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Abstract

Whether large language models (LLMs) pro-
cess language similarly to humans has been
the subject of much theoretical and practical
debate. We examine this question through the
lens of the production-interpretation distinction
found in human sentence processing and evalu-
ate the extent to which instruction-tuned LLMs
replicate this distinction. Using an empirically
documented asymmetry between pronoun pro-
duction and interpretation in humans for im-
plicit causality verbs as a testbed, we find that
some LLMs do quantitatively and qualitatively
reflect human-like asymmetries between pro-
duction and interpretation. We demonstrate
that whether this behavior holds depends upon
both model size-with larger models more likely
to reflect human-like patterns and the choice
of meta-linguistic prompts used to elicit the
behavior. Our codes and results are available
here.

1 Introduction and Background

The extent to which large language models (LLMs)
are “cognitively plausible," that is, replicate human-
like behaviors in language processing, has been the
subject of ongoing debate (Dentella et al., 2023; Hu
et al., 2024; Futrell and Mahowald, 2025; Kurib-
ayashi et al., 2025). Existing research on the lin-
guistic capabilities of LLMs has predominantly
focused on their performance in language inter-
pretation, e.g., pragmatic understanding (Hu et al.,
2023), sentence acceptability judgment (Warstadt
et al., 2020), garden-path effect (Futrell et al.,
2019), reference resolution (Lam et al., 2023). In
this study, we examine a previously unexplored di-
mension of cognitive plausibility: whether LLMs
reflect human-like distinctions between produc-
tion and interpretation in language processing.

*Both authors contributed equally. Correspondence to
qcz@u.northwestern.edu

Production and interpretation were traditionally
treated as two independent processes in human lan-
guage: for instance, in neurolinguistics the “classic”
Lichtheim–Broca–Wernicke model assumes dis-
tinct anatomical pathways associated with produc-
tion and interpretation (see Ben Shalom and Poep-
pel 2008). While this extreme dichotomy has been
rejected recently (see Pickering and Garrod 2013),
humans do exhibit different underlying biases in
language processing between production and inter-
pretation even in very similar tasks. Whether such
distinctions carry over into LLMs is of particular
interest when we consider that the fundamental unit
of LLM computation is P (token|context), which
is inherently ambiguous between production and
interpretation and is practically applied towards
both types of tasks.

The present study probes into this question using
reference processing as a test case. Consider the
following examples:

(1) A production task: next-mentioned bias
a. John infuriated Bill. ... [IC1]
b. John praised Bill. ... [IC2]

(2) A interpretation task: ambiguous pronoun
resolution
a. John infuriated Bill. He ... [IC1]
b. John praised Bill. He ... [IC2]

When asked to continue the story in (1), speak-
ers usually describe events that happened to one
of the two mentioned characters. This is a pro-
duction task, and psycholinguistic research has in-
vestigated how the preceding context affects the
next-mention bias of the character, i.e., how likely
a character will be referred to in the continued
story P (referent|context). In (1-a), ‘John’ has
a higher next-mention bias than ‘Bill’, because he
is the implicit cause of the event. Verbs like ‘in-
furiate’ are therefore called the subject-biased im-
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plicit causality (IC1) verbs. In contrast, ‘Bill’ has a
higher next-mention bias than ‘John’ in (1-b), be-
cause ‘Bill’ implies an implicit cause for ‘John’ to
praise him. Verbs like ‘praise’ are therefore called
object-biased implicit causality (IC2) verbs (e.g.,
Stevenson et al. 1994).

A similar implicit causality bias can also be
found in (2). Although participants are asked to
perform the same sentence continuation task as
in (1), note that an additional interpretation ele-
ment is involved here: since an additional pro-
noun is provided after the context sentence, partici-
pants must first resolve the ambiguous pronoun “he”
P (referent|pronoun) before providing a reason-
able continuation.

Studies have shown that human participants were
more likely to resolve the ambiguous pronoun to
the subject ‘John’ than the object ‘Bill’ with an IC1
verb. That is, ‘John’ has a higher interpretation bias
than ‘Bill’ under this condition. This interpretation
bias flips when the verb is an IC2 verb: ‘Bill’ were
more likely to be the antecedent of the ambiguous
pronoun ‘he’ than ‘John’ in (2-b) (e.g., Crinean and
Garnham 2006).

Given the additional interpretation element,
henceforth we refer to the sentence continuation
task with a given pronoun such as (2) as an inter-
pretation task for measuring pronoun interpreta-
tion bias; and the one without a given pronoun such
as (1) as the production task for measuring next-
mentioned bias, despite the fact that the sentence
continuation task is in principle a production task.

Crucially, psycholinguistic research has revealed
an asymmetry between these two biases. In the
interpretative case of pronoun interpretation bias,
humans are robustly more likely to show a prefer-
ence for the subject than in the production case of
next-mention bias cross-linguistically (English: Ro-
hde and Kehler 2014; Mandarin: Zhan et al. 2020;
Lam and Hwang 2024; German: Patterson et al.
2022; Catalan: Mayol 2018). That is, participants
were more likely to resolve an ambiguous pronoun
towards the subject than choose the subject as the
next referent, despite the same context.

For humans, this extra subject bias in interpre-
tation comes from the bias of using pronouns for
subject antecedent, i.e., P (he|subject). That is,
when they see an ambiguous pronoun, they do not
only consider the next-mention bias of which an-
tecedent is more likely to be mentioned, but also
why a pronoun is used. It is unknown whether and
how LLMs can handle this difference, as they do

not generate such a conditional probability based
on the choice of next referent instead of the context.

We therefore probe this dimension of LLM
cognitive plausibility using this task, asking (1)
whether the IC verb-type effect is reflected by
LLMs in both production and interpretation; and
(2) whether a human-like asymmetry between the
two biases exists. This is our first set of questions:
do LLMs show human-like interpretation and pro-
duction biases, and if so under what conditions?
Do human-like effects scale with parameter count?

Evaluating LLM in metalinguistic prompts
Hu and Levy (2023) demonstrated that direct
probability-based measures in general outper-
formed meta-linguistic prompting in assessing plau-
sibility and syntactic processing tasks. However,
not all language processing tasks can be effectively
quantified using probability-based measures, and
for some tasks meta-linguistic prompts are the only
possible method to measure processing. This is
exactly our case: in the ambiguous pronoun resolu-
tion task, the bias towards the subject ‘John’ or the
object ’Bill’ is represented by the same term, i.e.,
P (he|context). Metalinguistic prompting is thus
necessary to elicit meaningful results.

One might expect LLM performance to vary
within different metalinguistic prompts, but it is un-
clear which type of metalinguistic prompts would
perform better. Although Hu and Levy (2023)
demonstrated that metalinguistic prompts that are
more similar to the direct probability baseline per-
form better, we would like to explore whether prob-
ability measurements obtained via metalinguistic
prompting also provide greater reliability. This
constitutes the second aim of this paper: across dif-
ferent metalinguistic prompting strategies, which
elicit more human-like language processing behav-
iors?

Our findings are summarized below: (1) in the
most cases, LLMs cannot capture the difference be-
tween the production and the interpretation task in
reference processing; if any, the asymmetry is lim-
ited to certain meta-linguistic prompts and rarely
reach the magnitude found in human participants;
and (2) the choice of meta-linguistic prompts mat-
ters in evaluating LLMs: most LLMs perform in a
more human-like manner with one specific prompt
that is unrelated to probability measure, namely the
Yes/No prompt (details explained in Section 2.2).
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2 Methodology

2.1 Stimuli

We constructed stimuli in the frame of “[Character
A] IC-verb [Character B]" without pronouns for
the next-mention production task (as in (1)), and
with a pronoun with an ambiguous referent for the
pronoun resolution task (as in (2)). We selected
137 IC1 verbs and 134 IC2 verbs from the origi-
nal study that found the production-interpretation
asymmetry (Rohde and Kehler, 2014), and the En-
glish IC verb corpus (Ferstl et al., 2011). For each
verb, we heuristically created two items by assign-
ing a pair of male names and a pair of female names
randomly selected from 13 unambiguously male
and 13 unambiguously female names from Rohde
(2008). The congruence of the gender of the char-
acters ensures the ambiguity of the pronoun. This
results in 541 items in each task.

2.2 Models and Metalinguistic Prompting

Our experiments evaluate four representative LLMs
from open-source LLMs ranging from 8B to 70B
and one proprietary LLM: LLaMA3.1Instruct-8B
(Grattafiori et al., 2024), QWen2.5Instruct-32B
(Qwen et al., 2025), LLaMA3.3Instruct-70B
(Grattafiori et al., 2024), and GPT-4o (OpenAI
et al., 2024). We focus on instruction-tuned model
1 as they allow the effective use of metalinguistic
prompting, and varying parameter counts also al-
low us to assess the impact of model scaling on
human-like language processing behavior. Specif-
ically, we constantly use greedy decoding in our
generation. We employ four metalinguistic prompt
strategies to assess LLM behavior:

(i) Binary choice prompting: The model is
prompted to select between subject and ob-
ject.

(ii) Continuation prompting: The model is in-
structed to extend the sentence by continuing
with either the subject or the object.

(iii) Yes/No prompting: The model is asked
whether the following sentence (or the ex-
isting pronoun) will begin with the subject,
requiring a binary response.

(iv) Yes/No probability prompting: Similar to (iii),
but instead of a categorical response, we ex-

1We also experiment with base LLMs. However, even for
continuation prompting, base LLMs could not follow instruc-
tions reliably.

tract the probability assigned to the Yes token
as a quantitative measure.

Three authors of the paper manually verified all
model outputs to confirm subject/object choice and
exclude ambiguous, nonsensical, plural responses,
and responses with repeated pronoun in the inter-
pretation task. Table 2 reported the distribution of
the excluded responses over the 1082 responses of
each model in the two tasks.

Table 1: The distribution of excluded responses in con-
tinuation prompting

Ambiguous Non-sensical Plural Repeated pronoun
LLaMA-8B 54 21 17 0
LLaMA-70B 35 9 0 0
Qwen 17 6 0 0
GPT-4o 22 1 8 5

The specific prompts used in our experiments
are provided in Appendix A, and the details of the
exclusion criteria in Appendix B.1.

2.3 Evaluation
We evaluated model behavior from two perspec-
tives. We first consider whether the IC verb type
effect and the production-interpretation asymmetry
exists in LLMs, which we both visualize to observe
broad trends and verify with statistical tests like
those run in human experiments. We then con-
sider the magnitude of the effect found in LLMs, as
psycholinguistic research has found that language
models often fail to replicate the magnitude of ef-
fects found in human participants even when the
directionality is similar. Below we only report ef-
fects that are verified by statistical evidence, the
details of which be found in Appendix B.

3 Results

Result #1: Implicit causality biases are some-
times replicated by LLMs, depending on
prompts and models. Figure 1 presents the
task performance across different metalinguistic
prompts for each model. The implicit causality
(IC) verb effect — where subjects are chosen more
frequently after IC1 verbs than IC2 verbs — was
observed in at least one metalinguistic prompt for
all models, though the strength and consistency of
this effect varied by both model and prompt type.

For LLaMA models, the IC verb effect was
present in both production and interpretation when
using Yes/No and Yes/No probability prompts, in-
dicating a broader sensitivity to IC biases across
tasks. In contrast, the IC verb effect was limited
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(d) Yes/no probability prompting 
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Figure 1: Model behavior as proportion of subject/yes choice as the antecedent by prompting strategy. Human
behavior – rightmost facet in each subfigure for reference, from Rohde and Kehler (2014) – tends to reflect higher
subject bias for IC1 over IC2 verbs, but with asymmetry between production and interpretation tasks.

to Yes/No prompting for GPT-4o and even more
restricted for Qwen, in which the effect was only ob-
served in interpretation and limited to binary choice
prompt. This suggests that the model’s sensitivity
to IC verbs may depend on task framing.

Result #2: The production-interpretation asym-
metry is limitedly captured. Recall that hu-
man participants are more subject-biased in in-
terpretation than in production. This difference
is only elicited in LLaMA models using Yes/No
and Yes/No probability prompts, and GPT-4o using
Yes/No prompt and continaution prompt. Qwen was
entirely unable to capture this asymmetry because
it failed to predict the IC verb effect in production
with all four metalinguistic prompts.

Another unexpected production-interpretation
asymmetry is that LLMs generally are less likely to
capture the IC verb bias in production than in inter-
pretation. For instance, while the LLaMA-8B model
was able to predict an IC verb effect in interpre-
tation when using binary choice and continuation
prompts, it predicted a reverse verb type effect in

production using these prompts. The same pattern
can also be seen in GPT-4o using Yes/No probabil-
ity prompts. This unexpected asymmetry is even
clearer in the performance of the Qwen model, in
which the IC verb effect is only found in interpreta-
tion. This suggests that LLMs are generally unable
to recognize the difference between production and
interpretation like humans.

Result #3: LLMs do not align with human be-
havior in effect magnitude. Although there was
a verb type effect and a production/interpretation
task effect on LLMs’ responses, the magnitude
of these effects is different from humans even in
the most similar case: with Yes/No prompting,
LLaMA-70B predicted an IC verb effect difference
of 19.4% in the production task and 9.2% in the
interpretation task. Yet, these two differences were
47.2% and 28.8% respectively in human partici-
pants (Rohde and Kehler, 2014). In other words,
even in the best scenario, LLMs underestimate the
magnitude of the IC verb effect.

Surprisingly, the magnitude of the production-
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interpretation asymmetry predicted by LLMs is
well-aligned with humans in one case: in human
participants, this asymmetry was 16.8% and 35.2%
respectively for IC1 and IC2 verbs. With Yes/No
prompting, LLaMA-70B predicted a 20.8% and 31%
difference respectively for the two verb types. Yet,
this seems to be an isolated case. Among the six
cases (two LLaMA models in Yes/No and Yes/No
probability promptings; GPT-4o in Yes/No and con-
tinaution promptings) that exhibit a trend of the
production-interpretation asymmetry, this is the
only scenario that the magnitude of the asymmetry
is similar between LLM and humans. We there-
fore do not tend to generalize that LLM aligns with
human behavior in terms of effect magnitude.

Result #4: Scaling matters. Overall,
LLaMA-70B shows better performance than
LLaMA-8B across all four prompts. With Binary
choice prompts, LLaMA-8B predicted a reverse IC
verb effect in the production task and a reverse
production-interpretation asymmetry in IC2 verbs,
while both effects were captured by LLaMA-70B.
With Yes/No and Yes/No probability prompts,
although both LLaMA-8B and LLaMA-70B reflected
an IC verb effect and production-interpretation
asymmetry, the magnitude in human participants
was better approximated by LLaMA-70B.

Result #5: Overall, Yes/No prompts align the
best with human performance. Among the four
promptings used in our study, most models best
align with human performance with the Yes/No
prompting. This is the only prompting that LLaMA
models and GPT-4o capture the IC verb effect and
the production-interpretation asymmetry. However,
for QWen, the best performing prompt is the binary
choice prompting. This shows that models still
differ in their sensitivity to metalinguistic prompts.

4 Discussion

Our study examines the asymmetry between in-
terpretation and interpretation in humans within
the context of LLMs, showing that, under specific
prompting strategies, certain LLMs can approxi-
mate human-like asymmetry. Among the four mod-
els we tested, while LLaMA models and GPT-4o per-
formed the best with the Yes/No prompting, Qwen
performed the best with the binary choice prompt-
ing.

Our findings partially align with Hu and Levy
(2023), which suggests that the format of met-

alinguistic prompts influences the behavior of the
model. In our study, the four distinct prompt-
ing strategies did lead to considerable variation
in LLM performance, highlighting the sensitivity
of model responses to prompt formulation. The
different preferences for prompting strategies be-
tween model families also reinforce the need for
extensive experimentation across multiple prompt-
ing approaches before evaluating a model using
metalinguistic prompts.

Yet, different from their findings, we did not
see prompting strategies that are more similar to
direct probability measures better capture human
preferences. Based on Hu and Levy (2023)’s
observations, one might expect that metalinguis-
tic prompts that incorporate explicit probability
measures would be more reliably approximate hu-
man biases. However, our results show otherwise:
although models differ in their best-performing
prompts, the Yes/No prompting without probabil-
ity performed best in three out of the four models
in our setting. The probability-based format has
never yielded superior alignment with human re-
sponses. This indicates that probability cues are not
universally beneficial in prompting and that their
effectiveness may depend on the specific task or
model.

Another worth mentioning pattern in our results
is that continuation prompting keeps performing
the worst in capturing human-like performance,
despite being the task originally performed by hu-
man participants. One possible explanation is that
instruction-tuned LLMs, having been fine-tuned
with instruction data or preference optimization
objectives, may develop constrained response pat-
terns (Lin et al., 2023), limiting their flexibility
in generating diverse continuations. Additionally,
such fine-tuning can reduce conceptual diversity
(Murthy et al., 2024), making LLMs less sensitive
to implicit biases in language processing. This
suggests that continuation prompting may not be
well-suited for probing human-like asymmetries in
interpretation and production.

In conclusion, our study reveals that while some
instruction-tuned LLMs can approximate human-
like asymmetries between production and interpre-
tation under specific conditions, their sensitivity
and alignment to human behavior are highly depen-
dent on model scale and the choice of metalinguis-
tic prompting strategy. These findings highlight the
nuanced and prompt-contingent nature of evaluat-
ing cognitive plausibility in LLMs.
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Limitations

Our work has two primary limitations. First, our
experiments are conducted on three English-centric
LLMs (LLaMA and GPT-4o) and one multilingual-
oriented LLM (Qwen). This selection may intro-
duce biases into the models’ performance, poten-
tially limiting the generalizability of our findings
across other LLMs. Second, our study focuses
solely on the asymmetry between ambiguous pro-
noun resolution and production in English, with-
out exploring cross-linguistic variations. Future
research could address these limitations by incorpo-
rating a more diverse set of LLMs and broadening
the scope of languages analyzed.
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A Prompt Template

The following shows the metalinguistic prompt de-
sign for LLMs.

System Prompt: You are a helpful assistant.

production-binary-choice-template:
In the following sentence, who is more likely to be
the subject of the next sentence? {} or {}? Please
ONLY return the name without any explanation or
extra words.
Sentence: {}
Answer:

production-yes-no-template:
In the following sentence, judge whether the pronoun
of the next sentence will refer to {}. Please ONLY
answer with ’Yes’ or ’No’.
Sentence: {}

production-continuation-template:
Please reasonably continue the sentence with one of
the mentioned characters. You should start a new
sentence rather than a clause. Please ONLY return
the continuation.
Sentence: {}

interpretation-binary-choice-template:
In the following sentence, who is more likely to be
the referent of the pronoun? {} or {}? Please ONLY
return the name without any explanation or extra
words.
Sentence: {}
Answer:

interpretation-yes-no-template:
In the following sentence, judge whether the pronoun
refers to {}. Please ONLY answer with ’Yes’ or
’No’.
Sentence: {}

interpretation-continuation-template:
Please reasonably continue the sentence following
the pronoun. Please ONLY return the continuation.
Sentence: {}

B Statistical analyses and results

We focus on how the bias of IC verbs (IC1 vs.
IC2) and the task (production vs. interpretation)
affect the outcomes of LLMs in each type of meta-
linguistic prompts.
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B.1 Data annotation

For binary prompts, we annotated based on the
name answered by the LLM. For yes-no prompts,
we annotated "yes" as “Subject" .

For continuation prompts, we manually anno-
tated the choice of referent (Subject vs. Object) in
the production task and the choice of antecedent
(Subject vs. Object) in the ambiguous pronoun
resolution task based on the meaning of the gen-
erated continuation. For instance, for a sentence
like “Nick offended Steve. He decided to apologize
and clear the air before things escalated further",
we annotated the outcome as “Subject". Ambigu-
ous references (e.g., “Zack divorced Paul. He later
moved to a new city to start his life over."), non-
sensical continuations (e.g., “Janet wanted Kate.
She to join her at the party that night, but Kate had
already made other plans."), continuations with a
plural antecedent (e.g., “Claire played with Jane.
They were building a sandcastle on the beach"),
and continuations starting with a repeated pronoun
in an interpretation task (e.g., “Claire played with
Jane. She... she") were excluded. The distribution
of the excluded item has been provided in Table 2
in the main text, repeated below:

Table 2: The distribution of excluded responses in con-
tinuation prompting

Ambiguous Non-sensical Plural Repeated pronoun
LLaMA-8B 54 21 17 0
LLaMA-70B 35 9 0 0
Qwen 17 6 0 0
GPT-4o 22 1 8 5

As can be seen, LLaMA-8B made more ambigu-
ous and non-sensical continuations than all other
models. Besides, it also provided continuations
with “they", which violates the requirement posed
in the prompts. This might suggest that scaling af-
fects LLMs’ ability to follow the instructions. More
models should be evaluated to test this hypothesis.

B.2 Analyses

LLaMA models For the results of LLaMA mod-
els, we ran a mixed-effects Bayesian bernoulli re-
gression model using the R package brms for the
binary outcome resulted from continuation, binary,
and yes-no prompts (Subject = 1; Object = 0); and
a mixed-effects Bayesian linear regression model
for the continuous probability outcome from yes-
no probability prompt. Note that the dataset used
in statistical model for continuation outcome is
slightly different from that used in other models, as

some of the responses are excluded, as introduced
in Appendix B.1.

Each model was fitted using 4 chains, each with
5000 iterations. The first 1000 were warm-up to cal-
ibrate the sampler. This results in 12000 posterior
samples. They were all built with fixed predictors
of IC verbs (sum-coded: IC1 = 0.5; IC2 = -0.5),
task type (sum-coded: interpretation = 0.5; produc-
tion = -0.5), and their interaction. A maximal ran-
dom structure justified by design is implemented
(Barr et al., 2013). For logistic regression models,
we used weakly informative priors, i.e., a Cauchy
distribution with a center of 0 and a scale of 2.5
for fixed effects following Gelman et al. (2008),
and the default setting of the package for the other
parameters. For linear regression models, we used
a gaussian distribution with a mean of 0 and a stan-
dard deviation of 1 as the weakly informative prior
for fixed predictors. When there is an interaction
effect, we further ran nested models for pairwise
comparison.

The Bayesian statistics framework does not use
the p-value. We consider the 95% credible interval
(Crl) as the evidence for an effect: if the 95% Crl
does not include a zero, i.e., it is all positive or
negative, we consider there is evidence for an effect.
Below we report the estimate and the 95% Crl for
each effect.

QWen For Qwen, we only ran analysis for con-
tinuation prompts, and limited to the effect of the
IC verb only. This is because responses of Qwen in
the production task is so extreme that no statistical
model can be successfully fitted. The settings of the
mixed-effects Bayesian bernoulli regression model
are the same as those used for LLaMA models.

GPT-4o Like LLaMA models, we ran mixed-
effects Bayesian bernoulli regression model for
binary outcomes from continuation and yes-no
prompts. We did not run analysis for binary
prompts because responses of GPT-4o were ex-
tremely subject-biased in all conditions. As a re-
sult, no statistical model can be fitted. We also ran
linear regression model for probability outcomes
from yes-no probability prompts. The settings of
the statistical models are the same as in analyses
for LLaMA models.

B.3 Results
We bold the predictor in which the effect is sup-
ported the statistical evidence, i.e., the 95% Crl
does not contain a zero.
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B.3.1 LLaMA-3.1-8B Model
Binary prompting Table 3 shows that there was
an interaction effect between the IC verb type and
the task type.

Formula: binary ∼ verb ∗ task + (1 + task|itemID)

Estimate Est. Error 95% CrI

Intercept -1.80 0.74 [-3.78, -0.99]
verb 0.64 0.48 [-0.12, 1.80]
task 0.67 0.75 [-0.65, 2.47]
verb:task 2.06 0.99 [0.78, 4.61]

Table 3: Summary of the Bayesian logistic regression
model of LLaMA-3.1-8B model, binary choice prompt-
ing.

Nested analyses further reveal that the
production-interpretation asymmetry is only found
in IC1 verbs (Table 4), and the verb type effect is
only found in interpretation (Table 5).

Formula: binary ∼ verb/task + (1 + task|itemID)

Estimate Est. Error 95% CrI

Intercept -1.84 0.76 [-3.81, -0.99]
verb 0.63 0.47 [-0.14, 1.76]
verbIC1:task 1.76 0.96 [0.55, 4.24]
verbIC2:task -0.40 0.82 [-2.30, 1.14]

Table 4: Pairwise comparison of the task type effect
within IC1 and within IC2 conditions using binary
choice prompting in LLaMA-3.1-8B model.

Formula: binary ∼ task/verb + (1 + prompt|itemID)

Estimate Est. Error 95% CrI

Intercept -1.80 0.79 [-3.85, -0.99]
task 0.65 0.73 [-0.68, 2.37]
taskProduction:verb -0.43 0.50 [-1.57, 0.42]
taskInterpretation:verb 1.69 0.89 [0.61, 4.01]

Table 5: Pairwise comparison of the IC verb type ef-
fect within the production and within the interpretation
task using binary choice prompting in LLaMA-3.1-8B
model.

Yes-no prompting As shown in Table 6, there
was an interaction effect between the verb type and
task type for the responses of the model.

Formula: yes_no ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept -4.06 0.61 [-5.44, -3.04]
verb 3.12 0.67 [1.97, 4.61]
task 4.31 0.70 [3.12, 5.89]
verb:task -1.99 0.93 [-4.01, -0.39]

Table 6: Summary of the Bayesian logistic regression
model of LLaMA-3.1-8B model, yes-no prompting.

Nested analysis in Table 7 further reveals that
the model did give more "yes" (or referring to sub-
ject) with IC1 verbs than IC2 verbs (as indicated by
the positive intercept of the verb predictor). Also,
the production-interpretation asymmetry is found
within both IC1 and IC2 verbs, such that the model
chose more subjects in interpretation than produc-
tion.

Formula: yes_no ∼ verb/task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept -4.06 0.62 [-5.50, -3.04]
verb 3.18 0.70 [2.00, 4.76]
verbIC1:task 3.22 0.55 [2.28, 4.43]
verbIC2:task 5.45 1.14 [3.58, 8.04]

Table 7: Pairwise comparison of the task effect within
the IC1 and within the IC2 verbs using yes-no choice
prompting in LLaMA-3.1-8B model.

Continuation prompting As shown in Table 8,
there was an interaction effect between the verb
type and the task type for the responses of the
model.

Formula: cont ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept -0.81 0.09 [-0.99, -0.65]
verb 0.36 0.16 [0.05, 0.67]
task -0.15 0.14 [-0.44, 0.13]
verb:task 1.14 0.30 [0.57, 1.73]

Table 8: Summary of the Bayesian logistic regression
model of LLaMA-3.1-8B model, continuation prompt-
ing.

Nested analyses in Table 9 show that the verb
type effect is only found in interpretation.
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Formula: cont ∼ task/verb + (1|itemID)

Estimate Est. Error 95% CrI

Intercept -0.81 0.09 [-0.99, -0.64]
task -0.15 0.14 [-0.44, 0.13]
taskProduction:verb -0.22 0.21 [-0.64, 0.18]
taskInterpretation:verb 0.93 0.22 [0.51, 1.37]

Table 9: Pairwise comparison of the IC verb type effect
within the production and within the interpretation task
using continuation prompting in LLaMA-3.1-8B model.

The pairwise comparison in Table 10 shows that
the production-interpretation asymmetry differs in
direction between the two verb types: while inter-
pretation is more subject-biased than production in
IC1 verbs, production is more subject-biased than
interpretation in IC2 verbs.

Formula: cont ∼ verb/task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept -0.81 0.09 [-0.99, -0.65]
verb 0.36 0.15 [0.06, 0.66]
verbIC1:task 0.42 0.20 [0.05, 0.81]
verbIC2:task -0.73 0.21 [-1.14, -0.32]

Table 10: Pairwise comparison of the task type effect
within IC1 and within IC2 verbs using continuation
prompting in LLaMA-3.1-8B model.

Yes/No probability prompting As shown in
Tabel 11, the model did generate a higher prob-
ability of ‘Yes’ (= subject) following IC1 verbs
than IC2 verbs, and in interpretation task than in
production task.

Formula: subject_yes_probability ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept 0.28 0.01 [0.27, 0.29]
verb 0.15 0.01 [0.12, 0.18]
task 0.15 0.01 [0.13, 0.17]
verb: task -0.00 0.02 [-0.03, 0.03]

Table 11: Summary of the Bayesian linear regression
model of LLaMA-3.1-8B model, Yes/No probability
prompting.

B.3.2 LLaMA-3.3-70B

Binary prompting Table 12 clearly shows
that the model only reveals the production-
interpretation asymmetry, such that it chose more
subject in interpretation than in production. There
was no clear evidence for the IC verb type effect.

Formula: binary ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept 14.61 3.61 [9.24, 23.34]
verb 1.36 1.42 [-1.19, 4.45]
task 2.21 0.73 [0.98, 3.84]
verb:task -1.24 1.07 [-3.44, 0.77]

Table 12: Summary of the Bayesian logistic regression
model of LLaMA-3.3-70B model, binary prompting.

Yes-no prompting Table 13 shows that the
model is able to capture the IC verb type effect
and the production-interpretation asymmetry, such
that it responded ‘Yes’ (=subject) more for IC1
verbs than IC2 verbs and the interpretation task
than the production task.

Formula: yes_no ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept 2.24 0.25 [1.79, 2.78]
verb 1.46 0.34 [0.83, 2.15]
task 2.63 0.31 [2.05, 3.29]
verb:task -0.10 0.44 [-0.95, 0.76]

Table 13: Summary of the Bayesian logistic regression
model of LLaMA-3.3-70B model, Yes/No prompting.

Continuation prompting Like in binary choice
prompting, Table 14 shows that the model only
reveals the production-interpretation asymmetry,
such that it chose more subject in interpretation
than in production. There was no clear evidence
for the IC verb type effect.

Formula: cont ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept -3.66 0.66 [-5.23, -2.68]
verb -0.61 0.88 [-2.67, 0.86]
task 6.83 1.27 [4.89, 9.82]
verb:task 1.10 1.74 [-1.78, 5.19]

Table 14: Summary of the Bayesian logistic regression
model of LLaMA-3.3-70B model, continuation prompt-
ing.

Yes/No probability prompting Table 15 shows
an interaction effect between verb and task type.
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Formula: subject_yes_probability ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept 0.73 0.01 [0.70, 0.75]
verb 0.12 0.02 [0.07, 0.16]
task 0.30 0.01 [0.27, 0.33]
verb:task -0.05 0.03 [-0.11, -0.00]

Table 15: Summary of the Bayesian linear regression
model of LLaMA-3.3-70B model, Yes/No probability
prompting.

Pairwise comparisons in Table 16 and 17 further
show that the verb type effect can be found in both
production and interpretation task, and the asym-
metry can be found in both IC1 and IC2 conditions.

Formula: subject_yes_probability ∼ verb/task + (1|itemID)

Estimate Est. Error 95% CrI

Intercept 0.73 0.01 [0.71, 0.75]
verb 0.12 0.02 [0.07, 0.16]
verbIC1:task 0.27 0.02 [0.24, 0.31]
verbIC2:task 0.33 0.02 [0.29, 0.37]

Table 16: Pairwise comparison of the verb type effect
within the production and the interpretation task us-
ing Yes/No probability prompting in LLaMA-3.1-70B
model.

Formula: subject_yes_probability ∼ task/verb + (1|itemID)

Estimate Est. Error 95% CrI

Intercept 0.73 0.01 [0.70, 0.75]
task 0.30 0.01 [0.27, 0.33]
taskProduction:verb 0.14 0.03 [0.09, 0.19]
taskInterpretation:verb 0.09 0.03 [0.04, 0.14]

Table 17: Pairwise comparison of the task type effect
within IC1 and within IC2 verbs using Yes/No probabil-
ity prompting in LLaMA-3.1-70B model.

B.3.3 QWen
Note that we only analyzed the responses of the
continuation prompting in the interpretation task
for Qwen, because models cannot be converged in
other case. As can be seen below in Table 18,
there is an opposite IC verb type effect such that
the model referred to more subjects following IC2
verbs than IC1 verbs.

Formula: cont ∼ verb + (1|itemID)

Estimate Est. Error 95% CrI

Intercept -0.60 0.07 [-0.73, -0.47]
verb -0.37 0.13 [-0.63, -0.11]

Table 18: Summary of the Bayesian logistic regression
model of Qwen model, continuation prompting.

B.3.4 GPT-4o
Recall that due to the extreme pattern of GPT-4o
with binary promptings, no statistical model could
be fitted. Below we only report results of statistical
analyses for outputs from Yes/No, Yes/No proba-
bility, and continuation promptings only.

Table 19 shows the results of outcomes from
Yes/No prompting of GPT-4o. As can be seen, there
was a main effect of both verb type and task type,
such that IC1 verbs and interpretation task elicited
more choices towards subject antecedent. This
aligns with the human performance.

Formula: yes_no ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CI

Intercept -0.39 0.15 [-0.69, -0.12]
verb 0.68 0.29 [0.15, 1.28]
task 5.51 0.83 [4.17, 7.42]
verb:task -0.23 0.46 [-1.15, 0.67]

Table 19: Summary of the Bayesian logistic regression
model of GPT-4o, Yes/No prompting.

Table 20 shows the results of outcomes from
Yes/No probability prompting of GPT-4o. Given
statistical evidence for the interaction effect be-
tween verb and task type, we further ran a nested
analysis for the effect of the task type within each
level of verb, as shown in Table 11.

Formula: subject_yes_probability ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CI

Intercept 0.89 0.01 [0.87, 0.90]
verb -0.01 0.01 [-0.04, 0.01]
task -0.06 0.01 [-0.08, -0.03]
verb:task 0.13 0.02 [0.08, 0.17]

Table 20: Summary of the Bayesian linear regression
model of GPT-4o, Yes/No probability prompting.

As can be seen, there was only a task effect
limited to IC2 verbs and in an opposite way to
human performance: the interpretation task was
even less subject-biased than the production task,
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as shown in the negative sign of the estimate of
verbIC2:task.

Formula: subject_yes_probability ∼ verb/prompt + (1|itemID)

Estimate Est. Error 95% CI

Intercept 0.89 0.01 [0.87, 0.90]
verb -0.01 0.01 [-0.04, 0.01]
verbIC1:task 0.01 0.02 [-0.03, 0.04]
verbIC2:task -0.12 0.02 [-0.15, -0.08]

Table 21: Pairwise comparison of the task type ef-
fect within IC1 and within IC2 verbs using of GPT-4o,
Yes/No probability prompting.

Lastly, Table 22 shows statistical results from
continuation promptings of GPT-4o. The main ef-
fect of the task type shows that the model captures
the production-interpretation asymmetry that the
interpretation task was more subject-biased than
the production task. However, the negative sign of
the verb type effect shows a reversed IC verb effect,
such that IC2 verbs were more subject-biased than
IC1 verbs.

Formula: cont ∼ verb ∗ task + (1|itemID)

Estimate Est. Error 95% CI

Intercept -1.43 0.30 [-2.12, -0.95]
verb -3.11 0.63 [-4.57, -2.10]
task 5.85 1.04 [4.26, 8.28]
verb:task 0.10 0.60 [-1.05, 1.33]

Table 22: Summary of the Bayesian linear regression
model of GPT-4o, continuation prompting.
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