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Abstract

Homonymy can easily raise lexical ambigu-
ity due to the misunderstanding of its multi-
ple senses. Correct recognition of homonym
sense greatly relies on its surrounding con-
text. This ambiguous nature makes homonyms
an appropriate testbed for examining the con-
textualization capability of pre-trained (PLM)
and large language models (LLMs). Consid-
ering the impact of part of speech (POS) on
homonym disambiguation and the prevalence
of English-focused studies in word embedding
research, this study extends to Chinese and pro-
vides a comprehensive layer-wise analysis of
homonym representations in both languages,
spanning same and different POS categories,
across four families of PLMs/LLMs (BERT,
GPT-2, Llama 3, Qwen 2.5). Through the cre-
ation of a synthetic dataset and computation
of disambiguation score (D-Score), we found
that: (1) no universal layer depth excels in
differentiating homonym representations; (2)
bidirectional models produce better contextu-
alized homonym representations compared to
much larger autoregressive models; (3) most
importantly, POS affects homonym represen-
tations in models in ways that differ from hu-
man research findings. The individual differ-
ences between LLMs uncovered in our study
challenge the simplistic understanding of their
inner workings. This reveals a compelling re-
search frontier: conducting controlled exper-
iments with purposefully manipulated inputs
to enhance the interpretability of LLMs. We
have made our dataset and codes available pub-
licly at https://github.com/neurothew/
exploring-homonym-rep-in-llm.

1 Introduction

The efficient and economic use of lexical inventory
results in multiple word senses converging into
a single lexical item, leading to lexical ambiguity
(Wang, 2011; Piantadosi et al., 2012). Among these

*These authors contributed equally.

lexical items, homonyms represent a common type.
They denote two (or more) semantically and etymo-
logically unrelated meanings. For instance, "bank"
can refer to a financial institution or the side of a
river.

Resolution of lexical ambiguity, while rarely
conscious in everyday language use, can pose spe-
cific challenges to human readers or listeners. Psy-
cholinguistic and neuroimaging research suggest
that homonyms, with their unrelated meanings, of-
ten make comprehension more difficult as indi-
cated by enhanced neural activation and longer
response time (Frazier and Rayner, 1990; Rodd,
2018; Huang and Lee, 2018).

Lexical ambiguity also poses challenges to dis-
tributional semantic models, though the nature of
these difficulties differs from those encountered in
human (Lake and Murphy, 2023). Early static word
representation models such as LSA (Deerwester
et al., 1990) and Word2Vec (Mikolov et al., 2013)
cannot be modulated by surrounding contexts after
the training process. Different senses of a word
must share the same representation, hindering its
ability to differentiate word senses. Contextualized
word representations and language models such
as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019) were proposed to address the problem.
Followed by this development, modern PLMs and
LLMs are all contextualized language models.

Contextualized word representations from these
models are influenced by its surrounding contexts,
allowing the representations to vary instead of re-
main static. The context can be preceding tokens
in autoregressive models like GPT (Radford et al.,
2019), or both preceding and following tokens in
bidirectional, autoencoding models like BERT (De-
vlin et al., 2019). Homonyms, which greatly rely
on their surrounding context to be accurately un-
derstood, serve as appropriate candidates to experi-
ment on the contexutalization capability of PLMs
and LLMs.
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Besides, the difference between homonyms
whose senses belong to the same or different syn-
tactic categories or parts of speech (POS) also war-
rants attention (MacDonald et al., 1994). For exam-
ple, ’fly’ can serve as both a noun (a small insect)
and a verb (to move through air). Electrophysiolog-
ical responses and blood-oxygen-level-dependent
(BOLD) signals, as observed during lexical ambi-
guity processing, are significantly influenced by
POS variability, according to previous research
(Federmeier et al., 2000; Gennari et al., 2007).
Homonyms with different POS senses elicit greater
neural activation compared to those with the same
POS meanings, suggesting a greater cognitive re-
source demand for syntactic category processing
(Grindrod et al., 2014).

Given these findings in human language pro-
cessing, it becomes interesting to explore whether
these two types of homonyms would be represented
differently in language models, as they are in the
human brain.

Our main contributions are:

• Constructed a new Chinese dataset to facilitate
homonym representation analysis.

• Presented a cross-linguistic analysis on the
layer-wise, contextualized representations of
Chinese and English homonyms across vari-
ous families of PLMs and LLMs.

• Contributed to a deeper understanding on how
homonyms are represented in language mod-
els, specifically on how POS modulates model
representations.

2 Related Works

Our present work is largely related to previous
studies on the investigation of the contextualiza-
tion capabilities of PLMs. Contextualized embed-
dings can be easily translated into their correspond-
ing definitions in an English dictionary, captur-
ing sense-specific information (Chang and Chen,
2019). They can also be used to predict human
behaviours and explain variances of human judge-
ments on meanings (Wilson and Marantz, 2022;
Rivière et al., 2024). A study that focuses on pol-
ysemes and homonyms revealed that while word
embeddings can differentiate ambiguous words in
terms of cosine similarity, the distinctive power
was much less compared to human ratings (Haber
and Poesio, 2021). It reveals the limitations of

word embeddings. The distance between ambigu-
ous word embeddings was found to show different
trajectories across model layers, which in turn de-
pended on the architectural factors, including but
not limited to model size (Rivière et al., 2024).

Ethayarajh (2019) analyzed the contextual word
representations in ELMo, BERT and GPT-2. It was
found that the representations were more context-
specific in the higher layers, consistent with previ-
ous studies (Peters et al., 2018; Liu et al., 2019a;
Clark et al., 2019). Additionally, Ethayarajh (2019)
observed that the word embeddings in language
models suffered from anisotropy, referring to the
non-uniform distribution of the embeddings in the
embedding space. They proposed subtracting the
cosine similarity from the baseline computed from
the text materials to create an adjusted measure that
enhances interpretability.

While there is existing research on contextuality
and lexical ambiguity, our work makes significant
contributions in several ways. For instance, while
Sevastjanova et al. (2021) examined the contex-
tualization of words along the functionality con-
tinuum ranging from homonyms, modals, to arti-
cles, their study was not positioned to explore the
nuances, such as the contrast between contextu-
alized homonym representations computed from
homonyms of the same or different meanings. In
contrast, we specifically targeted homonyms with
two different meanings by developing our own
dataset. We compared the performance of 21 mod-
els across four model families, varying in size
(from 110M to 8B) and architecture, which is more
extensive than the few models used in Ethayarajh
(2019) and Rivière et al. (2024). We proposed an
angle-based disambiguation score to account for
the nonlinearity of cosine similarity (Section 3.2.1).

Furthermore, we investigated the impact of POS
on contextualized embeddings by controlling for
the selection of homonyms. While POS tagging
has attracted substantial research attention in NLP
(Chiche and Yitagesu, 2022), the inner workings
of POS processing in LLMs remain unclear. This
issue is particularly intriguing, as POS is known
to affect human comprehension of homonyms
(Grindrod et al., 2014).

Last but not least, our work extends the analysis
of contextualized embeddings to Chinese, in con-
trast to previous studies that have predominantly
focused on English (Haber and Poesio, 2021) and
other Western languages such as Spanish (Rivière
et al., 2024). Due to its logographic writing system,
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a single sinogram in Chinese can often represent
multiple meanings depending on context (Wang,
1973; Huang and Lee, 2018; Wang et al., 2023).
In many cases, the meaning of a bisyllabic com-
pound word, which constitutes a major portion of
the vocabulary, can be inferred from its monosyl-
labic sinogram components. This ambiguity is es-
pecially pronounced in Mandarin, whose writing
system underwent a revolutionary simplification
that merged different traditional sinograms into a
single simplified form (e.g., both “台风” meaning
“stage manners” and “颱風” meaning “typhoon”
are merged as “台风”). This merging complicates
the homonym system in Chinese compared to En-
glish. The inherent ambiguity of Chinese sino-
grams thus makes them an ideal testbed for explor-
ing the capabilities and limitations of contextual-
ized representations.

3 Methods

3.1 Synthetic data construction

Existing datasets did not adequately address how
language models represent homonyms in context,
especially for the Chinese language. Therefore,
we created custom datasets containing English and
Chinese sentences composed with homonyms via
LLMs and validated with experts, following the
practical instructions of prompt design from previ-
ous studies (Schick and Schütze, 2021; Yu et al.,
2023). Prompts for generating English sentences
included additional instruction to guarantee that
the written form of the target homonym remains
unchanged (e.g., no inflections, capitalization, etc.).
It is noted that all homonyms we used in the cur-
rent paper are also homographs and homophones,
as they do not differ in both orthographical and
phonological representations. Details can be found
in Appendix A.1.

To select appropriate homonyms, we referred to
existing and established resources. For English, we
referred to the British eDom Norms database (Ma-
ciejewski and Klepousniotou, 2016). The database
includes 100 homonyms that have two unrelated
meanings, with the relative frequency of each mean-
ing rated by 100 monolingual British-English na-
tive speakers aged from 19 - 39 (mean 28.1 ± 5.3).
For Chinese, due to the lack of a suitable existing
dataset, we curated one on our own by collecting
possible homonyms from a comprehensive Chinese
dictionary XianDai HanYu CiDian (7th Edition).
After identifying the homonym candidates, we de-

Figure 1: An example prompt for generating sentence
pairs that illustrate the distinct meanings of homonyms.
Details are provided in the Appendix A.

signed a prompt protocol to instruct LLMs to con-
struct sentences. An example is shown in Figure 1,
with the full prompt in Appendices A.2 and A.3.

For sentence generation, we employed GPT-4o
(OpenAI, 2024) for English and ChatGLM4 (GLM,
2024) for Chinese. For each homonym, we gener-
ated 20 sentences, with 10 sentences correspond-
ing to each of their two senses. Three linguistic
experts (including two of the authors) manually ex-
amined all sentences, especially for Chinese. 100
homonyms were selected for this study, with half of
them having the same POS for both of their senses
and the other half having different POS.

3.2 Metrics
3.2.1 Angular similarity between homonyms
To obtain layer-wise homonym representations, the
prepared sentences were fed into pre-trained lan-
guage models to extract token-level representations.
Word-level representations were derived by mean
pooling on token-level representations, as it had
been shown to achieve satisfactory performance
to determine word similarity (Bommasani et al.,
2020). While cosine similarity between word rep-
resentations is commonly used to assess the close-
ness of semantic meanings, we opted to compute
the angular similarity. This choice was made be-
cause the cosine similarity varies nonlinearly as
higher values represent progressively smaller an-
gular differences (see Figure 4 for visualization).
Angle-based measures have also been shown to im-
prove embedding performance (Cer et al., 2018).
The angular similarity is defined as in Equation 1:

AngSim = 90− arccos(CosSim)× 180
π

(1)
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where CosSim is the cosine similarity between
any two word representations.

To properly assess contextual disambiguation of
homonyms, it is essential to consider both same-
sense and cross-sense similarities. While consider-
ing the cross-sense similarity alone, if one observes
that it is close to the baseline, the intuition might
be that the model shows satisfactory contextual-
ization capability because the model treats senses
as distinct as random words. However, this intu-
ition cannot be confirmed without examining same-
sense similarity. If a model successfully encodes
the word sense information, it is expected that the
similarity between same-sense representations to
be higher than that of the cross-sense. Therefore, it
is essential to consider both same-sense and cross-
sense similarity, as relying on either one of them
may lead to incomplete or biased interpretations.
By examining both metrics alongside their differ-
ence, we can quantify how well a model uses con-
text to differentiate between various word senses
while maintaining consistent representations for
the same sense. The same-sense and cross-sense
angular similarity are defined as in Equation 2 and
3 respectively.

AngSimsame(l, w) = E
[∑n

i,j=1
i ̸=j

∠(fl(ws
i ), fl(w

s
j ))

]

(2)
AngSimcross(l, w) = E

[∑n
i=1

∑n
j=1∠(fl(w1

i ), fl(w
2
j ))

]

(3)
where both of them are the averaged angular

similarity between hidden representations of the
same or different senses of the homonym w at layer
l. ∠ is the angular similarity function (Equation
1); fl is the function to map from a homonym in
a sentence to its hidden representation at layer l;
n is 10; w1

i and w2
j correspond to the homonym

of meaning 1 and meaning 2 in the i-th and j-th
sentence. The E denotes that we are averaging all
angular similarity values computed. Note that we
denoted i ̸= j in Equation 2 as we do not want to
compute the similarity of the two homonyms that
come from the same sentence.

3.2.2 Adjusting for anisotropy

There is an ongoing debate regarding the impli-
cations of anisotropy. Some studies propose that
it is beneficial (Biś et al., 2021; Hämmerl et al.,
2023), while others argue it could be potentially
detrimental and impair task performance (Ding
et al., 2022; Rudman and Eickhoff, 2024; Mickus

et al., 2024). Although we recognize the signifi-
cance of anisotropy and various anisotropy mea-
sures, our study does not aim to resolve this debate.
Instead, we follow a similar approach as in Etha-
yarajh (2019), which involves adjusting the similar-
ity measure for anisotropy through a baseline com-
puted as the similarity between randomly sampled
words. We computed the same-sense and cross-
sense baseline as the angular similarity between the
randomly sampled words within each set of sen-
tences and between the two sets, respectively (De-
tails can be found in Appendix C). Since different
sentences vary in linguistic features/information
(syntax, vocabulary, etc.), both the baseline and an-
gular similarity would be affected. Correcting the
angular similarity with their respective baselines
can therefore isolate the observed measure from
other linguistic factors.

3.2.3 Disambiguation score (D-score)
After computing both same-sense and cross-sense
adjusted angular similarity (AngSimAdjsame and
AngSimAdjcross), we computed their difference
and termed it as the disambiguation score (D-
score):

D-score = AngSimAdjsame −AngSimAdjcross
(4)

The D-score is our primary measure in this study.
It measures how much the model relies on con-
text to modulate representations (contextual dis-
ambiguation). A larger D-score indicates robust
disambiguation, while a smaller D-score suggests
poor differentiation, the model either conflates
senses or is insensitive to the context. The D-score
ranges from 0 to a theoretical maximum of 90.

3.3 Models

Experiments were conducted on 21 models from
four different model families: BERT (Devlin et al.,
2019; Liu et al., 2019b; He et al., 2023), GPT-2
(Radford et al., 2019), Llama3 (Llama, 2024), and
Qwen (Yang et al., 2024). These four models were
chosen because they are (1) open-weights, (2) rep-
resenting both PLM and LLMs, (3) various model
sizes are available and (4) Qwen is particularly
trained with a significant amount of Chinese data.
bert-base-chinese was not included in the English
analyses since its tokenizer could not effectively to-
kenize English input. bert-base-uncased and bert-
large-uncased were not included in the Chinese
analyses since their tokenizers do not include most
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of the Chinese characters in their vocabularies. Un-
recognized tokens would be represented by UNK
tokens by these tokenizers, such that the compu-
tation of meaningful word representations is not
possible. More details are listed in Table 1 and 3.

4 Analyses

The results on layer-wise representation of En-
glish and Chinese homonyms are shown in Fig-
ure 2, showing the averaged D-score over all
homonyms. Table 1 shows layers at which the
D-scores are highest. Hereafter we will describe
the layer depth as: lower (Layer Depth (%) ≤
33%); middle (33% < Layer Depth (%) ≤ 67%)
and higher (67% < Layer Depth (%)). The de-
tails of all statistical analyses conducted in this
Section can be found in Appendix D, all mul-
tiple comparisons were corrected via false dis-
covery rate (FDR; Benjamini and Hochberg,
1995). All results, tables and figures can be found
in our online repository https://github.com/
neurothew/exploring-homonym-rep-in-llm.

4.1 Contextualization of English homonyms

For each of both Sections 4.1 and 4.2, we con-
ducted two major statistical tests. For each lan-
guage, we first fitted a linear mixed effect model,
with D-score as the dependent variable, layer as
the independent variable, and a word-specific ran-
dom intercept. Through the fitted models, it can be
observed that the main effect of layer was signifi-
cant for all models and language (Appendix Table
4). Then, to examine the differences of the best D-
score (D-scorebest hereafter) between models, we
fitted a linear mixed effect model with D-scorebest
being the dependent variable and model being the
independent variable, and a word-specific random
intercept (details in Appendix D.1). The results on
layer-wise representation of English and Chinese
homonyms are shown in Table 1, and the upper and
lower rows of Figure 2 respectively.

For BERT model family (Devlin et al., 2019;
Liu et al., 2019b; He et al., 2023), the layer-wise D-
score trajectories differ drastically among models.
In general, BERT-based models perform best in
the middle and higher layers (Table 1). deberta-
v3-large has the highest D-scorebest (25.32, ps <
.001) among BERT model family at the middle
layer.

For GPT2 family (Radford et al., 2019), the
layer-wise D-score trajectories of all four mod-

els increase from lower layers and peak in higher
layers. Numerically, gpt2-xl has the highest D-
scorebest at 15.83 at the final layer, although not
significantly different from gpt2-large (p = .865).

For Llama3 family (Llama, 2024), the D-score
trajectories of the three models almost overlap with
each other. All three lines show a rapid increase in
the lower layers, reaching a global peak and then
decreasing in the middle layers, following a small
peak in the later layers. The highest D-scorebest
is observed in Llama-3.1-8B (16.87) at the lower
layer.

For Qwen2.5 family (Yang et al., 2024), similar
to Llama3 family, the layer-wise D-score trajec-
tories are similar across all three models, which
increase in lower layers, peak in lower to middle
layers and retrace in higher layers. While Qwen2.5-
1.5B has the highest D-scorebest (15.11), the D-
scorebest from all three models are not significantly
different (ps > .05).

4.2 Contextualization of Chinese homonyms

For BERT model family, it can be observed that the
layer-wise D-score trajectories differ significantly
among models. mdeberta-v3-base has the highest
D-scorebest (10.56) among BERT model family at
higher layer. bert-base-chinese, the original BERT
model variant pre-trained on Chinese Wikipedia
(Devlin et al., 2019), also has a comparable perfor-
mance. The two models exhibit significantly better
performance than others (ps < .001).

Within the GPT2 family, the D-score trajectories
are almost entirely flat, with their maximum in a
wide range spanning middle layers. While the two
larger models have relatively higher D-scorebest,
the D-scorebest are not significantly different within
the family (ps > .05).

For Llama3 family, the layer-wise D-score trajec-
tories are similar across all models. They increase
rapidly in the lower layers, peak in the lower to
middle layers, and decline until reaching a plateau
in the middle and higher layers. Llama3.2-3B has
the highest D-scorebest at 6.66 at a higher layer.

For Qwen2.5 family, the layer-wise D-score tra-
jectories are similar across all three models, which
increase rapidly in lower layers, reach a plateau
in lower and middle layers, and then decline in
higher layers. The three models exhibit similar D-
scorebest (ps > .05). The highest D-scorebest is
observed in Qwen2.5-3B at 6.99 at a middle layer.
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Figure 2: Average D-score between the contextualized representation pairs of English (upper) and Chinese (lower)
homonyms across different language models. The x-axis indicates the relative layer depth, computed as the layer
number divided by the total number of layers for each model. Note that between English and Chinese, the scale of
the y-axis is different.

English Chinese

Model Family Model Parameters Layer Layer Depth (%) Layer Depth D-score Layer Layer Depth (%) Layer Depth D-score

BERT

bert-base-uncased 110M 7.00 58.30 middle 18.50 — — — —
bert-large-uncased 340M 15.00 62.50 middle 20.81 — — — —
bert-base-chinese 102M — — — — 12.00 100.00 higher 9.63
bert-base-multilingual-uncased 167M 12.00 100.00 higher 14.65 12.00 100.00 higher 4.96
roberta-base 125M 11.00 91.70 higher 11.36 9.00 75.00 higher 1.04
roberta-large 355M 21.00 87.50 higher 13.04 15.00 62.50 middle 1.03
xlm-roberta-base 278M 10.00 83.30 higher 7.82 11.00 91.70 higher 4.04
xlm-roberta-large 560M 23.00 95.80 higher 9.57 23.00 95.80 higher 5.15
deberta-v3-base 183M 5.00 41.70 middle 24.44 8.00 66.70 middle 6.50
deberta-v3-large 434M 12.00 50.00 middle 25.32 15.00 62.50 middle 6.79
mdeberta-v3-base 278M 6.00 50.00 middle 18.04 11.00 91.70 higher 10.56

GPT2

gpt2 124M 9.00 75.00 higher 9.57 6.00 50.00 middle 1.93
gpt2-medium 355M 17.00 70.80 higher 8.44 16.00 66.70 middle 1.55
gpt2-large 774M 36.00 100.00 higher 15.72 26.00 72.20 higher 2.49
gpt2-xl 1.5B 48.00 100.00 higher 15.83 29.00 60.40 middle 2.53

Llama3
Llama-3.2-1B 1B 4.00 25.00 lower 14.77 16.00 100.00 higher 5.61
Llama-3.2-3B 3B 6.00 21.40 lower 16.86 23.00 82.10 higher 6.66
Llama-3.1-8B 8B 6.00 18.80 lower 16.87 24.00 75.00 higher 6.65

Qwen2.5
Qwen2.5-1.5B 1.5B 8.00 28.60 lower 15.11 9.00 32.10 lower 6.43
Qwen2.5-3B 3B 14.00 38.90 middle 14.89 14.00 38.90 middle 6.99
Qwen2.5-7B 7B 8.00 28.60 lower 13.99 10.00 35.70 middle 6.89

Table 1: The best layer of representing English and Chinese homonyms of each model based on D-score. The model
with the highest D-score within each model family is in boldface for two languages. Layer Depth is categorized as:
lower (Layer Depth (%) ≤ 33%); middle (33% < Layer Depth (%) ≤ 67%) and higher (67% < Layer Depth (%)).

4.3 Layer-wise comparisons of English and
Chinese homonym representations

To examine the differences between English and
Chinese homonym representations, we fitted a lin-
ear mixed effect model per PLM/LLM with D-
score being the dependent variable, language, layer
and their interactions being the independent vari-
ables, and a word-specific random intercept (details

in Appendix D.2).

First of all, the main effect of language was
found to be significant in which the D-scores com-
puted from English homonym representations were
significantly higher than from Chinese (Table 5).
This suggests that the included LLMs are better
at contextualizing English homonyms. It is of no
surprise since many of the models were all pre-
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Figure 3: A heatmap showing the t-ratio computed from the post-hoc comparisons between same-POS D-score
and different-POS D-score. Multiple comparisons were corrected via FDR (Benjamini and Hochberg, 1995).
Nonsignificant results are marked with a cross.

trained with English-dominant data. For Chinese
homonym representations, models involving multi-
lingual and Chinese training data and achieve better
D-Scores, such as mdeberta-v3-base and bert-base-
Chinese. We suggest that this can be attributed
to the fact that these models included a signifi-
cant portion of Chinese data in the pre-training
phase. On the other hand, as discussed in Sec-
tion 2, unlike alphabets, each sinogram in Chinese
can represent multiple meanings which can lead
to the two-sinogram word becoming a homonym
(Huang and Lee, 2018). For instance, "一/yi" can
be both "one" and "first". And the homonym "一
线/yi xian" can be interpreted into "one piece of" or
"battlefront" based on its context. It is possible this
inherent sinogram-level ambiguity is not captured
by the models, causing the lower performance of
word-sense disambiguation in Chinese.

Across languages, the layer-wise D-score tra-
jectories from the same model families show both
similarities and differences. For instance, BERT
and DeBERTa based models tend to excel in higher
layers for both English and Chinese. In contrast,
the trajectories observed from GPT-2 models show
significant differences between languages. Trajec-
tories from English homonyms show an increasing
trend from lower to higher layers, while those from
Chinese homonyms show an inverted U-shaped
trend with a broad peak at middle layers.

Similar trajectories may suggest that models em-
ploy comparable strategies for homonym contex-

tualization in both English and Chinese, possibly
indicating the use of language-universal features
or processing mechanisms. Conversely, divergent
trajectories imply that models adapt their approach
based on language-specific characteristics, recog-
nizing that different linguistic cues or structures
may be more relevant for homonym disambigua-
tion in one language versus another. Further re-
search with linguistically well-designed sentences
would be needed to confirm these hypotheses about
the models’ internal representations.

4.4 Does increasing model size help with
differentiating homonym representations?

While larger models generally perform better than
smaller models in language tasks (Kaplan et al.,
2020), this is not always observed in our results.
As we observed from Table 1, in terms of English
homonym disambiguation, larger models in BERT
and GPT2 families indeed performed better. Llama-
3.2-3B, however, exhibited a similar performance
as Llama-3.1-8B; the smallest model of Qwen fam-
ily even performed best. For Chinese homonym
disambiguation, in the GPT2 family the largest
model performed best, though gpt2 is still better
than gpt2-medium. As such, the homonym disam-
biguation capability did not consistently scale with
the size of the language models in general.
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4.5 How does model architecture affect
homonym representations?

PLMs and LLMs can roughly be divided into bidi-
rectional or autoregressive models (Yang, 2019).
This division is based on which part of the context
these models can attend to. Of the four model fam-
ilies, only the BERT model family is bidirectional,
while the others are autoregressive.

Regarding English homonym representations,
the bidirectional deberta-v3-large model has the
highest D-score among all models tested, surpass-
ing autoregressive models that are around 16 times
larger (Llama-3.1-8B and Qwen2.5-7B). This result
is even more significant given that deberta-v3-base
was pre-trained on a much smaller dataset (same as
RoBERTa (He et al., 2023)) than those of LLama3
and Qwen2.5 model families.

Regarding Chinese homonym disambiguation,
the multilingual mdeberta-v3-base performed the
best, while both deberta-v3-base and deberta-v3-
large also performed at a similar level as the best
model from Qwen and Llama family. This re-
sult highlights the need of multilingual data in
homonym disambiguation other than English, as
well as the strength of bidirectional architecture.

4.6 Do same or different parts of speech affect
homonym representations?

In our main analyses, the D-score were compared
across homonyms regardless of their POS. To fur-
ther investigate how POS might modulate the D-
score, we fitted a linear mixed effect model per
language and PLM/LLM with D-score being the de-
pendent variable, layer and POS as the independent
variables, and a word-specific random intercept (de-
tails can be found in Appendix D.3). The interac-
tion effects between POS and layer were significant
except for gpt2, gpt2-large, gpt2-xl and roberta-
large on Chinese homonyms (Table 6). Post-hoc
pairwise comparisons were conducted to examine
at which layer the differences (different-POS D-
score − same-POS D-score) were significant. A
heatmap showing the t-ratio resulted from the com-
parisons is shown in Figure 3, and the layers where
the t-ratios were largest are shown in Table 7. A
higher t-ratio suggests that the difference observed
is more robust, and less likely to be caused by ran-
dom noises. In other words, the POS information
contributes more to the prediction of the D-score
when the t-ratio is higher. First of all, it can be
observed that almost all t-ratios were positive, indi-

cating that the different-POS D-scores were always
larger than the same-POS D-scores. These results
results suggest that the two meanings of same-POS
homonyms are more challenging for models to dif-
ferentiate than those of different-POS homonyms.
Intriguingly, this finding contrasts with previous
studies on humans, which showed that different-
POS homonyms elicited greater neural activations
and required higher cognitive efforts (Grindrod
et al., 2014). Our analysis indicates that PLMs
and LLMs are actually more adept at representing
different-POS homonyms.

This contrast between human and machine could
potentially be attributed to the underlying process-
ing mechanism. While humans need to actively
switch between grammatical frameworks to inter-
pret different-POS homonyms (Federmeier et al.,
2000), the models already possess all relevant POS
information in the embedding space during in-
ference without a switching process. However,
this benefit in resolving different-POS homonyms
might be an obstacle for resolving same-POS
homonyms in models.

Second, it can be observed from Figure 3 that the
t-ratios resulted from English homonym compar-
isons were much larger than that of Chinese. This
difference may lie in the fact that the markedness of
POS information are asymmetric between English
and Chinese (Greenberg, 1966; Wang, 1973). For
instance, the plural form or past tense are marked
by inflectional suffixes in English, while it is un-
marked in Chinese. For instance, "关门 (guan
men)" can function both as a verb (to close the
door) and as a noun (the gate of a pass). No addi-
tional suffix will be added when it is used to express
plural meaning in its noun function, such as "他
们要在所有的关门设防 (ta men yao zai suo you
de guan men she fang) / they will set up defences
at all gates of the pass)". It is possible that the
marked POS information in its orthographic rep-
resentation of English is encoded and stored in its
hidden representations during training, which lacks
in Chinese. It is likely that this additional embed-
ded POS information in English helps improving
models’ performance in contextualizing homonym
representations.

Third, it can be observed that the best POS lay-
ers (where the POS contributes the most, Figure 3)
and the best D-score layers (where the D-score is
the highest, Table 1) are not always equal (more
details can be found in Table 7). For English, the
best POS layers are almost always the earlier layer
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(except for bert-base-uncased). For Chinese, this
pattern can still be observed (e.g., mdeberta-v3-
base), albeit less consistent for other models. Lan-
guage, as a complex adaptive system (Mufwene
et al., 2017), employs various strategies, such as
POS, word order, and contextual cues to address
lexical ambiguity that arises from the reuse of ex-
isting forms (Ogura and Wang, 2022). Our results
indicate that, beyond relying on POS information
at lower layers, the models also incorporate other
linguistic information at higher layers to enhance
their disambiguation performance.

5 Conclusion

We presented a comprehensive analysis on English
and Chinese homonym representations, spanning
same and different POS categories, across 21 PLMs
and LLMs in four model families. Patterns of layer-
wise trajectories of D-Score were found to differ
across models and languages, suggesting that these
different models might excel differently in encod-
ing distinct levels of linguistic information (e.g.,
meanings, POS, etc..) towards encoding distinct
homonym representations. Model architecture and
pretraining data portion appear to be important fac-
tors as bidirectional and multilingual models ex-
cel in homonym disambiguation. We also high-
lighted the functional role of POS in word-sense
disambiguation as models disambiguate same-POS
homonyms better than different-POS homonyms.
Intriguingly, this is opposite to what have been
observed in human studies. To conclude, the indi-
vidual differences between LLMs complicate our
understanding of their inner workings, there is a
need to conduct rigorous, controlled experiments
using purposefully manipulated input, in order to
enhance interpretability in future LLM research.

Limitations

Several limitations of this study need to be ad-
dressed. Firstly, LLM-generated sentences may
be biased and unnatural. Although most English
sentences and all Chinese sentences were manually
examined, this examination was limited to seman-
tic acceptability and syntactic correctness. This
unnatural issue is particularly pronounced for low-
frequency homonyms.

Secondly, to facilitate the computation of simi-
larity for target words, all English sentences were
restricted to using the base form of homonyms.
This constraint creates an artificial situation where

English homonyms must rely solely on context for
POS differentiation, without the benefit of mor-
phological strategies such as suffixation. As a re-
sult, this limitation may reduce the observed differ-
ences between English and Chinese in representing
homonyms with the same or different POS, given
that Chinese inherently has limited morphologi-
cal variation. Future studies should compare these
two types of homonyms using sentences with more
diverse morphological transformations.

Thirdly, while we observed that LLMs per-
formed differently in representing same-POS and
different-POS homonyms compared to findings
from human research, our study lacks direct human-
related data for comparison. A recent dataset on
English with human judgments on meaning relat-
edness has been developed, finding that humans
and models perform similarly in word-sense dis-
ambiguation (Trott and Bergen, 2021). Future re-
search should examine whether similar phenom-
ena can be observed in the Chinese context and
directly compare model performance with human
judgments across languages.
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A Appendix

A.1 Procedures for constructing the synthetic
dataset

To select appropriate English homonyms, we re-
ferred to an existing dataset, the British eDom
Norms database (Maciejewski and Klepousniotou,
2016). The database includes 100 homonyms that
have two unrelated meanings, with the relative fre-
quency of each meaning rated by 100 monolingual
British-English native speakers aged from 19 - 39
(mean 28.1 ± 5.3). This dataset also provided psy-
cholinguistic properties such as semantic distance

and relatedness, which is valuable for comparing
the similarities and differences in language process-
ing between humans and machines. For Chinese,
due to the lack of a suitable existing dataset, we cu-
rated one on our own. We first collected all possible
homonyms from a comprehensive Chinese dictio-
nary XianDai HanYu CiDian (7th Edition), whose
two or three meanings are semantically and etymo-
logically unrelated. We then applied strict criteria,
excluding words used in early vernacular Chinese,
rare Buddhist terms, dialects, and those that could
be variant sinograms, polyphonic sinograms, or
elements of synonyms. This process yielded 329
Chinese homonyms, including 130 with different
POS and 193 with the same POS.

After identifying the homonym candidates, we
designed a prompt protocol for each homonym to
instruct LLMs to construct sentences demonstrat-
ing the specified meanings of the target homonym.
Both English and Chinese prompts follow the same
general structure. Note that the exact communi-
cation flow between the human expert and LLMs
differed for Chinese and English; details are pro-
vided in Appendix A.2 and A.3. Besides here is
one key difference: English prompts require that
the written form of the target homonym remains
unchanged across different meanings or contexts
(e.g., no inflections, capitalization, etc.), whereas
Chinese prompts do not include this requirement.
This distinction arises because Chinese homonyms
consistently use the same characters regardless of
their different meanings or contexts.

To build the dataset, we generated 20 sentences
for each homonym, with 10 sentences correspond-
ing to each of its two meanings. The Chinese
sentences required additional scrutiny due to occa-
sional inconsistencies in adhering to the specified
meanings. Consequently, three linguistic experts
(including two of the authors) manually examined
all Chinese sentences. Any ungrammatical and
incorrect sentences that did not include the tar-
get homonyms or failed to represent the intended
meanings were manually modified or replaced with
newly generated sentences to ensure dataset qual-
ity. Additionally, we confirmed that each sentence
includes the targeted homonym only once. The
average accuracy rates of generated sentences are
94.97% for Chinese homonyms whose meanings
belong to the same POS and 90.47% for those be-
longing to different POS.
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A.2 English prompt example for sentence
construction

This section illustrates prompts used for generating
English sentence pairs containing target homonyms.
Note that only the human expert instruction is man-
ually input by the authors. To ensure independence
between generations, the chat history is cleared
before generating each new 10 sentences for each
meaning of the homonym.

Human expert: Please generate ten sentences
using word "lean" and the semanteme of “lean”
here is "to bend or incline ". The length of each
generated sentence is around 15 words. Please do
not change the morphological structure of the word
"fan". Do not capitalize the letters of the word
"fan". Do not add a clitic to the word “fan”.

GPT-4o: 1. She likes to lean against the old oak
tree while reading her favorite book. 2. The tall
grass would often lean towards the ground during
the strong summer winds. 3. He would lean for-
ward in his chair to get a better view of the board.
4. You could see the tower slightly lean to one side
after the earthquake. 5. As the sun set, the flowers
began to lean towards the fading light. 6. During
the concert, fans would lean over the barricades to
get closer to the stage. 7. The tired hiker decided to
lean on his walking stick for a brief rest. 8. The cat
loves to lean its body against the warm window on
cold days. 9. Watching the game, he would often
lean closer to the screen in excitement. 10. The old
bookshelf started to lean due to the weight of the
heavy books.

Human expert: Please generate ten sentences
using word "lean" and the semanteme of “lean”
here is " having little flesh ". The length of each
generated sentence is around 15 words. Please do
not change the morphological structure of the word
"fan". Do not capitalize the letters of the word
"fan". Do not add a clitic to the word “fan”.

GPT-4o: 1. The greyhound, known for being
lean, darted across the field with incredible speed.
2. Her lean figure, honed by years of ballet, moved
gracefully across the stage. 3. After months of
training, his once bulky frame transformed into a
lean, muscular build. 4. The stray cat was lean,
surviving on scraps it found in the alleyways. 5.
Despite his lean body, he had incredible strength
and endurance from years of rock climbing. 6.
The lean wolves hunted in packs, their slender bod-
ies moving silently through the forest. 7. The
fashion model’s lean silhouette was highlighted by

the tailored dress she wore. 8. His diet consisted
mainly of lean meats and vegetables to maintain
his slim physique. 9. The marathon runner’s lean
legs carried her swiftly to the finish line. 10. The
lean boxer danced around the ring; his agility un-
matched by his heavier opponents.

A.3 Chinese prompt example for sentence
construction

This section illustrates prompts used for gener-
ating Chinese sentence pairs containing target
homonyms. The prompt structure follows a pre-
defined system protocol developed by the authors,
which consists of three initial instructions: two
provided by human experts and one input from
GLMchat. These instructions guide the subsequent
sentence generation process (Table 2).

B Visualization of comparison between
cosine similarity and angular similarity

The cosine similarity varies nonlinearly as higher
values represent progressively smaller angular dif-
ferences, as shown in Figure 4.

Figure 4: Cosine similarity vs. angular similarity. Co-
sine similarity varies nonlinearly: higher values repre-
sent progressively smaller angular differences.

C Computation of the angular similarity
baseline

Following a similar approach as in Ethayarajh
(2019), we calculated a baseline as the averaged an-
gular similarity between randomly sampled words
from two distinct sentences. Conceptually, the
baseline represents the intrinsic similarity between
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random words. It serves to create an adjusted mea-
sure for better interpretation of results. Similar to
Section 3.2.1, we computed both same-sense and
cross-sense baselines. For brevity, we will only
introduce the computation for the cross-sense base-
line as follows. Define s1i and s2j as the i-th and
j-th sentences composed of the two meanings of a
homonym w: w1 and w2. We then randomly sam-
pled words ri and rj from s1i and s2j respectively,
and computed their angular similarity. The sam-
pling was done 30 times for each combination of
s1i and s2j . Finally, the baseline for homonym w
was computed as the average of all angular similar-
ity values across all samples and combinations of
sentences. This process is described in Equation 5:

Baseline(l, w) = E


∑

i,j

∠(fl(ri), fl(rj))




s1i = [r11, r
1
2, ..., r

1
k], s

2
j = [r21, r

2
2, ..., r

2
k]

r1i ̸= w1
i , r

2
j ̸= w2

j
(5)

where ∠ and fl are defined as in Equation 3, k is
the number of words in the corresponding sentence.

D Statistical analyses

We have conducted various statistical analyses to
support our claims in the main text. All statistical
tests were conducted via custom R (R Core Team,
2021) scripts. Linear mixed effect models and post-
hoc comparisons were conducted with the lme4
(Bates et al., 2014) and emmeans (Lenth, 2025).
All multiple comparisons were corrected via false
discovery rate (FDR; Benjamini and Hochberg,
1995). The dependent variable appears on the left-
hand side of the tilde (~), and the independent vari-
ables (fixed and random effects) are listed on the
right. All our linear mixed-effects model notations
(Equations 6–9) follow the conventions used in the
lme4 package in R.

D.1 Contextualization of English and Chinese
homonyms

In Section 4.1 and 4.2, we conducted two statisti-
cal analyses to backup our claims and descriptions
over the D-score trajectories. Firstly, we examined
whether the main effect of layer was significant for
all models and languages. For each model and lan-
guage, a linear mixed effect model was constructed
as in Equation 6:

D-score ∼ layer + (1|word) (6)

An omnibus F -test was then conducted for each
fitted model, the results are shown in Table 4, where
the main effects of layer were significant for all
models and languages. Second, to examine the
differences between the best D-score (notated as D-
scorebest in the main text) across models, we fitted
one linear mixed effect model per language, with
D-scorebest being the dependent variable, model as
the independent variable and word-specific random
intercept. The model is shown in Equation 7.

D-scorebest ∼ model + (1|word) (7)

We then conducted post-hoc pairwise compar-
isons between every two models. Considering
the substantial number of comparisons involved,
the result table has been uploaded in our pub-
licly available repository (https://github.com/
neurothew/exploring-homonym-rep-in-llm).

D.2 Layer-wise comparisons of English and
Chinese homonym representations

In Section 4.3, we conducted one statistical analy-
sis, aiming to illustrate the overall differences be-
tween the computed D-scores from the English and
Chinese homonym representations. A linear mixed
effect model was fitted per language model, with
D-score as the dependent variable, language and
layer as independent variables, with a word-specific
random intercept, as in Equation 8:

D-score ∼ language ∗ layer + (1|word) (8)

After that, post-hoc comparisons were conducted
to examine the averaged differences between the
two languages across all layers. The results are
shown in Table 5.

D.3 Do same or different parts of speech
affect homonym representations?

In Section 4.6, we conducted one statistical analy-
sis, aiming to examine how POS information might
modulate the D-scores. For each model and lan-
guage, we fitted a linear mixed effect model, with
D-score as the dependent variable, layer and POS
as independent variables, with a word-specific ran-
dom intercept. The model is shown in Equation
9:

D-score ∼ layer ∗ POS + (1|word) (9)

Type III ANOVA results of each model are
shown in Table 6. Post-hoc pairwise com-
parisons were conducted to examine at which
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layer the differences (different-POS D-score −
same-POS D-score) were significant. The re-
sults are visualized in Figure 3 as a heatmap
in the main text. Considering the substan-
tial number of comparisons involved, the re-
sult table has been uploaded in our pub-
licly available repository (https://github.com/
neurothew/exploring-homonym-rep-in-llm).
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prompt translation

Human expert
你是一名语言学家，非常擅长回答与词汇歧义相关的问题，
你的任务解释同形词的意思并用同形词造句。
请问“上任”是个同形词吗？

You are a linguist who is very good at answering questions related to lexical ambiguity,
and you have been tasked with explaining the meaning of homonyms and making sentences with them.
Is ‘shàngrèn’ a homonym?

GLMchat
是的，“上任”是一个同形词。
它有两个意思，一个是“动词，指官吏就职”，
一个是指“名词，称前一任的官吏”。

Yes, ‘shàngrèn’ is a homonym that has two meanings.
One means ‘verb, to bend or incline’
and the other means ‘noun, the predecessor.

Human expert
请分别用“上任”造二十个句子，
其中十个句子表达“动词，指官吏就职”的意思，
另外十个句子表达“名词，称前一任的官吏”的意思。

Please use ‘lean’ to make twenty sentences,
ten of which express the meaning of ‘verb, to take a post’
and the other ten express the meaning of ‘noun, the predecessor’.

GLMchat

以下是使用“上任”这个词来表示“动词，指官吏就职”的10个句子：
1. 他刚上任不久，还在熟悉新的工作环境。
2. 市长上任后，立即开始着手解决交通拥堵问题。
3. 新上任的校长对教育改革充满热情。
4. 经过严格的选拔，她终于在上任成为了部门的负责人。
5. 他上任的第一天，就给全体员工开了一个鼓舞人心的会议。
6. 这位年轻的法官上任后，受到了社会各界的关注。
7. 上任仅一周，他已经展现出了出色的领导能力。
8. 她上任后，推动了公司的技术创新。
9. 他刚上任就被派去处理一个棘手的案子。
10. 上任以来，他一直致力于改善市民的生活质量。
以下是使用“上任”这个词来表示“名词，称前一任的官吏”的10个句子：
1. 我们需要分析上任领导留下的政策，看看有哪些需要改进。
2. 上任市长在位期间，城市的基础设施得到了很大的改善。
3. 新市长表示，他将继承上任市长的良好传统。
4. 上任经理的离职，给公司带来了不少挑战。
5. 他试图了解上任留下的工作计划，以便更好地继续推进项目。
6. 上任部长在任时，推出了一系列受欢迎的教育政策。
7. 员工们对上任领导的离开感到非常惋惜。
8. 这座大桥是上任政府投资建设的。
9. 她在评价上任领导的工作时，给予了高度的评价。
10. 上任领导在离任前，留下了一套完善的管理体系。

Here are 10 sentences that use the word ‘shàngrèn’ to mean ‘verb, to bend or incline’:
1. He has just taken office and is still familiarizing himself with his new working environment.
2. The mayor began to tackle the problem of traffic congestion as soon as he took office. 3.
3. The new headmaster is enthusiastic about education reform. 4.
4. After a rigorous selection process, she finally became the head of the department
on her first day in office.
5. On his first day in office, he gave a pep talk to all the staff.
6. The young judge received a lot of attention from the community when he took office.
7. After only one week in office, he has already demonstrated excellent leadership skills.
8. She has promoted technological innovation in the company since she took office.
9. He was assigned to a difficult case just after he took office.
10. Since taking office, he has been working to improve the quality of life of the citizens.
Here are 10 sentences that use the word ‘shàngrèn’ to mean ‘noun, the predecessor’:
1. We need to analyse the policies left behind by the previous leader to see what needs to be improved.
2. During the previous mayor’s tenure, the city’s infrastructure was greatly improved. 3.
3. The new mayor said that he would carry on the good traditions of the previous mayor.
4. The departure of the previous manager has created a number of challenges for the company.
5. He tried to understand the work programme left behind by his predecessor
so that he could better continue with the project.
6. When the previous minister was in office, he introduced a number of popular education policies.
7. The employees were very sorry to see the previous leader leave.
8. The bridge was invested in by the previous government.
9. She spoke highly of the work of the previous leader.
10. The previous leader left behind a sound management system before he left office.

Table 2: Prompts used for generating Chinese sentence pairs containing target homonyms.

Model family
Languages

Number of layer Parameters
English Chinese

BERT

bert-base-uncased 12 110M
bert-large-uncased 24 340M

bert-base-chinese 12 102M
bert-base-multilingual-uncased 12 167M

roberta-base 12 125M
roberta-large 12 355M

xlm-roberta-base 12 278M
xlm-roberta-large 12 560M
deberta-v3-based 12 183M
deberta-v3-large 12 434M

mdeberta-v3-based 12 278M

GPT

gpt2 12 124M
gpt2-medium 24 355M

gpt2-large 36 774M
gpt2-xl 48 1.5B

Llama
Llama-3.2-1B 16 1B
Llama-3.2-3B 28 3B
Llama-3.1-8B 32 8B

Qwen
Qwen-2.5-1.5B 28 1.5B
Qwen-2.5-3B 36 3B
Qwen-2.5-7B 28 7B

Table 3: List of models included in our analyses. All models are available on Huggingface via the transformers
library (Wolf et al., 2020).
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Model Language Factor df1 df2 F -ratio p-value
bert-base-uncased en layer 11.000 1,089.000 275.838 < 0.001∗∗∗

bert-large-uncased en layer 23.000 2,277.000 347.023 < 0.001∗∗∗

bert-base-chinese zh layer 11.000 1,089.000 176.867 < 0.001∗∗∗

bert-base-multilingual-uncased en layer 11.000 1,089.000 241.625 < 0.001∗∗∗

bert-base-multilingual-uncased zh layer 11.000 1,089.000 112.165 < 0.001∗∗∗

roberta-base en layer 11.000 1,089.000 105.724 < 0.001∗∗∗

roberta-base zh layer 11.000 1,089.000 9.527 < 0.001∗∗∗

roberta-large en layer 23.000 2,277.000 266.928 < 0.001∗∗∗

roberta-large zh layer 23.000 2,277.000 28.143 < 0.001∗∗∗

xlm-roberta-base en layer 11.000 1,089.000 209.648 < 0.001∗∗∗

xlm-roberta-base zh layer 11.000 1,089.000 126.957 < 0.001∗∗∗

xlm-roberta-large en layer 23.000 2,277.000 268.824 < 0.001∗∗∗

xlm-roberta-large zh layer 23.000 2,277.000 148.892 < 0.001∗∗∗

deberta-v3-base en layer 11.000 1,089.000 230.244 < 0.001∗∗∗

deberta-v3-base zh layer 11.000 1,089.000 103.987 < 0.001∗∗∗

deberta-v3-large en layer 23.000 2,277.000 338.160 < 0.001∗∗∗

deberta-v3-large zh layer 23.000 2,277.000 143.651 < 0.001∗∗∗

mdeberta-v3-base en layer 11.000 1,089.000 139.872 < 0.001∗∗∗

mdeberta-v3-base zh layer 11.000 1,089.000 91.247 < 0.001∗∗∗

gpt2 en layer 11.000 1,089.000 158.189 < 0.001∗∗∗

gpt2 zh layer 11.000 1,089.000 11.645 < 0.001∗∗∗

gpt2-medium en layer 23.000 2,277.000 133.047 < 0.001∗∗∗

gpt2-medium zh layer 23.000 2,277.000 9.674 < 0.001∗∗∗

gpt2-large en layer 35.000 3,465.000 206.389 < 0.001∗∗∗

gpt2-large zh layer 35.000 3,465.000 4.265 < 0.001∗∗∗

gpt2-xl en layer 47.000 4,653.000 128.006 < 0.001∗∗∗

gpt2-xl zh layer 47.000 4,653.000 6.147 < 0.001∗∗∗

Llama-3.2-1B en layer 15.000 1,485.000 97.628 < 0.001∗∗∗

Llama-3.2-1B zh layer 15.000 1,485.000 82.293 < 0.001∗∗∗

Llama-3.2-3B en layer 27.000 2,673.000 85.032 < 0.001∗∗∗

Llama-3.2-3B zh layer 27.000 2,673.000 83.865 < 0.001∗∗∗

Llama-3.1-8B en layer 31.000 3,069.000 70.306 < 0.001∗∗∗

Llama-3.1-8B zh layer 31.000 3,069.000 82.185 < 0.001∗∗∗

Qwen2.5-1.5B en layer 27.000 2,673.000 111.454 < 0.001∗∗∗

Qwen2.5-1.5B zh layer 27.000 2,673.000 56.554 < 0.001∗∗∗

Qwen2.5-3B en layer 35.000 3,465.000 130.752 < 0.001∗∗∗

Qwen2.5-3B zh layer 35.000 3,465.000 56.042 < 0.001∗∗∗

Qwen2.5-7B en layer 27.000 2,673.000 99.746 < 0.001∗∗∗

Qwen2.5-7B zh layer 27.000 2,673.000 56.780 < 0.001∗∗∗

Table 4: Testing the main effect of layer per language and PLM/LLM (∗∗∗: ≤ .001, ∗∗: ≤ .01, ∗: ≤ .05). Multiple
comparisons corrected via FDR (Benjamini and Hochberg, 1995). Details of model fitting can be found in Appendix
D.1.
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Model contrast estimate SE df t-ratio p-value
bert-base-multilingual-uncased en - zh 6.130 0.530 198.000 11.570 < 0.001∗∗∗

roberta-base en - zh 8.741 0.395 198.000 22.117 < 0.001∗∗∗

roberta-large en - zh 9.776 0.369 198.000 26.464 < 0.001∗∗∗

xlm-roberta-base en - zh 2.421 0.309 198.000 7.830 < 0.001∗∗∗

xlm-roberta-large en - zh 2.667 0.302 198.000 8.818 < 0.001∗∗∗

deberta-v3-base en - zh 13.706 0.702 198.000 19.512 < 0.001∗∗∗

deberta-v3-large en - zh 11.792 0.567 198.000 20.802 < 0.001∗∗∗

mdeberta-v3-base en - zh 5.295 0.574 198.000 9.232 < 0.001∗∗∗

gpt2 en - zh 4.849 0.583 198.000 8.313 < 0.001∗∗∗

gpt2-medium en - zh 4.504 0.454 198.000 9.915 < 0.001∗∗∗

gpt2-large en - zh 6.623 0.751 198.000 8.820 < 0.001∗∗∗

gpt2-xl en - zh 7.896 0.796 198.000 9.923 < 0.001∗∗∗

Llama-3.2-1B en - zh 8.575 0.795 198.000 10.788 < 0.001∗∗∗

Llama-3.2-3B en - zh 7.900 0.805 198.000 9.817 < 0.001∗∗∗

Llama-3.1-8B en - zh 7.350 0.780 198.000 9.426 < 0.001∗∗∗

Qwen2.5-1.5B en - zh 6.040 0.834 198.000 7.242 < 0.001∗∗∗

Qwen2.5-3B en - zh 5.617 0.783 198.000 7.177 < 0.001∗∗∗

Qwen2.5-7B en - zh 5.371 0.784 198.000 6.852 < 0.001∗∗∗

Table 5: Testing the overall effect of language averaged over all layers per model by the pairwise comparisons
between the D-scores of the two languages (∗∗∗: ≤ .001, ∗∗: ≤ .01, ∗: ≤ .05). Multiple comparisons corrected via
FDR (Benjamini and Hochberg, 1995). Details of model fitting can be found in Appendix D.2.
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Model Language Factor df1 df2 F -ratio p-value
bert-base-uncased en POS:layer 11.000 1,078.000 20.732 < 0.001∗∗∗

bert-large-uncased en POS:layer 23.000 2,254.000 11.595 < 0.001∗∗∗

bert-base-chinese zh POS:layer 11.000 1,078.000 7.248 < 0.001∗∗∗

bert-base-multilingual-uncased en POS:layer 11.000 1,078.000 48.921 < 0.001∗∗∗

bert-base-multilingual-uncased zh POS:layer 11.000 1,078.000 2.635 0.003∗∗

roberta-base en POS:layer 11.000 1,078.000 3.167 < 0.001∗∗∗

roberta-base zh POS:layer 11.000 1,078.000 3.019 0.001∗∗∗

roberta-large en POS:layer 23.000 2,254.000 12.184 < 0.001∗∗∗

roberta-large zh POS:layer 23.000 2,254.000 1.442 0.084
xlm-roberta-base en POS:layer 11.000 1,078.000 16.885 < 0.001∗∗∗

xlm-roberta-base zh POS:layer 11.000 1,078.000 3.693 < 0.001∗∗∗

xlm-roberta-large en POS:layer 23.000 2,254.000 9.831 < 0.001∗∗∗

xlm-roberta-large zh POS:layer 23.000 2,254.000 2.531 < 0.001∗∗∗

deberta-v3-base en POS:layer 11.000 1,078.000 3.627 < 0.001∗∗∗

deberta-v3-base zh POS:layer 11.000 1,078.000 11.075 < 0.001∗∗∗

deberta-v3-large en POS:layer 23.000 2,254.000 2.594 < 0.001∗∗∗

deberta-v3-large zh POS:layer 23.000 2,254.000 8.391 < 0.001∗∗∗

mdeberta-v3-base en POS:layer 11.000 1,078.000 14.018 < 0.001∗∗∗

mdeberta-v3-base zh POS:layer 11.000 1,078.000 3.280 < 0.001∗∗∗

gpt2 en POS:layer 11.000 1,078.000 54.885 < 0.001∗∗∗

gpt2 zh POS:layer 11.000 1,078.000 1.765 0.059
gpt2-medium en POS:layer 23.000 2,254.000 28.487 < 0.001∗∗∗

gpt2-medium zh POS:layer 23.000 2,254.000 2.109 0.002∗∗

gpt2-large en POS:layer 35.000 3,430.000 38.495 < 0.001∗∗∗

gpt2-large zh POS:layer 35.000 3,430.000 0.643 0.949
gpt2-xl en POS:layer 47.000 4,606.000 21.148 < 0.001∗∗∗

gpt2-xl zh POS:layer 47.000 4,606.000 0.973 0.531
Llama-3.2-1B en POS:layer 15.000 1,470.000 11.654 < 0.001∗∗∗

Llama-3.2-1B zh POS:layer 15.000 1,470.000 5.489 < 0.001∗∗∗

Llama-3.2-3B en POS:layer 27.000 2,646.000 8.432 < 0.001∗∗∗

Llama-3.2-3B zh POS:layer 27.000 2,646.000 4.869 < 0.001∗∗∗

Llama-3.1-8B en POS:layer 31.000 3,038.000 8.704 < 0.001∗∗∗

Llama-3.1-8B zh POS:layer 31.000 3,038.000 5.111 < 0.001∗∗∗

Qwen2.5-1.5B en POS:layer 27.000 2,646.000 6.972 < 0.001∗∗∗

Qwen2.5-1.5B zh POS:layer 27.000 2,646.000 3.108 < 0.001∗∗∗

Qwen2.5-3B en POS:layer 35.000 3,430.000 12.456 < 0.001∗∗∗

Qwen2.5-3B zh POS:layer 35.000 3,430.000 2.996 < 0.001∗∗∗

Qwen2.5-7B en POS:layer 27.000 2,646.000 12.519 < 0.001∗∗∗

Qwen2.5-7B zh POS:layer 27.000 2,646.000 2.970 < 0.001∗∗∗

Table 6: Interaction effect between POS and layer (∗∗∗: ≤ .001, ∗∗: ≤ .01, ∗: ≤ .05). Multiple comparisons
corrected via FDR (Benjamini and Hochberg, 1995). Details of model fitting can be found in Appendix D.3.
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English Chinese

Model Family Model Layer (Best POS) Layer (Best D-score) D-score Layer (Best POS) Layer (Best D-score) D-score

BERT

bert-base-uncased 8 7 18.50 — — —
bert-large-uncased 15 15 20.81 — — —
bert-base-chinese — — — 9 12 9.63
bert-base-multilingual-uncased 12 12 14.65 7 12 4.96
roberta-base 4 11 11.36 1 9 1.04
roberta-large 5 21 13.04 4 15 1.03
xlm-roberta-base 8 10 7.82 9 11 4.04
xlm-roberta-large 10 23 9.57 11 23 5.15
deberta-v3-base 4 5 24.44 10 8 6.50
deberta-v3-large 7 12 25.32 23 15 6.79
mdeberta-v3-base 6 6 18.04 6 11 10.56

GPT2

gpt2 9 9 9.57 8 6 1.93
gpt2-medium 16 17 8.44 15 16 1.55
gpt2-large 36 36 15.72 28 26 2.49
gpt2-xl 48 48 15.83 29 29 2.53

Llama3
Llama-3.2-1B 3 4 14.77 14 16 5.61
Llama-3.2-3B 3 6 16.86 23 23 6.66
Llama-3.1-8B 3 6 16.87 22 24 6.65

Qwen2.5
Qwen2.5-1.5B 4 8 15.11 20 9 6.43
Qwen2.5-3B 11 14 14.89 11 14 6.99
Qwen2.5-7B 8 8 13.99 5 10 6.89

Table 7: The layer where the t-ratio computed from the comparison between same-POS D-score and different-POS
D-score is the largest. The columns D-score show the D-score from the best D-score layer, same as Table 1.
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