
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 19942–19953
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

AutoMixer: Checkpoint Artifacts as Automatic Data Mixers

Ernie Chang♠* Yang Li*† Patrick Huber♠ David Kant♠ Yangyang Shi♠ Vikas Chandra♠
♠AI at Meta

†Iowa State University
erniecyc@meta.com, yangli1@iastate.edu

Abstract
In language model training, it is desirable to
equip models with capabilities from various
tasks. However, it is not clear how to directly
obtain the right data mixtures for these capabil-
ities as the relationship between data and tasks
is difficult to be modeled. In this work, we ob-
serve that checkpoint models exhibit emerging
capabilities at different points in the training tra-
jectory. Often, the training process saves check-
points as artifacts that are under-utilized as a
source of in-training data signals. We identify
these artifact models based on their respective
capabilities on the benchmarks and leverage
them as data mixers by using their aggregated
first-order influence approximation over source
data (See Figure 1). We demonstrated on eight
reasoning benchmarks that the proposed frame-
work shows significant improvements in the
pretraining setting, with performance improve-
ments of up to 1.93%. Overall, this shows the
potential of checkpoint models to enhance data
quality and optimize data mixtures.

1 Introduction

Training effective language models involves equip-
ping them with a diverse set of skills, which is heav-
ily influenced by the composition of their training
data. A primary challenge in this domain is the
precise identification of task-specific data within a
diverse mixture (Ye et al., 2024)—an undertaking
that becomes increasingly complex as the num-
ber of tasks grows and direct domain matches (or
dataset-task mapping) are absent (Li et al., 2024).
This complexity is further compounded by over-
lapping or conflicting knowledge regions across
data domains, complicating the discernment of the
most relevant samples for each task (Sedinkina and
Schütze, 2019). Traditional methods often over-
look this perspective, leading to inefficient data uti-
lization and missed opportunities (Wu et al., 2022;
Blakeney et al., 2024).

*These authors contributed equally to this work.
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Figure 1: Illustration of the checkpoint selection process
and subsequent sampling. We leverage intermediate
model checkpoints to group and sample data for targeted
skill acquisition.

In this work, we address this challenge as a
two-fold problem: (1) identifying data mixtures or
groups that can define effective divisions between
data, and (2) assigning sampling weights to each
of these groups to better model desirable behaviors
during the training process.

Fundamentally, task data are often ill-defined –
it is not clear how best to assemble a dataset for cul-
tivating a certain skillset (Wei et al., 2022; Hu et al.,
2023). This “chicken-and-egg” problem means that
identifying the data leading to skill improvements
requires a priori knowledge of which data benefits
that skill (Zhang and Others, 2024). One could
consider training a multitude of data mixtures to
observe performance trends and then isolate the
best data for each skill, but such brute-force ap-
proaches are computationally infeasible as models
grow larger.

Therefore, the core missing piece is a direct
modeling of the relationship between datasets and
model parameters, because data quality cannot be
reliably assessed in isolation from training (Park
et al., 2023). A potential solution involves comput-
ing the influence function (Hampel, 1974; Halevy
et al., 2009), which estimates the first-order “align-
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ment” between training samples and specific skills.
However, models inherently progress beyond these
approximations, so data composition guided solely
by step-t influence calculations may become out-
dated as training advances.

In this work, we propose to tackle data mixing
by regrouping raw data based on observed capabil-
ities and then assigning data loading probabilities
for these groups. Skills acquired at one checkpoint
may not persist throughout the entire process, mak-
ing it difficult to identify a single training step that
captures all optimal capabilities. Hence, we sim-
ulate training runs with proxy models and trace
checkpoint artifacts that align with target tasks. We
then estimate the sample influence (Kwon et al.;
Yeh et al., 2022) for each checkpoint; these in-
fluence scores are consolidated to guide both the
grouping of task-relevant data and the determina-
tion of sampling weights, ultimately maximizing
task influence across all data.

Our contributions are as follows: (1) we pro-
pose the AutoMixer framework that identifies task-
specific checkpoints from simulation runs, which
can be used as effective data samplers to boost
model performance on desirable tasks, enabling
both the identification of task data mixtures and
their respective importance weights; (2) we show
through extensive analysis that proxy models can
serve as effective data samplers and mixers using
only simulation runs, which allows the reuse of
these proxy data mixers across different tasks and
training scenarios.

2 Background

Training large language models is fundamentally
shaped by both the breadth and quality of their
data (Ye et al., 2024; Li et al., 2024). A major
challenge arises from identifying task-specific ex-
amples within extensive and heterogeneous cor-
pora, particularly when direct mappings between
data domains and target tasks are absent or ambigu-
ous (Sedinkina and Schütze, 2019; Wu et al., 2022).
Beyond this complexity, overlapping knowledge
regions often blur domain boundaries, further com-
plicating the extraction of samples most conducive
to skill development (Sedinkina and Schütze, 2019;
Blakeney et al., 2024; Britz et al., 2017). Tradi-
tional data-mixing techniques frequently overlook
these overlaps, leading to suboptimal data usage
and task generalizabilities (Conneau and Lample,
2019; Li et al., 2023; Blitzer et al., 2007; Lee et al.,

2022; Wang et al., 2020).
A second layer of complexity stems from the

dynamic nature of skill acquisition in language
models. Model capabilities can surface and evolve
at various points during training, often following
non-monotonic trajectories (Wei et al., 2022; Hu
et al., 2023). This non-monotonicity gives rise to
a “chicken-and-egg” dilemma: determining which
data samples facilitate a particular skill is difficult
until the model has already begun to exhibit that
skill (Zhang and Others, 2024). Although brute-
force methods—such as training multiple data mix-
tures and rigorously testing their impact on down-
stream tasks—could theoretically illuminate these
relationships, they are computationally infeasible
at scale.

Influence-based techniques offer a more princi-
pled approach to this problem. By examining how
individual training samples affect model predic-
tions (Hampel, 1974; Halevy et al., 2009), influence
functions pinpoint data regions that are especially
valuable for specific tasks. However, standard in-
fluence estimation and its approximations (Kwon
et al.; Yeh et al., 2022) often rely on a single check-
point (commonly the final model state), thereby
neglecting how early-stage knowledge may influ-
ence performance in subsequent stages (Park et al.,
2023). As a result, purely first-order or single-step
influence evaluations may fail to capture the full
evolution of a model’s skill trajectory.

Addressing these gaps requires a framework
that:

1. Subdivides large, heterogeneous data sources
into groups aligned with emerging model com-
petencies, and

2. Adjusting sampling weights for these data
groups for task-aware data loading.

Such an approach would exploit the strengths dis-
played at different checkpoints, rather than treating
the model as static. Incorporating multi-checkpoint
influence measurements enables adaptive data cu-
ration that aligns with the model’s ever-shifting
learning needs, ultimately leading to more efficient
and effective skill acquisition.

3 The AutoMixer Framework

In this work, we assume the presence of raw data
of various sources (e.g. common crawl snapshots)
comprising n samples distributed across m task
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Figure 2: Illustration of the AutoMixer framework: Each data sample from ungrouped raw pretraining sources
is assigned an influence score. These scores guide the regrouping of incoming data into task-specific datasets by
(1) splitting raw data into groups based on task checkpoints, and (2) Determine sampling weights by aggregating
influence scores across checkpoints.

data, with a token budget T . Each sample xi,
where i = 1, . . . , n, consists of si tokens. The
main idea behind AutoMixer is to decide for each
task whether a piece of data should be part of the
training process. If the data is chosen, it becomes
part of a special collection tailored for that task.
This approach ensures that each task gets the most
relevant data for its training needs.

Concretely, this process of data regrouping is
achieved by utilizing performance-based check-
points, in which AutoMixer identifies the most
effective stopping points during training (See Fig-
ure 2). The idea is that when a model achieves
peak performance on task j at a particular training
step, the checkpoint can be employed as an effec-
tive sampler to compute influence estimation (Koh
et al., 2019a,b; Ting and Brochu, 2018) for task
j. Empirically, we obtain the checkpoints from
simulation runs, and leverage them to identify task-
optimal datasets in a two-step process (See Fig-
ure 2). The aggregated task influences can then
be used to determine the weights over each group,
which dictates the sampling probability of groups
during language model pretraining.1

1. Data Regrouping: First, raw data are re-
grouped based on the sampled checkpoints
(θ1, . . . , θk). These k checkpoints are se-
lected from a single simulation run, each cor-
responding to the best-performing checkpoint

1Suppose a data group has a weight wg = 0.2, and all
weights are normalized to 1, this means, on average, 20% of
the tokens sampled per batch will come from this group.

for one of the m tasks, where k ≤ m (see
Table 1).2 To quantify the alignment score
with the task data, influence scores are ob-
tained from simulation runs with proxy lan-
guage models, which are smaller and faster to
compute sample influence.

2. Datamix Reweighting: Next, to assign sam-
pling weights to each data group, the per-
sample influence is aggregated with sample
token counts in a reweighting process. This
maximizes the influence across all tasks but
also ensures token count constraints are met.

We delve into these two steps as follows.

4 Data Regrouping via Sample Influence

Data regrouping enhances language model pretrain-
ing by reorganizing raw data into task-specific
groups, each defined by a distinct model check-
point sampled from a simulation run. During the
simulation training, a collection of checkpoints
is obtained. We record the performance of each
checkpoint across all tasks, allowing us to create a
benchmark table summarizing task performances,
as shown in Table 13. We then select the top k
checkpoints that perform best across all m tasks,
where k is less than or equal to m. The final step in-
volves regrouping data samples based on their util-
ity scores, defined as influence scores (Koh et al.,

2In the case where m becomes large, we can perform
unsupervised clustering to keep it manageable.

3Same checkpoint numbers are indicated with same colors.
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MODEL
TASK

ARC-EASY ARC-HARD BOOLQ PIQA SIQA HELLASWAG OBQA WINOGRANDE

25M 81% 76% 10% 100% 56% 100% 76% 81%
50M 85% 45% 65% 80% 60% 100% 100% 25%
75M 70% 70% 5% 85% 60% 100% 95% 100%

350M 95% 70% 40% 100% 80% 100% 95% 100%
500M 100% 95% 75% 85% 90% 100% 100% 85%
1.5B 85% 85% 85% 95% 90% 95% 95% 95%

Table 1: Checkpoint progression ratio for various tasks across different model sizes for a total of 100K steps: For
instance, if the checkpoint that performs the best at a task is stored at the 5000th step, it is then recorded on the
table as 5%. Checkpoints for each model size are collected from one simulation run by training the language model
on FineWeb data (Lozhkov et al., 2024) with 100K steps. Here we set the tasks to be the considered benchmarks:
ARC-easy, ARC-challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap
et al., 2019), HellaSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018), and WinoGrande (Sakaguchi et al.,
2021).

Figure 3: Depiction of the Data Regrouping Process:
Within each group, samples (w/ indices) are sorted based
on their joint influence scores across all tasks. This sort-
ing results in different sample orderings between groups.
The final step involves selecting the top K% of sam-
ples from each group to form a data group that fulfills
the token budget. Although there are duplicates across
the table, we found that repeated samples contain high-
value tokens that are beneficial for repeated exposure
during training.

2019a). In our experiments, influence scores I(xi)
are calculated for all samples using proxy models
with 75M and 350M parameters. Within each of
the m task-aligned groups, samples are sorted by
their utility scores, retaining the top 50% of sam-
ples for each checkpoint sampler (See Figure 3).
For each sample xi, we aggregate contributions
from all checkpoints:

Ijoint(xi) =
k∑

j=1

αj · I(xi; θj),

where αj is the blending factor for checkpoint θj ,
determined by task performance and the checkpoint
number, which we will in the next paragraph.

For simulation runs, the token budget is set at
100,000 steps with a batch size of 8, across 4 nodes,

and a sequence length of 2048, totaling 6.4 billion
tokens. This setup is designed to limit the cost
of simulation runs by keeping the total computing
budget in a reasonably range; and also for the fact
that the proxy models tend to converge early in
training. In cases where data groups exceed this to-
ken budget, each group is subsampled in proportion
to its aggregate influence scores, ensuring optimal
alignment between tokens and tasks while adhering
to computational constraints.

Blending Factor via Task Acquisition Speed.
Moreover, Table 1 also implies the speed of con-
vergence of different tasks across model sizes.
Namely, HellaSwag seems to take longer for the
model to get good at. While it might be tempting
to say that this is due to the difficulty of that partic-
ular task, we leave that discussion for future works.
However, it does provide a decent measure of how
long it takes to learn each task in the training runs.

In practice, we utilize each checkpoint to as-
sess the influence of individual samples, while si-
multaneously gathering task-specific signals across
all samples. To achieve this, we propose using
the checkpoint steps associated with each task as
weights when calculating a sample’s influence for
each checkpoint. The blending factor (αj) for each
checkpoint is determined by normalizing the check-
point step numbers. Let sj be the step number for
checkpoint j, and smax be the largest step num-
ber among all checkpoints. The normalized step
number for checkpoint j is:

s̃j =
sj

smax

The blending factor αj is then:
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αj =
s̃j∑k
i=1 s̃i

This ensures that the blending factors sum to 1
where the blending factor αi allows us to integrate
influence scores across different tasks for each sam-
ple effectively.

Below, we formalize the influence computation
framework and its implementation.

Formulating Sample Influence. Consider a pre-
training datasetD = {(xi, yi)}ni=1 for a next-token
prediction objective, where each input xi and la-
bel yi is a sequence of tokens, with yi obtained by
shifting xi one token to the left. The empirical risk
minimizer θ∗ is obtained through:

θ∗ := argmin
θ∈Θ

1

n

n∑

i=1

ℓ(yi, fθ(xi))

where ℓ denotes cross-entropy loss. To measure the
influence of sample (xk, yk), we analyze parameter
shifts under ε-weighted risk minimization:

θ(k)(ε) := argmin
θ∈Θ

(
1

n

n∑

i=1

ℓ(yi, fθ(xi))

+ εℓ(yk, fθ(xk))

)

The influence of (xk, yk) on the model’s
performance, reflected in the model’s predic-
tive capability on the validation set D(val) =

{(x(val)i , y
(val)
i )}qi=1, is quantified as:

I(xk, yk) =
d

dε

(1
q

q∑

j=1

ℓ
(
y
(val)
j , fθ(x

(val)
j )

))
∣∣∣∣∣∣
ε=0

= −
(1
q

q∑

j=1

∇θℓ
(
y
(val)
j , fθ(x

(val)
j )

))

×H−1(θ)∇θℓ
(
yk, fθ(xk)

)∣∣∣
θ=θ∗

where H(θ) is the Hessian of the empirical loss.
Direct computation is prohibitive for large models,
necessitating approximations.

Efficient Influence Approximation. We adopt
DataInf (Kwon et al.) to bypass explicit Hessian
inversion. For layer l in the Transformer model:

1. Compute validation gradients averaged over
q validation samples:

vl =
1

q

q∑

j=1

∇θlℓ(y
(val)
j , fθ(x

(val)
j ))

2. Compute the layer-specific regularization pa-
rameter λl:

λl = 0.1× (ndl)
−1

n∑

i=1

∥∇θlℓ(yi, fθ(xi))∥22

where dl denotes the layer dimension, and n de-
notes the number of training samples.

3. Update running sum rl across training sam-
ples for approximating the inverse Hessian-vector
product:

cli =
v⊤l ∇θlℓ(yi, fθ(xi))

λl + ∥∇θlℓ(yi, fθ(xi))∥22
,

rl ← rl +
vl − cli∇θlℓ(yi, fθ(xi))

nλl

4. Aggregate layer contributions to compute
final influence:

I(xk, yk) ≈ −
∑

l∈{1,L}
r⊤l ∇θlℓ(yk, fθ(xk))

Discriminative Layer Selection. In practice, we
save computes by avoiding matrix multiplication
across all layers of the model. Instead, we resort to
computing influence scores with only the embed-
ding and last layer in order to enhance influence
score discriminability. Thus, we focus on gradi-
ents from the first (embedding) and last (output)
Transformer layers: we postulate that this dual-
layer strategy mitigates the cancellation effect by
using only the last layer (Yeh et al., 2022) preva-
lent in intermediate layers, where shared process-
ing logic obscures sample-specific influences. By
isolating gradient signals from these critical lay-
ers, AutoMixer obtains more reliable influence es-
timates for regrouping decisions.

5 Datamix Reweighting

Regrouped datasets are presented to the model dur-
ing pretraining at varying probabilities. This means
that data group i will be sampled differently from
another group j, if i ̸= j. The datamix reweighting
aims to determine the probabilities to sample from
each group, which will translate to the proportion
of tokens in each batch of data during training.

In data regrouping, we aggregate influence
scores across selected checkpoints to optimize data
sampling weights via joint influences. A joint in-
fluence score for each sample (xi) combines its
contributions to all tasks and is computed in the
data regrouping stage in the previous section as
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Ijoint(xi). Now, the question remains as to how
to define the sampling weight wg for group g. To
reflect the impact of each data group on the over-
all performance of all tasks, we define the group
influence density ρg for each data group g as:

ρg =
1

Tg

∑

xi∈g
Ijoint(xi) · si,

where si is the token count of sample xi, and Tg is
the token count of group g.

We determine each group’s sampling weight
based on its influence density:

wg =
ρg∑
g′ ρg′

,

where wg ∈ (0, 1). When sampling tokens from
each group to form the pretraining dataset, we en-
sure that the proportion of tokens selected from
group g is wg. This approach optimizes overall per-
formance across all tasks while ensuring fairness
among them.

During the pretraining dataset construction, we
track the total token count of the selected samples
to ensure the total training token budget T is not
exceeded. In scenarios where we want to limit the
token budget for a specific group, we sum the token
counts of that group’s selected samples. Once the
group’s limit is reached, we stop sampling from it
and proportionally increase the sampling weights
for the remaining groups. This ensures the token
budget of the group is respected.

6 Experimental Setup

Dataset. The experiments employ the FineWeb-
Edu dataset (Lozhkov et al., 2024)4, a specialized
educational corpus derived from FineWeb through
quality-based curation. Two versions are available:
a foundational 1.3 trillion token collection and an
expanded 5.4 trillion token iteration (FineWeb-Edu-
score-2). The dataset ensures educational rele-
vance through a classifier trained on Llama3-70B-
Instruct-generated synthetic annotations, which se-
lects pedagogically valuable content.

Experimental Details. We implement decoder-
only transformers following the Llama-3 architec-
ture (Dubey et al., 2024), pretrained with causal
language modeling objectives. We conduct two
training runs per configuration with distinct ran-
dom initializations. Our model scale analysis spans

4Open Data Commons Attribution License (ODC-By) v1.0

four parameter counts (350M, 1.5B, 3B) to system-
atically investigate size-performance relationships.
All training occurs on a 32-GPU cluster (4 nodes,
8xH100 GPUs/node) using consistent hyperparam-
eters across configurations.

Data selection employs influence scores calcu-
lated via the 350M proxy model, with ablation
performed with the smaller 75M scale in order to
understand the balance computational tractability
and model capability5. Checkpoint evaluation re-
quires ∼120 hours on 100 GPUs, with subsequent
simulation runs completing within 48 hours.

Evaluation Tasks. We assess zero-shot perfor-
mance on eight common-sense reasoning bench-
marks: ARC-easy, ARC-challenge (Clark et al.,
2018), BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov
et al., 2018), and WinoGrande (Sakaguchi et al.,
2021). These tasks serve dual purposes: guid-
ing influence score computation during data se-
lection and providing final performance metrics.
This closed-loop design ensures alignment between
training dynamics and evaluation objectives.

Benchmark Comparisons. AutoMixer employ
several different proxy model sizes of 75M and
350M, which we denote as AutoMixer-75M and
AutoMixer-350M respectively. We evaluate against
several baseline strategies:

1. Uniform Sampling: Draws data uniformly
from FineWeb without prioritization, con-
strained only by a fixed token budget. This
baseline measures inherent dataset quality.

2. PPL Sampling: Here we adopt the commonly
used sampling technique (Wenzek et al., 2020)
where we estimate the sample utility based
on the sample sequence cross-entropy loss,
or perplexity, which is used in place of the
influence scores, while keeping the framework
algorithm constant, where lower perplexity
samples are better.

3. N-gram Sampling: Moreover, we also com-
pared a recent approach in Chang et al. (2024)
(n-gram sampling) that shares similar settings,
where target evaluations are utilized to sam-
ple pretraining data using n-gram-based tech-
niques (Xu et al., 2020). This serves as a

5The estimated costs for 350M and 75M simulation runs
are $81.60 and $79.89, respectively.
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APPROACH
IMPROVEMENT OVER UNIFORM SAMPLING (ACCURACY %)

ARC-EASY ARC-HARD BOOLQ PIQA SIQA HELLASWAG OBQA WINOGRANDE AVG.

350M Parameters

PPL SAMPLING 0.35 ± 0.03 0.60 ± 0.05 0.44 ± 0.03 0.70 ± 0.04 -0.10 ± 0.05 0.55 ± 0.03 0.40 ± 0.04 0.90 ± 0.06 0.66 ± 0.03
N-GRAM SAMPLING 0.74 ± 0.06 1.22 ± 0.04 0.79 ± 0.07 1.03 ± 0.05 1.09 ± 0.06 0.62 ± 0.03 1.16 ± 0.09 0.85 ± 0.04 0.60 ± 0.05
AUTOMIXER-75M -0.15 ± 0.07 0.12 ± 0.04 -0.14 ± 0.05 0.01 ± 0.08 -0.10 ± 0.03 0.05 ± 0.09 -0.03 ± 0.06 -0.05 ± 0.04 -0.04 ± 0.05
AUTOMIXER-350M 2.23 ± 0.08 0.55 ± 0.06 2.16 ± 0.09 2.05 ± 0.07 2.12 ± 0.10 2.33 ± 0.06 2.01 ± 0.08 2.14 ± 0.05 1.93 ± 0.07

1.5B Parameters

PPL SAMPLING 0.20 ± 0.07 0.52 ± 0.03 0.32 ± 0.06 0.40 ± 0.02 0.07 ± 0.05 0.18 ± 0.08 0.75 ± 0.03 0.68 ± 0.06 0.48 ± 0.04
N-GRAM SAMPLING 0.88 ± 0.06 0.82 ± 0.04 1.02 ± 0.07 0.58 ± 0.05 0.45 ± 0.09 1.22 ± 0.03 0.54 ± 0.05 0.90 ± 0.08 0.79 ± 0.06
AUTOMIXER-75M -0.06 ± 0.04 0.01 ± 0.06 -0.04 ± 0.05 -0.02 ± 0.07 -0.05 ± 0.08 0.02 ± 0.06 0.01 ± 0.04 -0.03 ± 0.05 -0.02 ± 0.06
AUTOMIXER-350M 1.26 ± 0.05 0.39 ± 0.09 1.35 ± 0.06 1.22 ± 0.08 1.38 ± 0.06 1.45 ± 0.04 1.33 ± 0.07 1.41 ± 0.09 1.22 ± 0.05

3B Parameters

PPL SAMPLING 0.18 ± 0.06 0.32 ± 0.04 0.10 ± 0.07 0.42 ± 0.05 0.27 ± 0.08 0.34 ± 0.03 0.50 ± 0.05 0.15 ± 0.09 0.20 ± 0.06
N-GRAM SAMPLING 0.82 ± 0.05 0.72 ± 0.07 0.57 ± 0.06 0.54 ± 0.04 0.64 ± 0.08 0.42 ± 0.05 0.95 ± 0.09 0.84 ± 0.06 0.50 ± 0.05
AUTOMIXER-75M -0.02 ± 0.06 0.01 ± 0.05 -0.03 ± 0.08 0.00 ± 0.04 -0.02 ± 0.07 -0.01 ± 0.06 -0.04 ± 0.03 0.02 ± 0.08 -0.01 ± 0.06
AUTOMIXER-350M 1.09 ± 0.04 0.34 ± 0.08 1.12 ± 0.06 1.06 ± 0.07 1.14 ± 0.05 1.27 ± 0.09 1.23 ± 0.08 1.18 ± 0.05 1.05 ± 0.07

Table 2: Improvements over the uniform baseline (accuracy %), each with two decimal places and averaged over 2
runs. Negative values (e.g. −0.10) indicate worse performance than uniform for those specific tasks. Bolded entries
represent the highest improvement in each column. Overall, AUTOMIXER-350M yields the largest gains across
most tasks, while other methods occasionally underperform vs. uniform.

Checkpoint Strategy Avg. Improvement over Uniform (%)

Last Checkpoint 0.7 ± 0.4
10 Checkpoints 0.8 ± 0.3
AutoMixer-350M 1.22 ± 0.05

Table 3: Average improvements over a uniform sam-
pling baseline, aggregated across multiple benchmarks
for 1.5B.

robust test to determine if simpler methods
can achieve comparable results.

7 Main Results

Table 2 shows how different sampling strategies
improve over a uniform baseline across four model
scales (350M, 1.5B, and 3B parameters). These
results support our main claim that precise identi-
fication and reweighting of task-relevant data can
yield substantial performance gains. Specifically,
AutoMixer-350M achieves the highest overall im-
provements in most settings, confirming that the
alignment between a proxy model and the final
target model is pivotal for learning task-specific
data representations. We also observed that it lags
behind n-gram sampling at times while AutoMixer-
75M performs poorly, suggesting the proxy model
size do play a huge role in the framework effec-
tiveness. Further, ppl sampling performs poorly on
the framework setting, suggesting that checkpoints
cannot be used off-the-shelf in the way it intends
to. We also observe the largest gains seem to be for
the 350M model, which is the proxy model size;
which makes sense from the perspective that influ-

Figure 4: A performance comparison of two approaches
(uniform sampling and AutoMixer-350M) across ten
evenly spaced training steps (0 – 100k). Both exhibit
minor fluctuations yet follow an overall upward trend
in accuracy. AutoMixer-350M consistently outperforms
uniform sampling throughout training, ultimately reach-
ing 56.45% accuracy versus 51.82% for uniform sam-
pling.

ence scores are computed with the same number of
parameters.

Despite these occasional variations, the data still
validate our two-fold approach. First, regrouping
data based on capability checkpoints rather than
solely relying on fixed domain labels appears cru-
cial for navigating the complexity highlighted in
the introduction, where overlapping or ill-defined
domains can undermine performance. Second, as-
signing sampling weights to these regrouped sets
amplifies the most beneficial samples for each skill,
aligning with our objective of pinpointing and up-
weighting high-value data.
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8 Further Discussion

Data Regrouping Ablation. Table 3 compares
three checkpoint-based strategies in terms of their
average improvement over a uniform sampling
baseline. Relying only on the final (“last”) check-
point yields a 0.7% gain, while aggregating all
available checkpoints (up to 10) increases that mar-
gin to 0.8%. The use of selected checkpoints in
AutoMixer achieves a more pronounced boost of
1.93% for 350M scale, demonstrating the advan-
tages of using selected checkpoints to sample data
for data regrouping. Here we show that by lever-
aging checkpoints that excel in distinct tasks at
various stages, and capitalizes on non-monotonic
skill emergence, we can more effectively pinpoints
those training samples most conducive to each tar-
geted capability. However, it is also true that earlier
Table 1 also shows a trend where larger model tends
to converge all skills onto one checkpoint, we leave
the question of trade-offs between the number of
checkpoint samplers and size of model (influence
scores’ computational speed) for future research.

AutoMixer Performance Trajectory. Figure 4
compares our proposed AutoMixer-350M approach
against uniform sampling across ten training steps
(0-100k). The plotted accuracies reveal that
AutoMixer-350M not only starts above Uniform
but sustains a clear lead throughout training, ul-
timately reaching 56.45% accuracy compared to
51.82% for uniform sampling. These steady gains
underscore AutoMixer’s ability to more effectively
reorganize training data over time, allowing the
model to focus on samples that yield greater learn-
ing benefits.

Impact of Proxy Model Sizes. Figure 5 reveals
an intriguing pattern: smaller proxy models, such
as those with 75M parameters, tend to select sam-
ples with longer sentences and higher influence
scores. This observation suggests that the 75M
proxy model is particularly adept at identifying
influential samples by focusing on longer, more
informative sentences. This capability is especially
useful in scenarios with limited computational re-
sources, as these models provide valuable signals
for sampling task-aware data, even within the lower
influence-scoring range. Conversely, larger proxy
models, like the 350M model, excel at distinguish-
ing samples with higher influence scores (See Fig-
ure 6). This implies that increasing model size
enhances the ability to discern and prioritize sam-

Figure 5: Mean text quality score by range: We show
the sample quality score across all buckets (grouped
by percentiles) of samples sorted by influence scores.
The normalized mean token count (in range [0, 1]) per
sample in the same set of buckets is labeled on each
point. 75M proxy model tends to select longer sentences
with higher influences.

ples that are more impactful for downstream tasks.
Larger models are thus better suited for identifying
high-quality samples that significantly contribute
to the learning process. These findings highlight
two key insights: (1) Smaller proxy models can be
effectively used to derive useful signals for prun-
ing, especially when focusing on lower influence-
scoring samples. (2) Larger models offer improved
performance in identifying and prioritizing samples
with higher influence scores, making them advanta-
geous for tasks requiring high precision in sample
selection.

Conclusion

Our study demonstrates the effectiveness of Au-
toMixer in enhancing language model pretraining
through strategic checkpoint sampling and data
regrouping. These results highlight AutoMixer’s
ability to enhance skill acquisition. Moreover, the
analysis of proxy model sizes reveals that smaller
models, such as those with 75M parameters are
suitable for resource-constrained scenarios; while
larger models, like the 350M model, excel in pri-
oritizing high-impact samples, offering advantages
for tasks requiring high precision. Overall, these
findings underscore the potential of optimized data
sampling and checkpoint models to significantly
boost pretraining performance.

Limitations

Although our multi-checkpoint data mixing strat-
egy demonstrates improvements on diverse reason-
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Figure 6: Plot of sample overlap percentages in respec-
tive models (75M & 350M), measured across increasing
influence scores. Two main trends emerge: (1) The
75M model identifies similar set of samples as the larger
350M models for lower-influence samples; while the
350M model captures a higher percentage of higher
influence samples and, (2) The smaller proxy model’s
overlap distribution is notably skewed toward lower
sample influences.

ing tasks, several constraints remain. First, estimat-
ing sample influence across multiple checkpoints
introduces additional computational overhead, po-
tentially limiting scalability to larger training runs.
Second, while we highlight how domain overlaps
complicate data grouping, our current approach
does not explicitly mitigate biases that may arise
from imbalanced or skewed datasets. Third, the
data mixtures and checkpoints used in this work
are focused on reasoning benchmarks; applying the
same procedure to other domains or more extensive,
heterogeneous corpora may reveal different chal-
lenges or optimal configurations. Finally, as our
proxy-based simulations rely on approximate mod-
eling of training dynamics, there is no guarantee
that fine-grained influence scores will hold across
substantially different architectures or larger-scale
training protocols. Future work could address these
gaps through further studies into how checkpoint
selection interacts with diverse model architectures
and data domains.

Ethics Statement

Our approach leverages public datasets and stan-
dard reasoning benchmarks, aiming to refine how
training samples are selected and weighted based
on evolving model capabilities. While this focus
can boost efficiency and skill-specific performance,
it also raises ethical considerations. For instance,
optimizing data mixtures for particular tasks may
inadvertently deprioritize other skills or amplify

existing biases if certain subpopulations are under-
represented or misrepresented in the training data.
Additionally, the checkpoint-based framework does
not inherently account for privacy or fairness con-
cerns, making transparency in data sourcing and
audit processes essential. Researchers and practi-
tioners employing this method should be mindful
of the potential for disproportionate impact on vul-
nerable groups and consider implementing robust
bias detection, inclusive data collection, and clear
documentation regarding data provenance. As with
any technique that refines data selection, careful
oversight is necessary to ensure that efforts to en-
hance performance do not come at the expense of
fairness or responsible use.
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A Dataset Analysis

Range Mean Language Score Mean Score Mean Int Score Mean Token Count Sum Token Count

p80-p85 0.97 3.76 4.01 474.01 1,593,100,685
p85-p90 0.97 3.76 4.01 413.55 1,388,916,981
p75-p80 0.97 3.76 4.00 550.58 1,852,164,429
p05-p25 0.96 3.75 4.00 1,698.47 22,912,588,553
p90-p95 0.97 3.77 4.01 397.05 1,345,066,462
p25-p50 0.96 3.75 4.00 1,353.91 22,789,192,924
p50-p75 0.96 3.76 4.00 846.16 14,215,340,759

Table 4: Summary statistics for different percentile ranges for AutoMixer-350M.

B Data Regrouping

In our experiments, we utilized a data regrouping strategy to enhance the quality and relevance of our
dataset.

For each of the K checkpoints, we performed the following operations:

1. Percentage Calculation: We calculated the approximate percentiles of the influence metric within
our dataset.

2. Table Creation: We created a new table to store data with influence values above a certain threshold.

3. Influence Aggregation: We aggregated influence scores across multiple tables to create a new
column total_influence.

Weight Estimation. To estimate the weight of each table, we calculated the scaled influence and the
total influence token product. This involved computing the minimum and maximum influence values and
scaling the influence accordingly.

Algorithm 1 Data Processing Pipeline

1: Input: Dataset D, Threshold T
2: Output: Total Influence Token Product
3:

4: Procedure DATAREGROUPING

5: Calculate percentiles of influence in D
6: Create a filtered dataset F where influence ≥ T
7: End Procedure
8:

9: Procedure INFLUENCEAGGREGATION

10: Aggregate influence scores in F to compute total influence for each ID
11: Store results in a new table A
12: End Procedure
13:

14: Procedure WEIGHTESTIMATION

15: Calculate min and max influence from A
16: Compute scaled influence for each entry in A
17: Calculate total influence token product
18: End Procedure
19:

20: Return Total Influence Token Product
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