did not have dropout on, regardless of whether they
are pretrained with dropout.

F ReFT Implementation

ReFT is a model editing technique that intervenes
on a certain number of prefix and suffix tokens (i.e.
the first and last n tokens’) embeddings of a model

2164

by perturbing their embeddings in an orthogonal
subspace to help localize the edit (i.e. ensuring that
there is nothing else that is influenced by the edit).
In particular, it learns linear projections weight W,
and bias b which is applied to the post-attention
hidden projection of the editing layer following:

E(h)=h+R"(Wh+b—Rh) (4

whereby R is a matrix with enforced orthonor-
mal rows.

We learn a rank-4 edit on layers 4, 6, 8, and
11, intervening on one prefix and suffix tokens out
of each sequence. We train the intervention one
concept at a time and evaluate on 10% of the held-
out patterns.

We train the procedure on one concept at a time:
we want to isolate the parameters necessary to only
perform the cloze task correctly for that concept;
note that this includes normal span corruption on
non-concept tokens such as stop words, so proper-
ties of general language modeling is not lost.

Edit success is measured by mask token match
overall concepts. Optimization was done for one
epoch with a learning rate of 5 x 104 with the
Adam optimizer, with batch sizes of 10 patterns at
a time, which took roughly 12 minutes to train for
each concept on Nvidia RTX a6000 Ada Genera-
tion GPUs. Dropout was disabled during edit and
evaluation regardless of whether pretraining used
dropout.

G SQuADV2 Fine Tuning

We trained on the train slice of SQuAD v2 (Ra-
jpurkar et al., 2018) for 2 epochs using the Adam
optimizer, at a learning rate of 1 x 10> with a
batch size of 12. Dropout rate was set to 0.1 dur-
ing training and evaluation regardless of whether
pretraining used dropout as is reported in (Devlin
et al., 2019). An adapted version of the official
evaluation script was used to obtain the dev-slice
results reported in this work. Questions and an-
swers are separated by the [MASK] token, which
was previously used for MLM in the pretraining.
A randomly initialized sequence prediction head
is added on top of the pretrained network. Non-
answers are represented by the model predicting
the null span (i.e. starting at [CLS] and ending at
[CLS]—the starts of sequences).

H MNLI Fine Tuning

We fine-tune our trained BERT models on the train
slice of the original MNLI (Williams et al., 2018)
dataset available > on Huggingface for 3 epochs
using the adam optimizer, at a fixed learning rate of
2 x 1075, Batch size was set to 128, and dropout
rate was set to 0.15 regardless of whether pretrain-
ing the BERT model used dropout consistent with
previous approaches. Premise and hypotheses were
separated by the [SEP] token, and the final token
residual was decoded using a single MLP to form
a three-class classification model, which is initially
randomly initialized.

I Performance Differences in ReFT vs.
MEND

In this work, we found that while MEND had sig-
nificantly higher editing success in the no dropout
case after sufficient training, ReFT’s edit success
simply converged. We believe the relative higher
degree of success in the no-dropout case for MEND
is expected: ReFT is formulated to only edit on or-
thogonal subspaces (Wu et al., 2024), meaning the
Euclidean distance between embedding clusters is
less important; however, the convergence indicates
that the no-dropout model was indeed still able to
build equivalently useful embeddings for edits like
ReFT.

J Sweeping Dropout Rates

Dropout
6.5 — 0.0

0.15

=2

0.3

LM Loss (1.4B)
g &

40000 60000
Step

80000

Figure 3: Sweeping dropout rate on the 1.4B parameter
Pythia model, across p = 0.0, p = 0.15, p = 0.3. Loss
averaged across 3 seeds.

As seen in Fig. 3, the effects of dropout presents
as a function of the rate of dropout. In particular,

Zhttps://huggingface.co/datasets/nyu-mll/multi_nli

2165

while applying lower amounts of dropout (such as
p = 0.15) results in performance gap less dramatic
than applying the originally proposed p = 0.3, the
model nevertheless learns slower and converges
less stably. The decreased rate of converge is
roughly related to the amount of dropout applied,
which is a finding consistent with the investigations
of late dropout in Liu et al. (2023).

2166

