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Abstract

Due to the high memory and computational
costs associated with large language mod-
els (LLMs), model compression techniques
such as quantization, which reduces infer-
ence costs, and parameter-efficient fine-tuning
(PEFT) methods like Low-Rank Adaptation
(LoRA), which reduce training costs, have
gained significant popularity. This trend has
spurred active research into quantization-aware
PEFT techniques, aimed at maintaining model
accuracy while minimizing memory overhead
during both inference and training. Previ-
ous quantization-aware PEFT methods typi-
cally apply post-training quantization (PTQ)
to pre-trained LLMs, followed by PEFT to
recover accuracy loss. Meanwhile, this ap-
proach has limitations in recovering the ac-
curacy loss. In this paper, we propose L4Q,
a method that integrates Quantization-Aware
Training (QAT) with LoRA. By employing a
memory-optimized layer design, L4Q signifi-
cantly reduces QAT’s memory overhead, mak-
ing its training cost comparable to LoRA, while
preserving the advantage of QAT in producing
fully quantized LLMs with high accuracy. Our
experiments demonstrate that this combined ap-
proach to quantization and fine-tuning achieves
superior accuracy compared to decoupled fine-
tuning schemes, particularly in 4-bit and 3-bit
quantization, positioning L4Q as an efficient
QAT solution. Using the LLaMA and Mistral
models with instructional datasets, we show-
case L4Q’s capabilities in language tasks and
few-shot learning.

1 Introduction

Given their impressive scalability, Large Language
Models (LLMs) such as GPT, OPT, PaLM, and
LLaMA (Brown et al., 2020; Zhang et al., 2022;
Chowdhery et al., 2024; Touvron et al., 2023a,b)
have become popular in natural language process-
ing. However, their substantial memory and compu-
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Figure 1: A diagram of accuracy and inference speedup
of the quantized or fine-tuned LLaMA-1 7B models.
L4Q produces fast and accurate quantized model.

tational demands pose challenges for practical de-
ployment, making model compression (Han et al.,
2015) crucial for LLM deployment. Quantization is
a prominent method that reduces model size by low-
ering the bit precision of model parameters (Hubara
et al., 2017), so LLM quantization has been actively
studied (Liu et al., 2024; Xiao et al., 2023; Fran-
tar et al., 2023; Dettmers and Zettlemoyer, 2023).
These quantization methods are generally divided
into two categories: quantization-aware training
(QAT) and post-training quantization (PTQ). QAT
effectively reduces the quantization error by in-
tegrating quantization into the training process,
where both the model weights and the quantization
parameters are trained together (Esser et al., 2020;
Bhalgat et al., 2020). However, applying QAT to
LLM is challenging due to its significant memory
overhead. As a result, PTQ, which applies quantiza-
tion without retraining the entire pre-trained model
weights and with minimal calibration of the quan-
tization parameters, is widely adopted for LLM
quantization (Xiao et al., 2023; Lin et al., 2024;
Heo et al., 2024).

Concurrently, to enhance the problem-solving
abilities of LLMs for specific applications, fine-
tuning pre-trained LLMs on downstream tasks is
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crucial as it improves accuracy on target tasks and
related tasks (Wei et al., 2022; Scialom et al., 2022).
However, fine-tuning is a resource-intensive pro-
cess due to the large number of model weights
involved. Parameter-efficient fine-tuning (PEFT)
addresses this issue (Hu et al., 2022; Li and Liang,
2021; Liu et al., 2022a; Wang et al., 2023) by train-
ing a small subset of parameters while freezing the
majority of pre-trained weights. One of the most
prominent techniques within PEFT is Low-Rank
Adaptation (LoRA) (Hu et al., 2022), which inserts
trainable rank decomposition matrices into each
layer to represent updates to the frozen weights.

The integration of quantization and PEFT holds
significant potential for developing efficient and
accurate LLMs for downstream tasks. Recent re-
search has introduced quantization-aware PEFT
approaches to achieve high-quality quantized mod-
els (Dettmers et al., 2024b; Kim et al., 2024; Xu
et al., 2023; Li et al., 2024). Previous works
involve a two-stage optimization strategy: first,
a PTQ technique, such as GPTQ (Frantar et al.,
2023), is applied to pre-trained LLMs for compres-
sion. Then, these quantized LLMs undergo PEFT,
such as LoRA, where quantized weights are kept
fixed and only the LoRA parameters are fine-tuned.
While fine-tuning can mitigate the effects of quan-
tization errors, separating quantization and fine-
tuning into distinct stages hinders the models from
achieving the best accuracy. Furthermore, as high-
precision LoRA parameters are adopted alongside
the quantized weight matrix, these methods eventu-
ally produce mixed-precision models, which limits
the efficiency of full quantization during inference.
Recently, QA-LoRA (Xu et al., 2023) addresses
this issue by strictly constraining the LoRA param-
eter structure to integrate with quantization param-
eters, but this constraint can limit the fine-tuning
capability.

In this paper, we propose a novel quantization-
aware fine-tuning technique, named L4Q (Low-
rank adaptive Learning quantization for LLMs).
L4Q addresses the limitations of PTQ-based PEFT
methods by introducing QAT alongside LoRA.
While QAT have advantages in reducing quanti-
zation error and LoRA enables memory-efficient
training, their straightforward integration dimin-
ishes the benefits of each approach. Therefore,
L4Q carefully integrates these two approaches to
properly leverage their advantages. First, L4Q ap-
plies the quantization process after fully combining
the model weights and LoRA parameters in the lin-

ear layer. This approach produces a fully-quantized
model that enables memory-efficient and fast in-
ference without limiting the training capabilities
of either QAT or LoRA. Moreover, to preserve the
memory-efficient nature of LoRA during training,
we design the backpropagation path of L4Q to elim-
inate the need to store weight gradients required
for QAT. Finally, the full integration of QAT and
LoRA in the proposed L4Q allows for the joint
optimization of both the quantization and LoRA
parameters, thereby improving the quality of the
quantized LLMs. As a result, L4Q significantly
improves the accuracy of quantized models while
maintaining low memory costs during both infer-
ence and training, and achieves inference speed
comparable to state-of-the-art approaches, making
it a more effective solution compared to previous
works, as illustrated in Figure 1.

2 Backgrounds

2.1 PEFT with LoRA

LoRA inserts the rank-decomposition matrices
composed of a pair of parameter matrices A ∈
Rr×i and B ∈ Ro×r. Here, i and o represent the
size of input and output dimensions of the original
weight matrix, respectively. r ≪ i, o is the rank of
the LoRA matrices, and α is a constant that adjusts
the influence of the LoRA matrices. During the
fine-tuning process, the pre-trained weight matrix
W0 ∈ Ro×i is frozen, preserving the pre-trained
features. For a given input activation X ∈ Ri×s×b

(s: sequence length, b: batch size), the output
Y ∈ Ro×s×b of a layer utilizing LoRA is com-
puted as follows:

Y = W0X + αBAX (1)

The fine-tuning of the LoRA parameters is guided
by the gradient of a loss function L, which is cal-
culated with respect to each parameter matrix. The
gradients are derived as follows:

∂L

∂A
= α

∂L

∂X̃
X⊤,

∂L

∂B
= α

∂L

∂Y
X̃⊤ (2)

Here, X̃ := AX represents the intermediate input
activation of B, which is the transformation of X
by A. These gradients guide the adjustment of the
LoRA parameters to minimize the loss and more
accurately approximate the necessary updates to
the original model weights.
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2.2 Quantization
Uniform quantization is a widely used quantization
scheme due to its simplicity and broad compatibil-
ity with various computing kernels and hardware
units (Liu et al., 2022b). Therefore, we refer to the
term ‘quantization’ specifically as uniform quanti-
zation throughout this paper. A common practice
is to organize a quantization group consisting of a
certain number of consecutive weight elements that
share the same quantization scale s and zero-point
(bias) b.

The weights W within the quantization group
are quantized according to the following equation:

w̃ = round(clamp(
W − b

s
,QN , QP )) (3)

Here, w̃ denotes the quantized integer value.
Clamping is applied within the range QN = −2n−1

to QP = 2n−1 − 1, where n is the bit-width, fol-
lowed by the rounding function. We also note that
Wq := w̃×s+b represents the dequantized version
of the quantized weight, which is adjusted using s
and b from w̃ to approximate the original weight.

During QAT, the straight-through estimator
(STE) approximates the derivative of the rounding
function with an identity function (Bengio et al.,
2013; Choi et al., 2018; Esser et al., 2020), enabling
gradients to propagate through non-differentiable
rounding operations and allowing effective weight
parameter training. LSQ (Esser et al., 2020) and
LSQ+ (Bhalgat et al., 2020) extend this process by
training quantization parameters s and b, alongside
the model weights. This tuning scheme provides
finer control over quantization, improving model
accuracy. The quantization parameters tuning dur-
ing backpropagation proceeds by using the chain
rule via Wq. This is denoted as follows:

∂L

∂s
=

∂L

∂Wq

∂Wq

∂s
,

∂L

∂b
=

∂L

∂Wq

∂Wq

∂b
(4)

As a consequence, the backpropagation process
requires the weight gradient ∂L

∂Wq
and the computa-

tion of the terms ∂Wq

∂s ,
∂Wq

∂b regarding the non-linear
STE function.

∂Wq

∂s
= −w + w̃, if QN ≤ w ≤ QP (5)

∂Wq

∂b
= 1, if w < QN or w > QP (6)

More details on QAT with LSQ and LSQ+ are
provided in Appendix A.1.

2.3 LLM Quantization

Quantization compress LLMs by lowering the bit
precision of model parameters (Hubara et al., 2017).
A key challenge is the introduction of quantization
errors that reduce model accuracy, leading to ex-
tensive research aimed at mitigating these losses
through calibration or training. A notable examples
of PTQ for LLM compression are GPTQ (Frantar
et al., 2023) and OmniQuant (Shao et al., 2023). In
contrast, QAT integrates quantization into the train-
ing process, adaptively training model parameters
to account for quantization errors during training,
ensuring that the quantized model retains much
of its accuracy and functionality through training.
Despite its advantages, QAT faces challenges, pri-
marily due to its high training overhead, which lim-
its its use in resource-intensive models like LLMs.
The memory overhead of QAT stems from storing
weight gradients and their optimizer states, each re-
quiring multiple times the memory of the weights.
Hence, even applying QAT to a 7B model requires
approximately 80GB of memory.

2.4 Quantization-Aware PEFT

To improve the accuracy of quantized LLMs, recent
research has introduced quantization-aware PEFT
approaches (Dettmers et al., 2024b; Kim et al.,
2024; Xu et al., 2023; Li et al., 2024). Among these,
QLoRA (Dettmers et al., 2024b), QA-LoRA (Xu
et al., 2023), and LoftQ (Li et al., 2024) stand out
as notable methods. As illustrated in Figure 2,
QLoRA begins by applying PTQ to a pre-trained
model. After this initial quantization, LoRA fine-
tuning is performed, with the quantized weight
parameters kept frozen. This allows the method to
correct quantization errors during the fine-tuning.
However, QLoRA introduces computational ineffi-
ciencies during inference due to the additional for-
ward path on LoRA parameters. This inefficiency
arises because the high-precision LoRA parame-
ters and low-precision quantized weights cannot be
merged into low-precision values. Advanced meth-
ods (Li et al., 2024; Qin et al., 2024) that build upon
QLoRA and share its layer structure also suffer
from this issue. We further examine the impact of
this unmerged LoRA path on inference efficiency
by comparing the speed of fully-quantized models
with mixed-precision models in Section 4.

QA-LoRA (Xu et al., 2023) addresses the is-
sue of high-precision LoRA parameters by modi-
fying the structure of the LoRA matrix, allowing
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Figure 2: A categorization of training scheme and inference strategy of QA-LoRA, QLoRA, QAT-LoRA, and
L4Q. Compared to QA-LoRA, L4Q utilizes higher optimization ability with non-constrained LoRA parameters and
quantization parameters. Additionally, compared to QLoRA and QAT-LoRA, L4Q exploit fully-quantized weights
rather than the mixed-precision weights during inference and perform a solid co-optimization of parameters.

these parameters to be integrated with the quantized
weights after training (Figure 2). The input dimen-
sion of the LoRA matrix A is set to the number of
weight quantization groups. This adjustment en-
sures that each element of BA corresponds directly
with individual quantization groups, enabling the
LoRA parameters to be seamlessly integrated into
the quantization bias as b′ = b−αBA at the end of
training. Hence, QA-LoRA shares the same objec-
tive as our work. However, this solution presents
a new challenge: the constrained LoRA structure
in this setup limits the model’s ability to achieve
optimal accuracy during the PEFT stage.

A broader issue with existing quantization-aware
PEFT methods is that fine-tuning begins from a pre-
quantized model with inherent quantization errors,
which is suboptimal compared to starting from a
pre-trained model. LoftQ attempts to mitigate these
errors by approximating them with LoRA using it-
erative singular-value decomposition (SVD). How-
ever, this approach still cannot achieve a single
forward path due to the high-precision LoRA pa-
rameters, limiting subsequent adaptation. These
challenges underscore the need for further research
to improve quantization-aware PEFT techniques,
focusing on enhancing both quantization and PEFT
processes for better accuracy and inference effi-
ciency in LLMs.

3 Methods

3.1 Straight Integration of QAT and LoRA

QAT-LoRA One of the key principles in our pro-
posed L4Q scheme is the integration of the QAT
and LoRA to facilitate the simultaneous calibration
for quantization and fine-tuning on downstream
tasks. To achieve this, we begin with a straightfor-
ward integration of QAT and LoRA, referred to as
QAT-LoRA, which serves as our baseline approach
for combining QAT and PEFT.

In QAT-LoRA, pre-trained weights are frozen,
while LoRA parameters are added to the linear lay-
ers (Figure 2). Additionally, quantization scales
and bias parameters are introduced, similar to ad-
vanced QAT techniques like LSQ, which are crucial
for calibrating the quantization function. Freezing
the weights reduces the need for optimizer states,
while a small number of LoRA and quantization
parameters are introduced to approximate updates
to the weight matrix and to update the quantiza-
tion function, respectively. This results in more
efficient memory usage compared to standard QAT.
Detailed analysis results of the memory efficiency
of QAT-LoRA is further discussed in Section 4.
Limitations of QAT-LoRA While the previous
section introduced a straightforward integration of
QAT and LoRA—where quantized weights and
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LoRA parameters are maintained separately—this
approach presents several limitations. First, al-
though freezing the pre-trained weights eliminates
the need for optimizer states, weight gradients
∂L
∂Wq

must still be stored to update the quantiza-
tion parameters, as shown in Equation 5 and Equa-
tion 6. As a result, QAT-LoRA still incurs mem-
ory overhead from weight gradients, undermin-
ing the memory efficiency benefits of LoRA fine-
tuning. Secondly, QAT-LoRA produces a mixed-
precision model with both quantized weights and
high-precision LoRA parameters. This mixed-
precision approach negates the advantages of LLM
quantization, similar to previous methods such as
QLoRA and LoftQ discussed in Section 2.4. Lastly,
the gradient updates for quantization and LoRA pa-
rameters are decoupled, limiting the potential for
comprehensive optimization across the model. As
outlined in Equations 5 and 6, updates to the quan-
tization parameters rely on the quantized weight
matrix Wq, while updates to the LoRA parameters
depend on weights A and B. This limits the effec-
tiveness of model training, as it prevents holistic
adjustments where changes in LoRA parameters
could directly influence quantization adjustments
and vice versa.

To address these challenges, we introduce L4Q,
an enhanced integration of QAT and LoRA. L4Q
features an advanced layer design that seamlessly
integrates QAT and LoRA. By applying quanti-
zation after merging the weights and LoRA pa-
rameters, along with a custom backpropagation
path that reduces the memory overhead from the
complex quantization and LoRA processes, L4Q
effectively overcomes the primary challenges en-
countered with QAT-LoRA.

3.2 L4Q: Low-rank Adaptive
Quantization-Aware Fine-tuning

Fully-Quantized Linear Layer As high-
precision LoRA weights introduces inference
overhead, it is crucial to design a fully-quantized
linear layer. In this context, L4Q first combines
the original weights W0 and the LoRA parameters
BA into a unified parameter matrix:

Wcomb = W0 + αBA (7)

Then, quantization is applied to the fully combined
weight Wcomb and produces w̃ and Wq:

w̃ = round(clamp(
Wcomb − b

s
,QN , QP )) (8)

Wq = w̃ × s+ b (9)

In this way, during inference, L4Q only uses quan-
tized weights Wq, simplifying the forward path of
the linear layer from Equation 1 to as follows:

Y = WqX (10)

While QA-LoRA also achieves fully-quantized lin-
ear layers by introducing constraints on the LoRA
parameter structure, the proposed L4Q imposes
no such restrictions. This flexibility allows L4Q
to fully leverage the benefits of LoRA-based fine-
tuning, all with fully-quantized linear layers.
Memory Efficient QAT As discussed in the pre-
vious section, QAT requires weight gradients to
train quantization parameters s and b. Since weight
gradients are a major source of memory overhead
during training, we compute these gradients locally
in the backpropagation path as follows:

∂L

∂Wq
=

∂L

∂Y
X⊤ (11)

We then use these weight gradients to calculate
gradients of s and b with Equation 5 and 6. Once
the gradient computation for the linear layer is com-
plete, the weight gradients are immediately flushed
to conserve memory.
Efficient LoRA Training Unlike the conven-
tional LoRA backward path which does not involve
the weight W0 as described in Equation 2, comput-
ing the gradients of the LoRA parameters in the
L4Q linear layer follows a more complicated back-
propagation path, tracing back from Equation 10
to Equation 7. Because a non-linear quantization
function is applied after LoRA during quantization
in L4Q, the gradients of the LoRA parameters de-
pend on both the weights (in their quantized form
w) and the weight gradients. This process can be
described as follows:

∂L

∂A
=

∂L

∂Wq

∂Wq

∂A
,

∂L

∂B
=

∂L

∂Wq

∂Wq

∂B
(12)

We reuse the weight gradient ∂L
∂Wq

that have been
computed previously for quantization parameter
update. Therefore, we only compute ∂Wq

∂A and ∂Wq

∂B
to obtain the gradients of LoRA parameters. Both
terms are derived by applying the chain rule from
Equation 8 to Equation 7. Since Equation 8 con-
tains a rounding function, we apply STE and clamp-
ing with conditional gradient propagation to ∂Wq

∂A

and ∂Wq

∂B . This leads to the following expressions
for ∂Wq

∂A and ∂Wq

∂B :
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∂Wq

∂A
=

{
αB⊤, if QN ≤ w ≤ QP

0, otherwise
(13)

∂Wq

∂B
=

{
αA⊤, if QN ≤ w ≤ QP

0, otherwise
(14)

Therefore, the proposed L4Q efficiently processes
LoRA training by simply reusing the weight gra-
dients computed for QAT parameter training. For
more detailed explanations of the gradient calcula-
tion in L4Q, please refer to Appendix A.2, and the
memory efficiency of L4Q will be further examined
in Section 4.
Joint Quantization and Low-rank Adaptation
Since ∂L

∂Wq
is involved in the gradient calculation

for the LoRA parameters (Equation 12), the pro-
posed L4Q ensures that the impact of quantization
is directly reflected in the updates to the LoRA pa-
rameters. This enables the joint optimization of
LoRA parameters and the quantization process, en-
hancing the accuracy of the fully-quantized LLMs.

In summary, the proposed L4Q produces a fully-
quantized model for memory-efficient and fast
LLM inference by fully integrating the model
weights and LoRA parameters prior to the quanti-
zation process. Additionally, the training process
of L4Q is memory-efficient due to careful handling
of gradient computation for quantization. Finally,
L4Q can improve the accuracy of quantized LLMs
through the joint optimization of the quantization
and LoRA parameters.

3.3 Quantization Parameter Initialization

LSQ+, a previous QAT approach, sets the quantiza-
tion range based on the weight standard deviation.
This is effective for CNNs, but it does not work
well on LLMs because activation outliers and their
corresponding salient weights are crucial for model
performance (Xiao et al., 2023; Dettmers et al.,
2024a; Lin et al., 2024). Hence, when initializing
quantization parameters, it is important to address
the outlier sensitivity of LLMs. To address this, we
propose L4Qinit, a symmetric quantization scheme
that minimizes clipping errors by using a conserva-
tive scale to capture both minimum and maximum
outliers. The quantization scale is defined by the
following equation:

s = Max(|Min(W )

Qn
|, |Max(W )

Qp
|) (15)

Figure 3: MMLU 5-shot results and clipping errors
for LLaMA-2 7B models after 100 training steps. The
results include clipping errors at both initialization and
post-training for the LSQ+, symmetric, asymmetric, and
L4Q initialization methods.

We evaluate models trained with L4Q using
various initialization methods, including conven-
tional min/max-based symmetric and asymmetric
schemes, and LSQ+init schemes. We compare the
accuracy and the sum of clipping errors caused by
overflowed outliers at both initialization and after
training. As shown in Figure 3, LSQ+init and sym-
metric initialization result in higher clipping errors.
While asymmetric initialization avoids clipping
initially, its tight range, defined by minimum-to-
maximum values, becomes insufficient as weights
evolve, leading to increased clipping errors during
fine-tuning. In contrast, L4Qinit accounts for the
broader weight distribution in LLMs, effectively re-
ducing clipping errors. As a result, L4Qinit achieves
the highest accuracy, whereas LSQ+init struggles
to recover from quantization errors. A detailed
explanation of LSQ+init, symmetric, asymmetric,
and L4Q initialization methods is provided in Ap-
pendix B.

4 Experiments

4.1 Experimental Settings

Target Foundation Models OpenLLaMA1 3B
model, LLaMA family models (Touvron et al.,
2023a,b) 7B to 33B, and Mistral-v0.1 7B (Jiang
et al., 2023) model are used for the evaluation.
Baselines We compare the proposed L4Q with
previous quantization methods and quantization-
aware PEFT methods. The baseline quantization
methods considered are LSQ for QAT, and GPTQ
and OmniQuant for PTQ. For quantization-aware
PEFT baselines, we include QLoRA, QA-LoRA,
and LoftQ. We apply uniform quantization in our
experiments to ensure consistency across methods.
The methods that were originally deployed with
non-uniform quantization are denoted with an as-

1https://github.com/openlm-research/open_llama
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terisk (*). For methods with LoRA adapters, in-
cluding L4Q, the adapters are initialized following
the original scheme: A is initialized using Kaiming-
uniform, while B is initialized to zeros. We also
note that the term fully-quantized refers to a condi-
tion in which all linear layers are quantized, while
non-linear components and the head layer remain
in higher precision.
Evaluation Setups We establish the L4Q frame-
work based on the open-source frameworks: Lit-
GPT2 and huggingface transformers3. The mod-
els are symmetrically quantized with quantization
group size of 128 for the LLaMA and Mistral mod-
els, and 64 for the OpenLLaMA models due to
its small channel size. Also, the models are fine-
tuned with a LoRA rank r of 4 by default, and 8
for Mistral. We double the rank r in QA-LoRA for
a fair comparison in terms of the number of LoRA
parameters. Further details on the effect of rank
size and quantization group size can be found in
Appendix C. We use the Stanford-Alpaca (Taori
et al., 2023), a dataset that consists of 50k training
samples and 2k validation samples generated from
the GPT 3.5 (Brown et al., 2020). We use bfloat16
precision for numerically stable fine-tuning. All
experiments are conducted on an NVIDIA A100
80GB GPU. Detailed hyperparameter settings for
fine-tuning are provided in Appendix D.
Evaluation Metrics We evaluate the accuracy
of LLMs on Commonsense QA (CSQA) (Gao
et al., 2021) and MMLU (Hendrycks et al., 2021)
benchmarks. The CSQA benchmark comprises
seven multiple-choice tasks designed to evaluate
language models (Zellers et al., 2019; Bisk et al.,
2020; Clark et al., 2018; Sakaguchi et al., 2020;
Clark et al., 2019; Talmor et al., 2019). The MMLU
benchmark spans four subject categories made up
of 57 subcategories of language tasks.

4.2 Evaluation Results

Memory Cost for Fine-Tuning We measure the
peak memory usage during fine-tuning of 4-bit
LLMs, including L4Q and QAT-based baselines,
as shown in Table 1. While QAT and QAT-LoRA
incur significantly higher memory costs compared
to LoRA, L4Q’s memory usage remains compara-
ble to that of LoRA. This analysis shows that L4Q
effectively balances the advantages of QAT and
the memory efficiency of LoRA. Further analysis

2https://github.com/Lightning-AI/lit-gpt.git
3https://github.com/huggingface/transformers.git

OpenLLaMA LLaMA

Methods 3B 7B 13B 33B

LoRA 15.1 25.1 43.8 71.9

QAT 44.2 79.5 OOM OOM
QAT-LoRA 22.6 41.9 70.6 OOM
L4Q 15.3 25.4 44.3 73.2

Table 1: Memory cost (GB) for fine-tuning LLMs on
NVIDIA A100 GPU. (OOM: Out of Memory)

Figure 4: The average inference speedup of quantized
models compared to pre-trained models.

of the training efficiency of L4Q and the baseline
methods can be found in Appendix E.
Inference Speedup We measure the inference
speed of 16-bit pre-trained models and quantized
models using LLaMA-1 models. The average
speedup of quantized models compared to full-
precision 16-bit models is reported in Figure 4.
The quantized models include fully-quantized 4-
bit models (L4Q and QA-LoRA), which contain
only quantized parameters, and mixed-precision
4&16-bit models (LoftQ*, QLoRA*, and QAT-
LoRA), which use additional 16-bit LoRA parame-
ters. The inference speed was measured with input
batch sizes ranging from 1 to 64. The 4-bit mod-
els achieve a speedup of 1.8× to 2.3× over the
pre-trained models. Moreover, these 4-bit mod-
els achieve a 1.4× to 1.6× speedup compared to
mixed-precision models, which are also quantized
versions of LLMs. This demonstrates that the full
integration of QAT and LoRA in L4Q plays a cru-
cial role in inference speedup. Further analysis and
details on speedup can be found in Appendix F.
Accuracy Results We compare the CSQA and
MMLU benchmark accuracy of baselines and L4Q.
Table 2 and Table 3 present a comprehensive com-
parison between baselines and the proposed L4Q.
Since previous quantization-aware PEFT methods
involve a fine-tuning stage after PTQ, they gen-
erally achieve higher accuracy compared to PTQ
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Table 2: Accuracy (%) evaluation results with 4-bit quantization. We present the bit precision under each methods.
The notation ‘4&16’ refers to the use of 16-bit LoRA parameters with the quantized weights for inference.

Pre-trained LoRA GPTQ OmniQ LoftQ* QLoRA* QA-LoRA QAT-LoRA L4Q
Model Benchmark 16 16 4 4 4&16 4&16 4 4&16 4

OpenLLaMA 3B CSQA 54.8 55.9 50.7 54.1 54.2 54.4 54.5 54.6 55.0

LLaMA-3 8B CSQA 65.6 67.2 57.9 64.9 63.3 58.6 58.0 65.7 66.8

LLaMA-1 7B CSQA 61.7 63.4 59.4 58.1 62.6 61.3 61.3 62.4 62.7
MMLU0-shot 32.5 36.3 28.3 30.9 33.0 32.8 34.5 33.8 34.9
MMLU5-shot 35.1 36.7 32.7 33.3 35.1 33.6 35.6 34.8 35.7

LLaMA-1 13B CSQA 63.8 65.2 63.5 60.4 64.2 63.8 62.5 64.4 64.5
MMLU0-shot 43.6 44.3 40.1 42.6 42.4 42.1 42.4 42.0 43.2
MMLU5-shot 46.3 47.0 45.7 45.7 45.4 45.9 45.8 45.5 46.0

LLaMA-1 33B CSQA 67.4 68.3 65.7 62.9 67.4 66.2 65.3 67.3 67.5
MMLU0-shot 53.0 54.4 51.4 52.0 51.8 51.0 48.9 52.3 53.3
MMLU5-shot 56.4 57.6 55.7 55.8 56.4 55.6 55.0 56.7 56.7

LLaMA-2 7B CSQA 61.9 63.3 60.7 59.5 61.7 61.3 61.0 61.9 63.6
MMLU0-shot 41.6 43.9 37.1 41.0 38.5 38.6 38.9 37.9 40.9
MMLU5-shot 45.4 46.0 42.9 45.4 43.7 44.6 44.4 43.8 45.5

LLaMA-2 13B CSQA 65.0 66.5 64.4 59.9 64.9 64.0 64.5 64.7 65.8
MMLU0-shot 52.1 52.5 50.0 51.8 51.7 50.7 50.4 50.7 51.9
MMLU5-shot 54.8 55.7 54.7 54.7 54.5 54.2 54.1 53.8 55.2

Mistral-v0.1 7B CSQA 66.2 66.4 65.3 64.7 60.7 65.8 65.4 64.5 66.1
MMLU0-shot 60.2 60.6 57.6 58.4 45.2 58.7 56.5 58.8 59.0
MMLU5-shot 62.6 62.9 61.0 61.0 45.7 61.1 61.2 60.2 61.4

Table 3: Accuracy (%) evaluation results with 3-bit quantization. We present the bit precision under each methods.
The notation ‘3&16’ refers to the use of 16-bit LoRA parameters with the quantized weights for inference.

Pre-trained LoRA GPTQ OmniQ LoftQ* QLoRA* QA-LoRA QAT-LoRA L4Q
Model Benchmark 16 16 3 3 3&16 3&16 3 3&16 3

OpenLLaMA 3B CSQA 54.8 55.9 52.2 50.0 38.1 51.0 51.5 53.2 54.0

LLaMA-3 8B CSQA 65.6 67.2 53.5 58.7 48.6 55.7 56.6 63.1 63.5

LLaMA-1 7B CSQA 61.7 63.4 53.4 56.5 49.8 59.1 58.7 60.7 61.2
MMLU0-shot 32.5 36.3 23.7 29.0 23.4 27.7 28.0 30.6 30.6
MMLU5-shot 35.1 36.7 27.3 31.6 23.1 31.5 29.1 31.5 31.8

LLaMA-1 13B CSQA 63.8 65.2 61.0 58.9 54.0 61.3 61.1 63.2 63.4
MMLU0-shot 43.6 44.3 33.1 34.8 25.0 36.1 37.5 38.8 40.7
MMLU5-shot 46.3 47.0 38.2 41.6 25.3 40.4 38.2 40.9 41.8

LLaMA-1 33B CSQA 67.4 68.3 65.1 62.3 54.8 64.3 64.6 67.4 67.4
MMLU0-shot 53.0 54.4 50.0 50.2 24.6 45.6 46.1 50.1 50.5
MMLU5-shot 56.4 57.6 51.9 52.4 24.0 50.1 48.7 50.6 53.1

LLaMA-2 7B CSQA 61.9 63.3 57.6 57.9 34.7 57.6 56.3 57.4 61.3
MMLU0-shot 41.6 43.9 31.3 34.3 22.9 32.5 31.0 31.5 34.9
MMLU5-shot 45.4 46.0 37.5 37.7 24.2 37.6 37.5 36.8 38.0

LLaMA-2 13B CSQA 65.0 66.5 61.7 59.9 39.3 62.5 61.7 64.3 65.1
MMLU0-shot 52.1 52.5 46.3 46.3 23.5 46.8 46.4 45.9 47.1
MMLU5-shot 54.8 55.7 50.4 50.2 26.0 50.6 49.9 48.9 50.0

Mistral-v0.1 7B CSQA 66.2 66.4 61.8 61.4 58.5 63.0 62.3 61.6 63.1
MMLU0-shot 60.2 60.6 50.5 54.3 35.8 52.2 50.5 52.4 54.5
MMLU5-shot 62.6 62.9 49.6 55.9 37.1 53.6 51.7 54.0 56.2

methods. L4Q further enhances accuracy by in-
corporating the QAT strategy, achieving highest
accuracy compared to the baselines, and attaining
4-bit model accuracy comparable to that of 16-bit
models. Moreover, L4Q consistently outperforms
QAT-LoRA that keeps quantization and LoRA pa-
rameters decoupled. This highlights the advantage
of L4Q in accuracy through the joint optimization
of quantization and LoRA parameters. This impact
is more pronounced in 3-bit quantization, as some
PTQ-based PEFT approaches experience signifi-
cant accuracy degradation. The detailed results are
presented in Appendix G.

5 Conclusion

In this work, we introduce L4Q, a parameter-
efficient quantization-aware fine-tuning method for
large language models. L4Q enables element-wise
adaptation of model weights for downstream tasks
while simultaneously optimizing quantization pa-
rameters. This concurrent optimization ensures
that the adaptation parameters effectively account
for quantization errors. We demonstrate the effi-
ciency of L4Q, which significantly reduces train-
ing resource requirements compared to traditional
QAT. Moreover, since the L4Q layer is designed
to produce fully quantized low-bit model weights,
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it maintains inference efficiency, unlike QLoRA,
LoftQ, or QAT-LoRA, which results in mixed pre-
cision models. The effectiveness of L4Q as a QAT
framework is further supported by experimental
results in various task evaluations. L4Q consis-
tently achieves superior quality maintenance in lan-
guage tasks, demonstrating its enhanced adaptabil-
ity compared to the QAT-LoRA and PTQ-based
PEFT methods.

Limitations

Our work focuses on efficient weight quantiza-
tion methods for large language models (LLMs),
but there are vertical approaches that could fur-
ther enhance inference efficiency and effectiveness,
integrated with our work. Activation quantiza-
tion offers a chance to further reduce computa-
tion costs when combined with weight quantization.
Similarly, KV cache compression could minimize
memory overhead and latency, especially for long-
context applications. Finally, refinement of LoRA
initialization schemes for quantized models may
improve accuracy of the fine-tuned models. We
believe that integrating these approaches with L4Q
could further improve LLM inference efficiency
and effectiveness, which we leave to future work.

Ethical Considerations

While our research contributes to the development
and application of machine learning, particularly in
language models, we recognize the potential soci-
etal implications associated with this work. Based
on the claims of the referenced sources — includ-
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the artifacts do not violate personal identification
rights or contain offensive content. All datasets,
code, and models cited in this paper are publicly
accessible and processed solely for research pur-
poses. Our use of these artifacts is consistent with
their intended purpose.
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Appendix

A Details on Quantization Scale Learning Procedure

A.1 Quantization parameter update on QAT
From the conditions and notations in Equation 3, Equations 5 and 6 are derived as follows. First, the
derivative of s is presented as follows.

∂Wq

∂s
=

∂

∂s
(w̃ × s+ b) = s

∂

∂s
(w̃) + w̃ = s

∂

∂s
(round · clamp(w)) + w̃ (16)

By applying the STE, the rounding function is considered as an identity function. Therefore, the
rounding function, combined with a clamp function r̃ := round · clamp, and its derivative is induced as
follows. Note that w = W−b

s .

r̃(w) =





Qn, if w < Qn

w, if QN ≤ w ≤ QP

Qp, if w > QP

∂

∂w
r̃(w) =

{
1, if QN ≤ w ≤ QP

0, otherwise
(17)

By applying the chain rule, the derivation of term r̃(w) = r̃((W − b)/s) is expressed as below.

∂

∂s
(̃r(w)) =

∂ r̃
∂w

∂w

∂s
=

∂ r̃
∂w

∂

∂s
(
W − b

s
) =

∂ r̃
∂w

(−W − b

s2
) (18)

Therefore, Equation 16 can be represented with a value w and quantized value w̃ as follows.

∂Wq

∂s
= s

∂ r̃
∂w

(−W − b

s2
) + w̃ =

∂ r̃
∂w

(−W − b

s
) + w̃ =





Qn, if w < Qn

−w + w̃, if QN ≤ w ≤ QP

Qp, if w > QP

(19)

Secondly, with a similar context above, the derivative of b is presented as follows.

∂Wq

∂b
=

∂

∂b
(w̃ × s+ b) = s

∂

∂b
(̃r(w)) + 1 = s

∂ r̃
∂w

(
∂

∂b
(
W − b

s
)) + 1 (20)

=
∂ r̃
∂w

(−1) + 1 =

{
0, if QN ≤ w ≤ QP

1, otherwise
(21)

We also note that the gradient of Wq is presented as follows.

∂L

∂Wq
=

∂L

∂Y
X⊤ (22)

As a result, the updates on the quantization scale and bias are calculated as multiplication of Equation 22
with Equation 16 and with Equation 20, respectively. This update helps calibrate the quantization function,
effectively reducing quantization errors.
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A.2 Quantization parameter and LoRA Parameter update on L4Q
In L4Q, as described in Equation 10, the quantized weight Wq is obtained as follows. First, the pre-trained
model weight W0 and LoRA parameters are integrated to Wcomb = W0 + αBA. Next, the integrated
weight is quantized by the quantization parameters s, b.

Here, the LoRA parameters A and B are independent of the quantization parameters, scale s and bias
b. Therefore, the derivatives of s, b follow the same process as in Equation A.1, but with the term w, w̃
defined as follows. Note that Wq = w̃ × s+ b.

w =
W0 + αBA− b

s
, w̃ = r̃(w) s.t. r̃ = round · clamp (23)

Seen from the L4Q layer that integrates the LoRA parameters and quantization parameters together, A,B
are now considered as variables of Wq. Therefore, from the conditions in Equation 10, the derivative of
A,B is presented as follows.

∂L

∂A
=

∂Wq

∂A

∂L

∂Wq
,

∂L

∂B
=

∂L

∂Wq

∂Wq

∂B
(24)

The derivatives ∂w
∂A and ∂w

∂B are then can be computed by applying the chain rule with w, as follows:

∂Wq

∂A
=

∂w

∂A

∂Wq

∂w
,

∂Wq

∂B
=

∂Wq

∂w

∂w

∂B
(25)

From Equation 23, the terms ∂w
∂A , ∂w

∂A , and ∂W
∂w can be expressed as follows:

∂w

∂A
=

αB⊤

s
,

∂w

∂B
=

αA⊤

s
,

∂W

∂w
=

∂

∂w
(̃r(w)s+ b) = s

∂ r̃
∂w

(26)

Therefore, by substitution of Equation 26 and applying STE on ∂ r̃
∂w from Equation 17 on Equation 25, the

equation is simplified by the crossed-out products between the terms. As a result, the partial derivatives
presented in Equation 12 can be derived as follows.

∂Wq

∂A
=

∂w

∂A

∂Wq

∂w
= (

αB⊤

s
)(
s∂ r̃
∂w

) =

{
αB⊤, if QN ≤ w ≤ QP

0, otherwise
(27)

∂Wq

∂B
=

∂W

∂w

∂w

∂B
= (s

∂ r̃
∂w

)(
αA⊤

s
) =

{
αA⊤, if QN ≤ w ≤ QP

0, otherwise
(28)

Finally, substitution of Equation 27 and 28 to Equation 24 derives the Equation 29 and 30.

∂L

∂A
=

{
αB⊤( ∂L∂Y X⊤), if QN ≤ w ≤ QP

0, otherwise
(29)

∂L

∂B
=

{
α( ∂L∂Y X⊤)A⊤, if QN ≤ w ≤ QP

0, otherwise
(30)

This form closely resembles the original backpropagation structure of the LoRA parameters A,B
as shown in Equation 2, where the updates are expressed as ∂L

∂A = α ∂L
∂X̃

X⊤ = α(B⊤ ∂L
∂Y )X⊤, and

∂L
∂B = α ∂L

∂Y X̃⊤ = α ∂L
∂Y (AX)⊤, respectively. However, in L4Q, this process includes an added gating

condition on the quantized weights, which accounts for the integration of quantization into the LoRA
parameters. As a result, we conclude that the backward process of the L4Q layer, which integrates both
quantization parameter learning and LoRA parameter adaptation, is designed to account for the impact of
quantization on the LoRA parameter updates.
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B Quantization initialization

We evaluate various quantization initialization schemes within L4Q, including method introduced in
Section 3.3, LSQ+ (Bhalgat et al., 2020), and conventional symmetric and asymmetric quantization
parameter initialization. The methods are depicted as L4Qinit, LSQ+init, Symm, Asymm, respectively. In
specific, each methods can be represented as the equations below, with quantization scale s and bias b and
group-wise aligned model weight W with quantization bit-width n and QN = −2n−1, QP = 2n−1 − 1.

LSQ+init : s =
Max(|µ− 3σ(W )|, |µ+ 3σ(W )|)

2n−1
(31)

b = 0 (32)

Symm : s =
Max(Abs(W ))

2n−1
(33)

b = 0 (34)

Asymm : s =
Max(W )−Min(W )

QP −QN
(35)

b = Max(W )− s×QP = Min(W )− s×QN (36)

L4Qinit : s = Max(|Min(W )

Qn
|, |Max(W )

Qp
|) (37)

b = 0 (38)

We report the detailed model accuracy evaluation results of L4Q fine-tuning across different initialization
methods, along with the quantization error and clipping error for each method, measured both at the
initialization point and the end of the training.The LLaMA-2 7B model was trained for 12,800 iterations
with a batch size of 128, using the same hyperparameters as in the main evaluation.

As shown in Table 4, while the overall quantization error remains relatively consistent across initializa-
tion methods and fine-tuned states, the clipping error exhibits significant variation. The clipping error
reflects the number of values clipped during quantization, and different initialization methods lead to
varying degrees of clipping throughout training. Notably, L4Q achieves the lowest clipping error and the
highest model accuracy, demonstrating the effectiveness of its initialization strategy.

Table 4: MMLU 5-shot benchmark and the sum of quantization errors for various quantization parameter initial-
ization methods within L4Q on the LLaMA-2 7B model. Quantization errors are represented in order of 106 and
clipping errors are represented in order of 103.

MMLU 5-shot Initial Post-train
Model Method #Bits Human. STEM Social. Others Average Equant Eclip Equant Eclip

LLaMA-2 7B LSQ+ 4 26.7 26.8 26.2 22.9 25.7 11.8 278.0 11.8 360.6
Symm 4 40.8 35.9 48.2 50.1 43.5 11.1 260.0 11.0 282.1
Asymm 4 41.0 37.1 49.7 50.2 44.2 10.5 0.0 10.5 64.7
L4Q 4 42.9 37.7 50.5 51.9 45.3 11.4 0.0 11.6 36.1
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C Ablative Study on L4Q Hyperparameters

C.1 LoRA Rank Size
We investigated the effect of LoRA rank size on L4Q training. Using the LLaMA-2 7B model, we
conducted training over 12,800 iterations with 128 batches. The remaining training conditions are
consistent with the main experiments. The evaluation results for CSQA and MMLU are presented in
Table 5 and Table 6, respectively.

Table 5: Commonsense QA benchmark result on LLaMA-2 7B model. The numbers represent accuracy (%) for
each task.

Model Rank HellaSwag PIQA ARC-c ARC-e Winogrande BoolQ OBQA Average

LLaMA-2 7B 1 57.6 78.4 45.5 77.0 68.2 77.4 34.0 62.6
2 57.4 78.5 45.1 76.2 69.3 77.6 34.0 62.6
4 57.5 78.2 46.1 77.1 68.7 78.1 35.4 63.0
8 56.9 78.5 46.3 78.1 69.3 77.8 34.8 63.1
16 57.2 78.1 46.3 77.2 68.7 78.9 33.4 62.8
32 57.8 78.4 46.2 77.1 68.7 78.2 35.8 63.2
64 57.4 78.6 46.1 77.1 69.5 78.5 34.8 63.1
128 57.5 78.1 46.0 77.0 68.8 78.4 35.4 63.0

Table 6: MMLU benchmark result on LLaMA-2 7B model. The numbers represent accuracy (%) for each category.

0-shot 5-shot
Model Rank Hums. STEM Social Others Avg. Hums. STEM Social Others Avg.

LLaMA-2 7B 1 37.4 33.3 43.4 44.0 39.4 40.8 36.8 48.2 49.2 43.5
2 38.1 31.6 41.6 42.2 38.4 42.2 35.2 48.6 49.0 43.7
4 36.3 33.4 42.7 43.2 38.7 42.5 36.6 50.2 51.2 44.9
8 39.5 34.6 45.0 45.0 41.0 42.7 36.7 50.3 51.7 45.0
16 38.7 35.8 45.7 45.8 41.3 42.0 36.6 49.4 49.7 44.3
32 39.4 35.0 46.1 45.6 41.3 42.4 37.1 49.8 49.0 44.4
64 39.6 35.0 45.8 47.2 41.7 43.6 37.4 50.9 50.9 45.6
128 38.8 35.4 44.8 44.7 40.7 42.8 36.6 50.3 50.6 44.9

Increasing the rank beyond 4 does not lead to significant performance improvements, which aligns with
the observations in the original LoRA paper (Hu et al., 2022). Therefore, we generally applied a rank size
of 4, considering that higher rank sizes introduce memory and computational overhead during training.
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C.2 Quantization Group Size
We investigated the effect of quantization group size on L4Q training. Using the LLaMA-2 7B model,
we conducted experiments with group size 32 to 128 with the same training conditions in the main
experiments. The evaluation results for Commonsense QA and MMLU are presented in Table 7 and
Table 8, respectively.

Table 7: Commonsense QA benchmark result on LLaMA-2 7B model. The numbers represent accuracy (%) for
each task.

Model Group Size Hellaswag PIQA ARC-c ARC-e Winogrande BoolQ OBQA Average

LLaMA-2 7B 128 57.2 78.8 47.1 76.9 70.2 80.4 34.8 63.6
64 57.5 77.5 46.7 78.3 70.2 80.7 34.8 63.7
32 57.6 77.6 47.6 78.2 70.1 80.6 35.4 63.9

Table 8: MMLU benchmark result on LLaMA-2 7B model. The numbers represent accuracy (%) for each category.

0-shot 5-shot
Model Group Size Hums. STEM Social Others Avg. Hums. STEM Social Others Avg.

LLaMA-2 7B 128 38.7 33.8 45.6 46.4 40.9 42.9 37.7 50.5 51.9 45.5
64 38.2 35.6 47.2 46.5 41.5 43.8 37.0 52.2 52.7 46.3
32 39.5 35.9 47.8 46.4 42.1 44.4 38.2 52.3 52.5 46.7

Having a fine-grained quantization group size leads to performance improvements, which aligns with
the observations in the conventional group-wise quantization works (Frantar et al., 2023). We applied
a quantization with the group size of 128 considering that smaller quantization group sizes introduce
memory and computational overhead during inference and training.
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D Experimental Settings

The baselines and L4Q are trained with AdamW optimizer (Loshchilov and Hutter, 2019) with a weight
decay of 0.01. For the learning rate scheduler, a cosine decay scheduler with a linear warm-up through
10% of the total training steps. Learning rates are presented in Table 9.

Table 9: Learning rate conditions used to fine-tuning on each models for L4Q and baselines: QLoRA*, QA-LoRA,
and QAT-LoRA.

Methods
Model QLoRA* QA-LoRA QAT-LoRA L4Q

OpenLLaMA 3B 1× 10−5 2× 10−5 5× 10−5 5× 10−5

LLaMA-1 7B 1× 10−5 2× 10−5 5× 10−5 5× 10−5

LLaMA-1 13B 1× 10−5 5× 10−5 4× 10−5 4× 10−5

LLaMA-1 33B 1× 10−5 5× 10−5 2× 10−4 2× 10−4

LLaMA-2 7B 2× 10−5 2× 10−5 2× 10−4 2× 10−4

LLaMA-2 13B 2× 10−5 2× 10−5 2× 10−4 2× 10−4

Mistral-v0.1 7B 1× 10−5 5× 10−6 - 5× 10−6

The batch size is set to 128. For baselines that utilize PTQ-based schemes, such as QLoRA* and
QA-LoRA, training is conducted for 50K iterations. For QAT-based methods, such as QAT, QAT-LoRA,
and L4Q, training is conducted for 25K iterations. This reduction in training length for QAT-based
methods is due to their faster convergence, as illustrated in Figure 5 with an example of LLaMA-2 7B.

Using the same training hyperparameters, including a learning rate of 2× 10−5, the joint training of
quantization parameters and LoRA weight parameters enables L4Q to converge more quickly. This allows
for halving the training length, which also helps mitigate overfitting.

Additionally, the training sequence length is set to match or exceed the maximum sequence length of
the dataset, which is 2048. The only exception is the 33B model with L4Q, where the training sequence
length is set to 128.

Figure 5: Train loss curve of L4Q and QLoRA. With a same training condition, L4Q converges faster than QLoRA.
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E Training Efficiency

E.1 Memory Usage
We report the memory usage of QAT (LSQ), quantization-aware PEFT baselines (LoftQ, QLoRA, QA-
LoRA, QAT-LoRA), and L4Q in Table 10. Note that QLoRA reduces memory usage further by employing
paged optimizers, a technique that can also be applied to other fine-tuning methods, including L4Q. We
plan to explore this vertical implementation in future work. As quantization-aware PEFT methods utilize
pre-quantized model weights, the memory usage of L4Q and quantization-aware PEFT methods differs by
the amount of the reduced memory usage of model weights during inference.

OpenLLaMA LLaMA
Methods 3B 7B 13B 33B

LoRA 15.1 25.1 43.8 71.9

LoftQ 5.2 7.9 19.6 31.9
QLoRA 5.2 7.9 19.6 31.9
QA-LoRA 7.8 14.8 27.8 67.2

LSQ 44.2 79.5 OOM OOM
QAT-LoRA 22.6 41.9 70.6 OOM
L4Q 15.3 25.4 44.3 73.2

Table 10: Memory cost (GB) for fine-tuning LLMs on a single NVIDIA A100 GPU. (OOM: Out of Memory)

E.2 Training Time
We report the total training time of L4Q, QAT (LSQ), and the quantization-aware PEFT baselines(QLoRA*

and QA-LoRA) in Table 11. While L4Q has a longer training time per step compared to the baselines due
to gradient recomputation during the backpropagation stage, the reduced number of training steps enables
L4Q to achieve similar overall training time performance. The training time for QAT on 13B and 33B
models was measured using 2 and 4 NVIDIA A100 GPUs on a single node.

Table 11: Training time (in hours) spent on fine-tuning on OpenLLaMA and LLaMA-1 models with a A100 GPU.

OpenLLaMA LLaMA
Methods 3B 7B 13B 33B

LSQ 8.6 17.1 35.4 76.9

QLoRA* 4.5 9.9 18.0 38.4
QA-LoRA 5.0 11.2 19.8 39.6
L4Q 4.4 10.1 16.9 37.9
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F Throughput and Speedup of fully-quantized models and mixed-precision models

We investigate the throughput and speedup of fully-quantized models and mixed-precision models,
demonstrating that, although the number of LoRA parameters is negligible, it causes a noticeable drop in
throughput when its forward path is not merged with that of the base linear layer. Using the LLaMA-1 7B,
13B, and 33B models, we conducted experiments to measure throughput (tokens per second) and compare
speedup. In both fully-quantized and mixed-precision models, uniform quantization is applied to the linear
layers, except for the head layer (lm_head), using the EXLLaMA2 kernel4, which is designed for 4-bit
weight-only quantized inference. For fp16 computations in LoRA within mixed-precision models or the
baseline, default GEMM kernels are used. We measured the elapsed time for inferencing 512 tokens over
2000 data points with batch sizes ranging from 1 to 64, calculating throughput by dividing the number of
tokens, which is set to be 512, by the elapsed time. The results are presented in Table 12.

Table 12: Throughput (tokens/sec) and Speedup for LLaMA models. L4Q represents fully-quantized models, and
QLoRA* represents mixed-precision models. ’OOM’ indicates out-of-memory cases.

Batch size
Model Method 1 2 4 8 16 32 64 Speedup

LLaMA-1 7B L4Q 38.04 75.12 148.63 216.51 255.64 276.43 318.43 1.81
QLoRA* 24.80 47.88 96.51 184.06 234.79 247.79 299.94 1.33
None 17.04 33.81 67.27 124.13 199.19 241.31 OOM 1.00

LLaMA-1 13B L4Q 30.68 59.53 115.78 144.44 160.95 191.20 OOM 1.92
QLoRA* 19.71 38.90 77.83 128.67 150.72 156.16 OOM 1.41
None 13.67 26.97 53.23 85.47 124.17 OOM OOM 1.00

LLaMA-1 30B L4Q 20.43 40.05 64.00 73.29 79.77 OOM OOM 2.25
QLoRA* 13.22 25.48 50.81 66.89 75.11 OOM OOM 1.44
None 9.13 17.68 OOM OOM OOM OOM OOM 1.00

Fully-quantized models demonstrate a speedup of over 1.8x, while mixed-precision models achieve a
maximum speedup of 1.4x, despite using the same quantization scheme and execution kernel, compared to
the fp16 baselines. As a result, fully-quantized models achieve a 30% to 50% greater speedup compared
to mixed-precision models. This demonstrates that L4Q, which produces fully-quantized models, offers
higher inference efficiency and better hardware utilization than conventional quantization-aware PEFT
methods, such as QLoRA and LoftQ, which retain unmerged forward paths for LoRA.

4https://github.com/turboderp/exllamav2.git
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G Detailed Result on Main Evaluations

We present the Commonsense QA and MMLU benchmark results with averaged accuracy score on
Section 4. We present the detailed results of each benchmarks composed of several categories of tasks in
Table 13a to Table 14b below. Through evaluation, we demonstrate that L4Q generally achieves higher
accuracy in low-bit quantized models compared to both PTQ methods and PTQ-based fine-tuning methods.
Notably, L4Q surpasses the pre-trained models on the Commonsense QA benchmarks and on the MMLU
benchmarks with LLaMA-1 7B and 33B models. In contrast, PTQ-based fine-tuning methods, including
those that incorporate high-precision LoRA weights, show lower performance compared to both L4Q and
the pre-trained models. These results emphasize the challenges of recovering from quantization errors
with PTQ alone and highlight the effectiveness of L4Q’s joint quantization and fine-tuning scheme.

Table 13a: Commonsense QA benchmark result. The numbers represent accuracy (%) of each task.

Model Method #Bits Hella. PIQA ARC-c ARC-e Winogr. BoolQ OBQA Avg.
OpenLLaMA 3B None 16 48.8 75.0 33.9 69.2 61.6 66.9 28.2 54.8

LoRA 16 49.8 75.6 37.0 70.2 63.1 68.0 27.2 55.9
GPTQ 4 47.9 75.1 31.0 58.8 60.5 57.9 23.6 50.7
OmniQ 4 48.2 73.8 33.1 69.5 60.1 67.5 26.6 54.1
LoftQ* 4&16 48.0 74.5 34.0 68.6 60.9 67.2 26.0 54.2
QLoRA* 4&16 48.4 74.3 33.0 69.4 61.5 67.1 26.8 54.4
QA-LoRA 4 48.8 74.9 33.8 69.2 61.9 66.7 26.2 54.5
QAT-LoRA 4&16 48.8 74.5 35.0 70.1 61.9 65.2 27.0 54.6
L4Q 4 49.1 74.9 35.2 69.8 61.1 67.7 27.4 55.0
GPTQ 3 46.3 72.6 31.8 64.7 58.1 66.5 25.6 52.2
OmniQ 3 46.5 74.4 30.5 56.6 59.0 59.8 23.0 50.0
LoftQ* 3&16 27.9 57.3 19.5 37.3 51.0 61.9 12.0 38.1
QLoRA* 3&16 45.6 72.6 29.3 61.6 59.7 64.2 24.4 51.0
QA-LoRA 3 46.3 72.6 28.9 66.0 59.5 63.4 23.8 51.5
QAT-LoRA 3&16 46.7 74.1 33.2 67.2 60.5 64.1 26.4 53.2
L4Q 3 47.2 75.0 32.3 68.3 60.9 67.2 27.0 54.0

LLaMA-3 8B None 16 60.2 79.7 50.4 80.1 72.5 81.4 34.8 65.6
LoRA 16 60.6 79.9 53.8 82.7 74.7 82.8 36.0 67.2
GPTQ 4 56.8 69.3 31.8 62.6 73.1 78.5 33.0 57.9
OmniQ 4 59.2 78.6 49.6 79.7 72.5 81.1 33.4 64.9
LoftQ* 4&16 57.9 78.7 46.9 78.4 70.3 77.5 33.6 63.3
QLoRA* 4&16 56.7 69.5 33.3 66.3 72.9 78.4 33.0 58.6
QA-LoRA 4 56.3 69.3 32.3 65.7 72.3 78.6 31.6 58.0
QAT-LoRA 4&16 59.1 79.8 50.1 80.2 74.0 83.0 34.2 65.7
L4Q 4 60.5 80.4 52.7 81.6 73.6 83.6 35.0 66.8
GPTQ 3 51.8 68.8 30.2 58.3 67.7 70.1 27.4 53.5
OmniQ 3 55.0 76.7 39.2 69.2 69.2 72.6 28.8 58.7
LoftQ* 3&16 35.9 68.8 29.8 57.7 59.0 67.9 20.8 48.6
QLoRA* 3&16 53.4 72.2 31.8 62.9 69.2 71.5 28.8 55.7
QA-LoRA 3 52.7 73.5 36.4 67.9 67.6 71.7 26.6 56.6
QAT-LoRA 3&16 56.6 78.2 47.4 77.8 68.0 80.6 33.4 63.1
L4Q 3 56.5 78.1 47.8 78.6 69.2 82.0 32.2 63.5

LLaMA-1 7B None 16 57.0 78.7 41.9 75.3 69.9 75.1 34.4 61.7
LoRA 16 58.3 78.8 45.7 76.1 70.6 78.7 35.4 63.4
GPTQ 4 53.9 77.7 40.3 73.5 67.9 72.9 30.0 59.4
OmniQ 4 55.7 77.7 38.8 67.5 65.3 72.5 29.2 58.1
LoftQ* 4&16 57.8 79.2 43.1 76.9 69.8 75.8 35.4 62.6
QLoRA* 4&16 56.7 78.9 41.8 75.2 70.0 74.6 32.2 61.3
QA-LoRA 4 57.2 78.9 41.2 74.9 70.6 73.6 32.6 61.3
QAT-LoRA 4&16 57.7 78.9 44.7 75.3 68.9 75.8 35.6 62.4
L4Q 4 57.8 79.1 45.3 76.0 69.5 76.1 34.8 62.7
GPTQ 3 46.6 71.9 32.4 65.4 65.0 68.0 24.6 53.4
OmniQ 3 54.0 77.1 35.6 64.9 64.7 71.2 28.0 56.5
LoftQ* 3&16 43.4 68.9 33.0 65.5 56.5 58.5 23.0 49.8
QLoRA* 3&16 53.9 76.2 39.3 71.5 68.9 72.8 31.0 59.1
QA-LoRA 3 55.4 76.3 39.8 72.5 69.5 67.1 30.6 58.7
QAT-LoRA 3&16 56.1 77.4 41.6 72.8 68.0 76.0 33.0 60.7
L4Q 3 55.9 77.6 42.1 74.1 68.9 76.8 33.4 61.2
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Table 13b: Commonsense QA benchmark result. The numbers represent accuracy (%) of each task.

Model Method #Bits Hella. PIQA ARC-c ARC-e Winogr. BoolQ OBQA Avg.
LLaMA-1 13B None 16 59.9 79.2 46.5 77.4 72.8 78.0 33.2 63.8

LoRA 16 60.8 79.7 50.3 78.6 72.3 80.2 34.8 65.2
GPTQ 4 58.9 79.3 46.5 77.0 72.7 76.5 33.8 63.5
OmniQ 4 58.6 79.7 43.8 73.5 70.5 68.7 28.4 60.4
LoftQ* 4&16 60.6 79.0 48.3 77.7 72.9 76.0 35.0 64.2
QLoRA* 4&16 59.6 79.2 46.5 77.1 72.5 78.1 33.4 63.8
QA-LoRA 4 60.1 79.0 46.8 77.0 71.4 67.1 36.2 62.5
QAT-LoRA 4&16 60.9 79.2 48.2 78.6 71.5 77.0 35.6 64.4
L4Q 4 60.9 79.8 48.2 78.5 71.7 76.7 35.4 64.5
GPTQ 3 57.3 77.3 42.6 73.0 71.0 74.6 31.4 61.0
OmniQ 3 56.8 77.2 39.9 72.7 68.5 67.0 29.8 58.9
LoftQ* 3&16 47.8 72.1 37.6 70.8 58.3 65.5 25.8 54.0
QLoRA* 3&16 56.6 77.8 43.9 75.1 70.8 73.5 31.6 61.3
QA-LoRA 3 57.7 78.0 44.7 75.3 71.2 68.6 32.4 61.1
QAT-LoRA 3&16 59.1 78.1 46.3 77.0 70.8 74.7 36.2 63.2
L4Q 3 58.9 78.4 45.8 77.4 70.2 77.7 35.2 63.4

LLaMA-1 33B None 16 63.3 81.0 52.8 80.4 75.9 82.6 36.0 67.4
LoRA 16 64.1 81.3 53.7 81.6 75.5 84.0 37.6 68.3
GPTQ 4 61.8 80.5 49.1 78.9 73.6 82.2 33.6 65.7
OmniQ 4 62.3 80.0 48.5 75.8 73.9 69.1 31.0 62.9
LoftQ* 4&16 63.3 80.3 51.8 81.4 75.3 82.9 37.0 67.4
QLoRA* 4&16 62.3 80.2 50.2 79.5 74.9 81.0 35.4 66.2
QA-LoRA 4 62.8 80.3 50.1 79.5 75.1 73.2 36.4 65.3
QAT-LoRA 4&16 62.3 81.3 53.0 81.6 74.9 82.7 35.4 67.3
L4Q 4 63.9 81.0 53.0 81.3 75.0 82.8 35.8 67.5
GPTQ 3 60.9 78.7 46.7 77.5 74.7 82.2 34.8 65.1
OmniQ 3 61.4 79.6 46.0 74.2 74.3 71.3 29.2 62.3
LoftQ* 3&16 46.1 74.9 38.9 73.9 58.3 63.5 28.2 54.8
QLoRA* 3&16 59.6 78.7 46.0 76.8 72.5 81.6 34.6 64.3
QA-LoRA 3 61.1 79.6 47.8 78.0 73.8 79.3 33.0 64.6
QAT-LoRA 3&16 63.3 81.0 52.8 81.3 75.5 82.8 35.4 67.4
L4Q 3 63.0 81.0 52.6 81.4 75.5 82.8 35.4 67.4

LLaMA-2 7B None 16 57.1 78.1 43.4 76.3 69.1 77.7 31.4 61.9
LoRA 16 57.9 78.9 48.0 77.4 70.3 75.8 34.8 63.3
GPTQ 4 56.0 77.5 42.2 75.0 68.2 76.4 29.8 60.7
OmniQ 4 56.0 77.7 41.3 69.9 67.8 73.5 30.2 59.5
LoftQ* 4&16 57.0 78.0 43.3 76.3 69.2 76.8 31.4 61.7
QLoRA* 4&16 56.6 77.8 43.3 75.2 69.1 75.3 31.8 61.3
QA-LoRA 4 56.4 79.3 73.3 39.2 71.8 75.5 31.4 61.0
QAT-LoRA 4&16 56.6 77.7 43.7 75.6 69.5 77.7 32.6 61.9
L4Q 4 57.2 78.8 47.1 76.9 70.2 80.4 34.8 63.6
GPTQ 3 53.1 76.2 35.8 70.3 67.7 72.4 27.6 57.6
OmniQ 3 54.6 76.4 37.5 67.6 66.1 71.9 31.0 57.9
LoftQ* 3&16 27.1 55.7 19.0 31.1 48.8 48.1 12.8 34.7
QLoRA* 3&16 52.4 75.9 37.6 69.9 65.6 74.1 27.4 57.6
QA-LoRA 3 56.5 77.8 42.3 74.7 68.0 30.8 43.8 56.3
QAT-LoRA 3&16 52.0 75.2 39.3 71.1 65.1 69.9 29.3 57.4
L4Q 3 55.5 77.3 42.8 73.8 68.8 77.2 34.0 61.3

LLaMA-2 13B None 16 60.1 79.1 48.5 79.4 72.2 80.6 35.2 65.0
LoRA 16 61.2 79.4 53.0 79.8 73.2 81.4 37.4 66.5
GPTQ 4 59.5 78.3 47.3 78.7 72.1 80.9 34.2 64.4
OmniQ 4 59.0 78.1 43.7 71.3 68.7 66.6 32.0 59.9
LoftQ* 4&16 60.0 79.3 48.1 79.7 71.9 80.7 34.8 64.9
QLoRA* 4&16 59.6 78.4 46.6 77.9 72.2 79.2 33.8 64.0
QA-LoRA 4 59.4 78.5 79.1 46.9 72.3 80.7 34.4 64.5
QAT-LoRA 4&16 59.5 78.8 48.4 79.2 71.5 80.9 34.4 64.7
L4Q 4 60.9 80.1 51.2 79.7 71.0 82.2 35.8 65.8
GPTQ 3 57.3 77.2 43.5 76.1 69.9 74.0 34.0 61.7
OmniQ 3 57.8 78.2 42.0 72.3 68.0 69.9 31.2 59.9
LoftQ* 3&16 28.7 60.6 19.5 45.3 50.7 55.1 15.2 39.3
QLoRA* 3&16 57.8 77.9 44.3 76.7 70.0 78.1 32.6 62.5
QA-LoRA 3 57.3 77.2 76.0 43.4 70.1 73.7 34.0 61.7
QAT-LoRA 3&16 55.8 77.1 67.6 76.0 67.6 75.1 30.8 64.3
L4Q 3 59.3 78.7 51.2 78.5 70.6 79.9 37.4 65.1

Mistral-v0.1 7B None 16 61.2 80.6 50.4 80.9 73.9 83.6 32.6 66.2
LoRA 16 61.2 82.1 50.3 80.9 74.0 83.7 32.6 66.4
GPTQ 4 59.8 82.3 46.9 79.4 73.5 84.4 30.6 65.3
OmniQ 4 60.7 79.9 47.1 78.2 73.6 82.5 31.2 64.7
LoftQ* 4&16 54.2 78.0 44.5 77.6 67.5 75.1 27.8 60.7
QLoRA* 4&16 60.8 82.1 50.5 80.4 73.2 81.8 32.0 65.8
QA-LoRA 4 60.6 81.7 49.0 79.5 73.3 81.8 32.0 65.4
QAT-LoRA 4&16 60.3 80.0 46.8 78.6 73.4 82.6 29.8 64.5
L4Q 4 60.3 81.6 50.9 80.4 72.4 84.8 32.0 66.1
GPTQ 3 57.3 79.5 43.5 75.8 70.6 78.0 27.8 61.8
OmniQ 3 58.7 79.1 43.4 75.2 69.8 72.3 31.0 61.4
LoftQ* 3&16 55.2 74.7 40.9 72.4 63.8 76.5 26.2 58.5
QLoRA* 3&16 57.5 80.3 46.6 76.7 69.8 80.7 29.6 63.0
QA-LoRA 3 57.4 78.7 43.9 75.7 70.9 80.9 28.4 62.3
QAT-LoRA 3&16 56.8 79.7 40.9 74.6 70.3 79.5 29.4 61.6
L4Q 3 57.5 80.2 47.7 78.0 66.5 83.8 28.4 63.1
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Table 14a: MMLU benchmark result. The numbers represent accuracy(%) of each task.

0-shot 5-shot
Model Method #Bits Human. STEM Social Others Avg. Human. STEM Social Others Avg.
LLaMA-1 7B None 16 32.9 26.9 32.1 37.3 32.5 33.9 30.6 38.2 38.2 35.1

LoRA 16 36.1 31.5 36.9 40.6 36.3 34.4 30.3 39.9 43.1 36.7
GPTQ 4 28.4 27.1 27.0 30.4 28.3 31.5 30.4 33.7 35.7 32.7
OmniQ 4 31.1 26.7 29.8 35.5 30.9 31.1 29.8 35.5 37.5 33.3
LoftQ* 4&16 32.3 30.0 32.7 37.3 33.0 33.6 30.7 37.2 39.0 35.1
QLoRA* 4&16 33.1 27.1 33.1 37.5 32.8 32.3 29.0 35.4 38.0 33.6
QA-LoRA 4 33.5 29.5 37.5 37.9 34.5 34.1 31.2 38.5 39.0 35.6
QAT-LoRA 4&16 33.5 29.5 34.6 37.4 33.8 32.2 32.4 35.6 39.9 34.8
L4Q 4 32.4 32.1 36.7 39.4 34.9 34.2 30.7 38.4 39.8 35.7
GPTQ 3 25.0 22.5 22.0 24.5 23.7 25.9 25.7 28.2 29.7 27.3
OmniQ 3 27.8 29.7 26.8 32.2 29.0 31.6 32.1 33.7 29.7 31.6
LoftQ* 3&16 24.3 21.7 22.4 24.5 23.4 23.4 23.2 21.9 23.5 23.1
QLoRA* 3&16 27.8 27.1 26.6 29.1 27.7 30.5 28.6 32.1 34.9 31.5
QA-LoRA 3 28.9 27.1 25.8 29.6 28.0 29.1 26.6 29.7 31.1 29.1
QAT-LoRA 3&16 28.2 29.7 32.0 33.7 30.6 29.8 29.2 32.2 34.6 31.5
L4Q 3 29.5 27.8 32.1 33.3 30.6 29.3 31.0 33.5 30.4 31.8

LLaMA-1 13B None 16 41.0 36.5 49.3 48.6 43.6 43.8 35.3 52.7 54.2 46.3
LoRA 16 42.4 34.0 49.4 51.9 44.3 45.0 36.4 54.1 53.1 47.0
GPTQ 4 33.5 34.5 44.9 44.9 40.1 43.1 35.9 52.8 51.9 45.7
OmniQ 4 39.8 35.1 48.6 48.1 42.6 43.1 35.7 52.5 52.3 45.7
LoftQ* 4&16 39.0 34.8 47.8 48.5 42.4 43.4 34.3 52.3 52.1 45.4
QLoRA* 4&16 39.0 35.7 47.5 47.2 42.1 43.8 35.3 52.0 52.8 45.9
QA-LoRA 4 35.3 35.2 47.7 47.9 42.4 43.0 34.6 53.0 53.6 45.8
QAT-LoRA 4&16 39.8 33.9 46.9 48.3 42.0 43.2 35.0 51.8 52.8 45.5
L4Q 4 40.5 35.3 49.5 48.5 43.2 43.4 36.1 52.3 53.2 46.0
GPTQ 3 32.1 27.2 36.3 36.8 33.1 36.0 29.8 42.2 45.6 38.2
OmniQ 3 32.6 28.2 37.1 41.8 34.8 39.1 33.1 47.5 47.6 41.6
LoftQ* 3&16 25.1 24.7 24.0 26.1 25.0 24.9 27.4 24.1 25.0 25.3
QLoRA* 3&16 33.3 31.3 38.5 42.3 36.1 36.8 32.4 46.6 47.0 40.4
QA-LoRA 3 35.9 28.4 42.4 43.5 37.5 34.8 31.5 43.0 44.8 38.2
QAT-LoRA 3&16 37.6 31.6 41.9 44.3 38.8 38.0 34.1 44.5 47.9 40.9
L4Q 3 38.5 33.2 44.7 47.2 40.7 39.3 34.0 46.6 48.4 41.8

LLaMA-1 33B None 16 51.0 40.1 62.2 59.4 53.0 54.4 44.7 65.4 61.6 56.4
LoRA 16 49.2 41.3 61.4 58.7 54.4 55.2 46.1 66.4 63.3 57.6
GPTQ 4 49.4 39.6 59.1 58.1 51.4 52.5 45.1 64.2 62.2 55.7
OmniQ 4 48.5 40.3 61.3 59.1 52.0 53.4 44.8 64.7 61.1 55.8
LoftQ* 4&16 49.2 40.2 60.8 58.0 51.8 54.6 44.5 65.2 61.5 56.4
QLoRA* 4&16 48.5 39.0 59.7 57.8 51.0 54.5 44.2 63.4 60.5 55.6
QA-LoRA 4 45.2 39.7 56.6 55.5 48.9 52.7 43.5 63.4 61.0 55.0
QAT-LoRA 4&16 50.2 39.8 60.9 58.9 52.3 55.0 45.5 65.1 61.8 56.7
L4Q 4 50.8 42.1 61.5 59.4 53.3 53.5 46.6 66.1 61.8 56.7
GPTQ 3 47.0 39.0 57.9 57.3 50.0 49.4 42.3 59.2 57.5 51.9
OmniQ 3 46.5 40.0 59.0 56.7 50.2 46.5 43.8 60.0 60.2 52.4
LoftQ* 3&16 24.7 24.0 23.2 26.4 24.6 24.3 23.2 22.9 25.6 24.0
QLoRA* 3&16 41.8 34.6 55.2 52.3 45.6 46.4 40.9 57.9 56.7 50.1
QA-LoRA 3 41.5 37.2 54.4 53.1 46.1 45.4 39.9 55.6 55.0 48.7
QAT-LoRA 3&16 47.7 38.9 58.0 56.6 50.1 46.8 41.2 58.2 57.5 50.6
L4Q 3 46.3 41.0 58.8 57.4 50.5 50.4 42.9 61.0 59.1 53.1

LLaMA-2 7B None 16 39.3 34.0 47.9 46.0 41.6 42.8 37.0 50.6 52.2 45.4
LoRA 16 41.0 34.6 50.8 50.2 43.9 43.4 37.0 51.8 52.4 46.0
GPTQ 4 36.0 30.1 41.3 41.1 37.1 40.9 33.9 48.9 48.6 42.9
OmniQ 4 37.7 34.6 47.2 45.7 41.0 42.4 37.7 51.1 51.6 45.4
LoftQ* 4&16 36.7 31.3 42.9 43.6 38.5 41.5 34.6 49.5 49.8 43.7
QLoRA* 4&16 37.3 31.5 43.3 42.7 38.6 42.1 35.9 50.2 51.1 44.6
QA-LoRA 4 37.3 32.3 43.5 43.0 38.9 42.0 35.7 49.6 50.8 44.4
QAT-LoRA 4&16 36.5 32.4 40.6 42.6 37.9 41.8 35.2 48.6 50.2 43.8
L4Q 4 38.7 33.8 45.6 46.4 40.9 42.9 37.7 50.5 51.9 45.5
GPTQ 3 28.9 28.5 35.3 33.7 31.3 36.0 31.7 39.3 43.5 37.5
OmniQ 3 33.1 30.4 39.1 35.5 34.3 34.1 32.4 41.6 44.4 37.7
LoftQ* 3&16 24.1 21.3 21.8 23.8 22.9 23.7 26.1 22.4 24.9 24.2
QLoRA* 3&16 30.2 29.1 36.0 35.5 32.5 35.4 32.5 40.5 42.7 37.6
QA-LoRA 3 28.9 27.8 34.7 33.7 31.0 36.0 31.6 39.5 43.4 37.5
QAT-LoRA 3&16 31.1 27.2 33.9 33.8 31.5 34.2 31.2 39.9 42.7 36.8
L4Q 3 31.0 32.7 38.6 39.2 34.9 34.3 32.3 42.2 44.9 38.0

2023



Table 14b: MMLU benchmark result. The numbers represent accuracy(%) of each task.

0-shot 5-shot
Model Method #Bits Human. STEM Social Others Avg. Human. STEM Social Others Avg.
LLaMA-2 13B None 16 47.8 42.3 60.5 59.4 52.1 52.0 43.8 63.0 61.2 54.8

LoRA 16 48.8 42.4 60.9 59.2 52.5 54.4 44.3 63.4 60.8 55.7
GPTQ 4 46.5 40.2 57.7 56.8 50.0 52.3 43.1 62.7 61.5 54.7
OmniQ 4 47.8 41.9 60.1 58.9 51.8 53.0 43.0 62.5 60.5 54.7
LoftQ* 4&16 47.2 42.0 60.4 58.9 51.7 52.6 43.2 62.8 60.1 54.5
QLoRA* 4&16 46.9 40.9 58.8 57.6 50.7 51.3 43.1 62.5 60.8 54.2
QA-LoRA 4 46.5 40.8 58.3 57.4 50.4 51.6 42.5 62.3 60.7 54.1
QAT-LoRA 4&16 47.5 41.0 58.8 56.8 50.7 50.3 42.9 62.3 60.7 53.8
L4Q 4 48.4 41.8 60.4 58.4 51.9 53.6 44.3 62.7 60.5 55.2
GPTQ 3 43.5 37.3 53.6 51.8 46.3 46.3 42.7 57.3 56.2 50.4
OmniQ 3 42.3 38.9 54.5 51.3 46.3 43.4 43.0 58.8 56.5 50.2
LoftQ* 3&16 24.2 21.7 23.8 23.7 23.5 24.6 28.5 24.0 27.4 26.0
QLoRA* 3&16 43.9 38.3 53.9 52.2 46.8 48.5 41.1 57.7 55.9 50.6
QA-LoRA 3 43.4 37.4 53.7 52.1 46.4 47.5 41.5 56.3 55.3 49.9
QAT-LoRA 3&16 42.5 37.3 53.0 52.1 45.9 44.8 40.5 56.3 55.7 48.9
L4Q 3 43.7 39.0 54.4 52.2 47.1 46.6 39.8 58.4 56.7 50.0

Mistral-v0.1 7B None 16 54.1 51.2 70.5 67.8 60.2 56.5 52.6 73.5 70.4 62.6
LoRA 16 54.5 51.4 70.9 68.2 60.6 56.8 52.9 73.9 70.8 62.9
GPTQ 4 51.8 47.4 68.1 65.5 57.6 55.9 50.4 71.6 68.1 61.0
OmniQ 4 52.4 49.2 69.0 65.7 58.4 55.1 51.8 71.2 68.5 61.0
LoftQ* 4&16 38.4 40.8 53.5 51.1 45.2 39.9 41.6 53.4 50.8 45.7
QLoRA* 4&16 52.6 49.2 69.6 66.0 58.7 55.7 51.7 71.2 68.0 61.1
QA-LoRA 4 51.4 46.4 66.0 64.1 56.5 56.1 51.4 72.0 67.6 61.2
QAT-LoRA 4&16 52.1 48.8 69.5 67.7 58.8 54.1 50.5 71.0 68.0 60.2
L4Q 4 52.6 48.9 69.9 67.1 59.0 56.3 51.1 71.7 68.8 61.4
GPTQ 3 45.0 42.4 59.7 57.2 50.5 43.0 43.0 57.4 57.8 49.6
OmniQ 3 49.4 44.9 63.4 61.6 54.3 50.0 47.0 66.1 63.0 55.9
LoftQ* 3&16 32.2 33.3 38.0 41.3 35.8 34.6 34.1 39.6 41.1 37.1
QLoRA* 3&16 46.9 43.4 60.6 60.2 52.2 47.6 44.8 61.6 62.9 53.6
QA-LoRA 3 45.8 42.9 60.8 54.5 50.5 48.8 43.6 59.2 56.4 51.7
QAT-LoRA 3&16 47.6 43.0 61.3 59.9 52.4 48.5 46.3 63.6 60.2 54.0
L4Q 3 49.9 43.8 63.0 63.0 54.5 51.1 46.1 66.4 62.5 56.2
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