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Abstract

Steering methods for language models (LMs)
have gained traction as lightweight alternatives
to fine-tuning, enabling targeted modifications
to model activations. However, prior studies
primarily report results on a few models, leav-
ing critical gaps in understanding the robust-
ness of these methods. In this work, we sys-
tematically examine three prominent steering
methods—DoLa, function vectors, and task
vectors. In contrast to the original studies,
which evaluated a handful of models, we test
up to 36 models belonging to 14 families with
sizes ranging from 1.5B to 70B parameters.
Our experiments reveal substantial variability
in the effectiveness of the steering approaches,
with a large number of models showing no im-
provement and at times degradation in steering
performance. Our analysis demonstrate fun-
damental flaws in the assumptions underlying
these methods, challenging their reliability as
scalable steering solutions1.

1 Introduction

Building on a growing array of interpretability tools
(Zhao et al., 2023; Ferrando et al., 2024; Rai et al.,
2024), steering methods for language models have
gained popularity as a way to modify model be-
havior with specific objectives at inference time
(Vig et al., 2020; Meng et al., 2022; Li et al., 2023).
They have been applied to steer models toward de-
sirable outputs, such as improved factuality (Chaud-
hary and Geiger, 2024; Zhao et al., 2024) or away
from undesirable traits (O’Brien et al., 2024; Far-
rell et al., 2024). These techniques are appealing
because they require little data compared to fine-
tuning and do not require changes to model param-
eters (Subramani et al., 2022; Turner et al., 2023;
Rimsky et al., 2024). However, they are still poorly
understood and face significant challenges that hin-
der their practical applicability.

1full code, data, and results can be found on our GitHub
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Figure 1: We study the generalization of various LM
steering methods to previously unstudied models and
find high variance in steering performance. (Top plot)
Building on logit lens §3, DoLa contrasts token prob-
abilities across layers to discover factual answers. We
show that models do not have similar patterns, limiting
the effectiveness of this method. (Middle and bottom
plots) Function vectors and task vectors are two meth-
ods for steering based on activation patching §4. We
show that activation patching results in highly variable
performance across many model families and sizes.

The LM steering literature has accumulated a
generalization blind spot. Most prior work reports
results on only a select number of LMs (Geva et al.,
2022; Gurnee et al., 2023; Zou et al., 2023; Chuang
et al., 2024; Templeton et al., 2024; Huben et al.,
2024), with growing evidence of unintended side
effects. Recent work has shown that steering meth-
ods can be brittle (Tan et al., 2025) and harm gen-
eral LM capabilities (Durmus et al., 2024).

Motivated by these studies, we adopt a critical
perspective of two popular interpretability tools
and the steering methods they inspired. Specif-
ically, logit lens (nostalgebraist, 2020) and acti-
vating patching (Vig et al., 2020). We focus on
three steering methods based on these tools: DoLa
(Chuang et al., 2024) built on logit lens (§3), and
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function vectors (Todd et al., 2024) and task vec-
tors (Hendel et al., 2023) built using ideas from
activation patching (§4). The original studies evalu-
ated a small number of LMs; our primary goal is to
quantify the generalization of these methods across
different model families and sizes. Our experi-
ments show a large variance in performance across
36 decoder-only transformer-based LMs from 14
model families with sizes ranging from 1.5B to 70B
parameters. Several model families, even after sig-
nificant hyperparameter tuning, show no improve-
ment or even decline in relevant steering metrics.
Our analyses reveal that these steering methods rely
on flawed assumptions about the generalization of
internal transformer mechanisms. We postulate
many more hypotheses for such variance and pro-
vide recommendations for the future of evaluating
steering methods for LMs in §5.

2 Related Work

Brittleness of Steering Methods Recent work
has highlighted the brittleness of different steering
methods providing motivation for this work. For
example, sparse autoencoders (SAEs) aim to learn
sparse, interpretable features from internal activa-
tions of LMs (Elhage et al., 2022). The features can
be upweighted or downweighted to steer the mod-
els (Huben et al., 2024). Durmus et al. (2024) show
that targeted steering often induces unpredictable
behaviors harming the general capabilities of the
model. Related to this work, Wu et al. (2025) show
that SAEs are not effective in steering compared to
simple baselines like prompting. Additionally, Tan
et al. (2025) study steering vectors based on con-
trastive activation addition (CAA) (Rimsky et al.,
2024). They focus on out-of-distribution general-
ization and show that some concepts in LMs are un-
steerable. Most related to our work is Brumley et al.
(2024), who report inconsistencies in function and
in-context vector steering capabilities across differ-
ent kinds of tasks. In contrast to our work, they
experiment with only two mid-sized models. We
test the generalization of steering methods across
many model families and sizes with extensive hy-
perparameter search, and subsequently make a case
against the underlying assumptions that steering
vectors are built upon.

Brittleness of Model Editing Similar to steer-
ing methods, model editing methods do not require
training to modify model behavior. Instead of up-
dating model activations at inference time, model

editing aims to locate and update model weights
responsible for a specific behavior, such as storing
facts (Meng et al., 2022). Similar to our exploration
of steering, prior work has shown that the brittle-
ness and side effects of model editing can limit
its practical usability. Li et al. (2024) demonstrate
two of these unintended consequences, knowledge
conflicts and distortions, in popular locate-then-
edit knowledge editing tools (Mitchell et al., 2022;
Meng et al., 2022, 2023). Yao et al. (2023); Huang
et al. (2024) explore the generalization of knowl-
edge editing and find that edits can struggle to
maintain consistency across contexts, often hurting
generalization.

3 Logit Lens

Introduced in nostalgebraist (2020), the logit lens
provides insights into how LMs refine their predic-
tion across layers (or sublayers). This approach
has been applied to interpret activations at various
stages (Geva et al., 2020), as well as to discover
circuits (Lieberum et al., 2023; Wang et al., 2022).
Specifically, the output of any model layer, hℓ, can
be projected onto the vocabulary space to obtain
logits by multiplying it by the unembedding ma-
trix (WU ), LogitLens(hℓ) = hℓWU , optionally
followed by softmax to convert it to a probability
distribution over the vocabulary (also known as
probits), qℓ(·) = softmax(LogitLens(hℓ)). The
tokens with the highest logit values or probabili-
ties can be used to infer what information has been
encoded in the hidden layer to the extent that the in-
formation is linearly decodable in the space defined
by the model’s unembedding matrix. In addition to
understanding model dynamics, logit lens has also
been used to steer model behavior based on insights
from said dynamics (Bhalla et al., 2024). For ex-
ample, to reduce hallucinations (Gema et al., 2024;
Chen et al., 2024; Jiang et al., 2024). In this section,
we analyze DoLA (Chuang et al., 2024), one of the
most influential works on logit-lens-based steering
that focuses on improving factuality.

Central to this work is the hypothesis that neu-
rons that store factual knowledge are distributed
among the later layers of the model (Dai et al.,
2022). During inference time, while these neu-
rons contribute to an increase in the probability
of factually correct outputs, this increase may not
be sufficient to ensure that the probability of the
correct output is the greatest among all possible
outputs. Based on this hypothesis, rather than us-
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ing the absolute probability of the following token,
Chuang et al. (2024) compute the relative change
in probability at the final layer compared to an ear-
lier or “premature” layer. The layer ℓ farthest from
the final layer L, in terms of Jensen-Shannon Di-
vergence (JSD) between qL and qℓ, is chosen as the
premature layer.

More formally, for a model with L layers, the
premature layer at inference step t is chosen as
P = argmaxℓ∈B JSD(qL(· | x<t) ∥ qℓ(· | x<t)).
Here, B refers to the set of all “candidate” layers
(except the final). The candidate set, henceforth
referred to as buckets, is a hyperparameter. Using
P , the output probability is updated as

p̂(xt|x<t) = softmax(F(qL, qP )) (1)

where

F(qL, qP )xt =

{
log qL(xt)

qP (xt)
if xt ∈ Vhead

−∞ otherwise
(2)

where Vhead is the set of tokens xt for which
qP (xt) ≥ αmaxw qL(w). Here α is another hy-
perparameter. As α increases, a larger portion of
tokens with low probabilities are set to have a prob-
ability of zero. We refer to the readers to Chuang
et al. (2024) for addit details.

3.1 Experimental Setup
Tasks, datasets, and models Following the orig-
inal paper, we evaluate DoLa on two multiple
choice text completion tasks: TruthfulQA (Lin
et al., 2022)2 and FACTOR (Muhlgay et al., 2024).
TFQA measures the truthfulness of models in an-
swering questions. It consists of questions span-
ning various domains to test models’ tendencies to
generate false but human-plausible answers. FAC-
TOR measures the factuality of a model. We exper-
iment with the “News” subset. The input consists
of a prefix followed by either a correct completion
or one of multiple incorrect completions, where the
probability of each completion is computed.

We evaluate with a comprehensive set of 10 mod-
els that span 7 model families and two scales. We
experiment with Llama 1 at 7B (Touvron et al.,
2023a), Llama 2 at 7B and 70B (Touvron et al.,
2023b), Llama 3 at 8B and 70B (Grattafiori et al.,
2024), Pythia at 6.9B (Biderman et al., 2023), Mis-
tral v0.1 at 7B (Jiang et al., 2023), OLMo at 7B

2While there exists a generative version of TruthfulQA, it
requires GPT3-based evaluation which is no longer offered by
OpenAI APIs

(Groeneveld et al., 2024), and Qwen 2 at 7B and
72B (Yang et al., 2024).

Hyperparameters DoLa uses two primary hy-
perparameters that may affect its final performance.
The first is the choice of B, the set of candidate
layers from which the premature layer is chosen,
also referred to as the bucket. The optimal bucket
is typically chosen using a validation set. In our ex-
periments, we report results over 4 buckets defined
by a range of layers3. For the small models, our
buckets are the bottom 50% of the layers (0-50%),
middle 50% of the layers (25-75%), top 50% of
the layers (50-100%), and all layers (except the fi-
nal). For the large models, our buckets are the first
(0-25%), second (25-50%), third (50-75%), and
last (75-100%) quartiles of layers. For each bucket,
following the original paper, we only consider even-
numbered layers (for efficiency reasons).

The other hyperparameter is α, which deter-
mines Vhead (see Equation 2). α adjusts the thresh-
old in token probability of the mature layer, be-
low which probabilities are set to zero. To avoid
a computationally expensive grid search over all
buckets and α values for each model, we first run
a search over the buckets, with α = 0.1, the value
used in Chuang et al. (2024). Once we determine
the best bucket for each model, we search over
α ∈ {0, 0.1, 0.25, 0.5, 0.75, 0.9} values.

Evaluation For both tasks, we compute 6-shot
performance for the baseline approach (without
any steering) and DoLA. For TruthfulQA, we com-
pute three metrics following prior work: MC1,
MC2, and MC3. The task specifies different answer
choices to the model depending on the metric to be
computed. For MC1, only one of the options is the
correct answer. MC1 measures the accuracy of a
model’s greedy prediction using the probabilities of
different answer choices. For MC2 and MC3, more
than one answer may be correct. MC2 measures
the normalized score assigned to the set of correct
answers. MC3 defines the ranked-choice predic-
tion accuracy—whether the set of correct answers
is assigned a higher likelihood than the wrong ones.
Regardless of the input, a 6-shot prompt, where
each example consists of a question followed by
one correct answer, is added as a prefix. For FAC-
TOR, we compute accuracy (same as MC1).

We also note that Chuang et al. (2024) report
these metrics by treating F as log-probabilities

3There are in principle an exponential number of potential
buckets, we focus on ranges of layers following prior work.
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Model MC1 MC2 MC3
Base DoLa Base DoLa Base DoLa

LLama 7B* 0.26 0.32 0.41 0.64 0.19 0.32
Llama 7B 0.26 0.32 0.41 0.52 0.19 0.28
LLama 2 7B 0.29 0.29 0.43 0.44 0.21 0.21
Llama 3 8B 0.32 0.32 0.49 0.49 0.24 0.24
Pythia 6.9B 0.23 0.26 0.37 0.52 0.18 0.23
Mistralv0.1 7B 0.32 0.32 0.48 0.48 0.24 0.24
Qwen 2 7B 0.39 0.37 0.58 0.51 0.30 0.30
OLMo 7B 0.25 0.25 0.40 0.40 0.19 0.19
Llama 2 70B 0.37 0.34 0.54 0.54 0.27 0.27
Llama 3 70B 0.35 0.35 0.56 0.56 0.28 0.28
Qwen 2 72B 0.44 0.39 0.63 0.46 0.33 0.30

Table 1: Performance of DoLA for TruthfulQA with
the best hyperparameter combination (chosen based on
the highest MC1 value). The results for the full search
can be found in Appendix A.1. * refers to the DoLa
results reported by Chuang et al. (2024) usingF without
applying a softmax.

(which they are not) without computing a softmax
and using p̂ (using Equation 1). Since all these
metrics are computed by aggregating p̂ over multi-
ple tokens, directly aggregating logits as output by
F can lead to a length bias where, depending on
the signs of logits, a longer output may unfairly be
rewarded or punished (more details are provided in
Appendix A.1). We report all our results using p̂.

3.2 Results and Analysis

We summarize our main results in Table 1 and
Table 2 for TFQA and FACTOR respectively. Each
row corresponds to the best result chosen based
on MC1 for TFQA and accuracy for FACTOR.
We provide complete results for all buckets and α
values in Appendix A.1.

Chuang et al. (2024) report results only on Llama
1 family of models. We note that, after correctly
computing the metrics (i.e. using p̂ instead of F),
the performance improvement offered by DoLa
over the baseline approach is much lower, although
still substantial (more details in Table 7 in Ap-
pendix A.1). However, for every other model we
evaluate, with the exception of Pythia, the improve-
ments afforded by DoLa in most metrics is not sig-
nificant, especially compared to the gains of Llama
1. Additionally, in models such as Qwen 2 7B and
Llama 2 70B, we see a slight deterioration in some
metrics compared to the baseline. The hyperparam-
eters (buckets and α) have little effect on this trend
(see Tables 4, 5. 6, 8, 9, and 10 in Appendix A.1).
Our results are consistent with several follow-up
works that have attempted to apply this approach
on top of select fine-tuned models and achieved
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Figure 2: Projected token probabilities from hidden
states at each layer of 4 selected LMs on the Truth-
fulQA dataset (the remaining results can be found in
Appendix A.2). The correct and incorrect token proba-
bilities begin spiking at the same layer, which suggests
that a contrast with early layers would be relatively un-
informative.

little or no improvements (Tian et al., 2023; Pan
et al., 2024).

We hypothesize that the failure of this approach
stems from the flawed assumption that “factual
knowledge of an LM evolves gradually across lay-
ers” (Meng et al., 2022; Geva et al., 2023), and
that contrasting the final with earlier layers offers
a meaningful signal. Wiegreffe et al. (2025) show
that in a multiple choice setting, there exist model-
specific layers that start the “promotion” of the
answer tokens. Inspired by their methodology, we
measure the probability of 3 token types across
each layer using TruthfulQA: the correct and incor-
rect final answers, and the token with the highest
logit value. Figure 2 aligns with the results from
Wiegreffe et al. (2025), showing that the correct
and incorrect tokens have low probabilities before
spiking at the same layer. This suggests that a con-
trast with early layers is relatively uninformative,
especially when comparing probabilities of correct
and incorrect tokens. This result contrasts with
DoLa’s motivation, which states that the promotion
of early tokens should be discounted to encourage
more of what the model prefers in later layers.

4 Activation Patching

Activation patching is the technique of replacing
or updating internal activations of a neural network
with another vector to modify a specific behavior
of the model (Vig et al., 2020; Geiger et al., 2020,
2021; Meng et al., 2022; Chan et al., 2022; Wang
et al., 2023). It is typically used to interpret mod-
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LLama 7B* Llama 7B Llama 2 7B Llama 3 8B Pythia 6.9B Mistralv0.1 Qwen 2 7B OLMo Llama 2 70B Llama 3 70B Qwen 2 72B

Base 58 58 72 76 51 76 69 67 83 85 82
DoLa 62 63 73 76 48 76 68 67 82 86 82

Table 2: Results (% accuracy) measuring the performance of DoLA for FACTOR with the best hyperparameter
combination (results for the full search can be found in Appendix A.1). * refers to the DoLa results reported by
Chuang et al. (2024) using F without applying a softmax.

els by isolating task-specific circuits and observing
relevant changes in model outputs (Hanna et al.,
2023; Heimersheim and Janiak, 2023; Conmy et al.,
2023), but it has also been applied to model steer-
ing. Previous work has explored several ways to
create steering vectors (Nanda et al., 2023; Zou
et al., 2023; Tigges et al., 2023; Turner et al., 2024).
At inference time, model activations at different
layers are added to or replaced by these vectors to
change the properties of the generated text.

In this section, we examine two related activa-
tion patching techniques which have been used to
study in-context learning (ICL) in transformers:
function vectors (FVs) (Todd et al., 2024) and
task vectors (TVs) (Hendel et al., 2023). For a
task t, test example x̃i, set of exemplars SK

t =
{(x1, y1), . . . , (xK , yK)} demonstrating the task,
and prompt pt,Ki = [SK

t , x̃i] ∈ Pt, both techniques
aim to compress the demonstrations into a steering
vector vt(S). When patched into an LM, this vec-
tor, in theory, should reproduce the performance of
ICL in a zero-shot setup.

To create FVs, Todd et al. (2024) rely on the
localization hypothesis (Olsson et al., 2022), sug-
gesting the that “presence of a handful of attention
heads in an LM can mediate many ICL tasks.” The
FV is computed in two steps. First, the average
activation of a head over all prompts from a task
dataset is defined as ātℓj = 1

|Pt|
∑

pti∈Pt
aℓj(p

t,10
i )

where aℓj is a self-attention head at layer ℓ. It is
used to construct the function vector

vFV
t =

∑

aℓj∈An

ātℓj (3)

where An is a subset containing n attention heads
ranked by a causal mediation analysis (Pearl, 2009)
and n is a hyperparameter. At a high level, given
ICL prompts with random, uninformative pairs, the
causal indirect effect of a head is measured as its
ability to recover the correct answer when patched
with its mean head activation ātℓj on the desired
task. We report the results for the casual indirect
effect of each head in Appendix B.2. For more
details on the formulation of FVs, please refer to

Todd et al. (2024).
Task vectors on the other hand do not rely on

localization or causal mediation analysis. They
directly compress a task into the activation space
of a transformer model

vTV
t = hℓ = fℓ(p

t,5
i ) (4)

where fℓ is a transformer model producing the hid-
den state at layer ℓ. Additional heuristics of TV im-
plementation can be found at Hendel et al. (2023).

Using unseen prompts, the steering vectors vt(S)
can be applied to the hidden states of any layer ℓ as

hℓ ← αhℓ + λvt (5)

Here λ is typically set to 1 (we also experiment
with other values for FVs). α is set to 1 for FVs
and 0 for TVs.

4.1 Experimental Setup
Tasks and datasets We source ICL word-pair
samples from Hendel et al. (2023); Todd et al.
(2024) and select 11 representative tasks from lin-
guistic, factual knowledge, and translation tasks.
This includes generating the antonym of English
words, the past tense of a present-tense verb, the
capital of a country, and various translations to and
from English (eng to [lang], [lang] to eng), using
French, Spanish, German, and Italian. Full dataset
details can be found in Appendix B.1.

Models We use 36 models ranging from sizes
1.5B to 70B across the GPT-J (Wang and Komat-
suzaki, 2021), Pythia (P) (Biderman et al., 2023),
Llama 1 (L) (Touvron et al., 2023a), Llama 2 (L2)
(Touvron et al., 2023b), Llama 3.1 (L3.1), Llama
3.2 (L3.2) (Grattafiori et al., 2024), Mistral v0.1
(M1) and v0.3 (M3) (Jiang et al., 2023), Gemma
2 (G2) (Team et al., 2024), Qwen 2 (Q2) (Yang
et al., 2024), Qwen2.5 (Q2.5) (Qwen et al., 2025),
OLMo (O) (Groeneveld et al., 2024), OLMo 2 (O2)
(OLMo et al., 2025), Amber (Liu et al., 2023), and
Falcon 3 (Team, 2024) families.4 We use only open-

4Due to changes to caching and tokenization across Hug-
gingFace versions, we do not replicate Gemma 2 and OLMo

19860



source models, as the experiments require access
to model internals.

Hyperparameters FVs and TVs both have what
could be considered a hyperparameter; the trans-
former layer ℓ at which the steering vector is
patched. During inference, we apply the steering
vector to only a single layer and search across all
layers in the model. Besides ℓ, TVs do not have
any additional hyperparameters.

Todd et al. (2024) only consider one hyperparam-
eter for FVs—An, the (number of) top attention
heads to use when constructing the FV (as shown
in Equation 3). While they demonstrate that perfor-
mance generally saturates in GPT-J after 10 heads,
our exploration indicates that other models and
tasks may respond differently. We experiment with
n ∈ {2, 16, 32, 64, 128, 256, 512, 1024}.

We also introduce λ (see Equation 5), a strength
multiplier on the function vector. vFV

t is created
with a subset of attention heads and can have a
low norm compared to hℓ; therefore, we explore
λ ∈ {0.5, 1, 2, 4, 8, 16, 32, 64}.

In addition to the best performance we obtain
with hyperparameter search, we also report FV’s
performance on Todd et al. (2024)’s default settings.
We use n ∈ {2, 16} for small models (≤14B) and
n ∈ {2, 64} for large models (>14B). We also set
a default λ ∈ {1}, consistent with both task and
function vectors.

Evaluation For each task, we use a test set of
50 word pairs5 in FV, and the default number of
word pairs using the implementation from Hen-
del et al. (2023) for TV. For each of our 11 ICL
tasks, we create prompts with K exemplars and
use the highest probability token as the prediction
following prior work. While the FV is created us-
ing K ∈ {10}, we record baseline performance
using K ∈ {0, 5} to be consistent with the defaults
from TV implementation. In our tasks, 10-shot
performance tends to marginally improve over 5-
shot, thus we underestimate brittleness in FVs (see
Figure 11 in Appendix B.3). To determine steer-
ing vector efficacy, we apply activation patching at
layer ℓ with K ∈ {0} and record the corresponding
accuracy.

2 in task vectors. In function vectors, these models follow
similar trends as others. Additional results are provided in
Appendix B.4

5Considering computational budget and extensive hyper-
parameter search, we use 50 test samples as our hypotheses
are only afflicted by large changes in accuracy.

5-shot Perf. .50 .75 .90 1.00
FV Default Param 47% 37% 20% 12%
FV Param Search 76% 68% 52% 28%
Task Vector 69% 54% 35% 16%

Table 3: The percent of model-task combinations which
surpass a quantile of their respective 5-shot perfor-
mance using the best combination of hyperparameters:
{ℓ, λ,An} for FV and {ℓ} for TV.

Due to limited space, we report aggregated re-
sults across our three hyperparameters in the main
paper (with detailed results in Appendix B.4). We
accept An and λ to be highly variable across
models and thus always take the maximum score
across those hyperparameters. Function vectors
and task vectors are reported to work over clusters
of early/middle layers; therefore, we also report
both a peak and average performance recovery
metric for layers. In general, we report peak (max)
and average (mean) performance recovery as their
respective aggregated steering vector performance
across layers. We normalize these numbers by the
respective model’s 5-shot performance. The divisor
is intended to remove noise in ICL performance.
Exact formulas are defined in Appendix B.3. As a
final aggregation, we also report the frequency with
which model-task combinations surpass a peak per-
formance recovery at different quantiles of their
5-shot performance.

4.2 Results and Analysis

We begin by optimistically quantifying the brit-
tleness of function vectors and task vectors, sum-
marized in Table 3 and Figure 3. We analyze the
interaction between hyperparameters and activation
patching, summarized in Figures 4 and 5.

Neither FVs nor TVs are generalizable As
shown in Table 3, even allowing for noise, FVs
with default parameters recover 5-shot performance
in only 20% of model-task combinations, and
52% with parameter search across An and λ; TVs
perform poorly as well at 35%. Even with the
best-performing tool, FVs with full hyperparame-
ter search, only 76% of model-task combinations
reach 50% of 5-shot performance.

Additionally, aggregate results from Figure 3
demonstrate the low performance and high vari-
ability across models and tasks. Function vectors
have nearly no pattern in their efficacy, besides eng
to [lang] having poor steerability in many models.
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Figure 3: Performance recovery with different activation
patching methods across tasks and models. There is
large variance in performance across tasks, models, and
tools. Tasks: a) Antonym, b) Present-Past, c) Country-
Capital, d) [lang] to eng, and e) eng to [lang].

We find TV to be more stable across larger scales.
All of the seven larger (≥13B) models we tested
worked decently with TV.

We further compare base and post-trained mod-
els. Using FV, post-trained models perform better
on average, especially when the base model per-
forms poorly as demonstrated in Figures 3 and 5.
However, with TVs, we observe a decline in perfor-
mance with post-trained models (see Figure 16 in
Appendix B.4). The uneven impact of post-training
on function and task vectors provides further evi-
dence for the fragility of steering based on activa-
tion patching.

Impact of function vector strength (λ) and layer
(ℓ) We address the assumption that the FV should
have a norm strong enough to impact the resid-
ual stream with λ. We generally note that mod-
els prefer some range of λ (some lower and some
higher), as shown in Figure 14 in Appendix B.4,
although there is still moderate variability across
tasks. Some models work with the default λ ∈ {1},
but varying this hyperparameter helped to recover
performance in many models.

Both TVs and FVs assume that there is at least
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Figure 4: A subspace in the hyperparameter search
across (ℓ, λ,An) for Mistral-v0.3 7B on the Country-
Capital task. The FV does not become effective until
128 (10%) heads, and it continues to grow in perfor-
mance until 512 (50%) heads. This provides some ev-
idence against localization for this model and task, as
many heads are required before performance emerges.

one layer ℓ in which the model will respond to
the steering vector. However, not only are some
models ineffective at all layers, the range of best
patching layers varies widely across models and
tasks. Figure 15 in Appendix B.4 provides a com-
prehensive summary of the preferred patching layer
for every model and task. Additionally, the high
peak but low average recovery for task vectors vis-
ible in Figure 3 suggests a strong dependence on
the choice of ℓ for task vectors.

Localization hypothesis does not always hold for
FVs FVs rely on the assumption that informa-
tion required for ICL is stored and activated within
a small subset of heads, which we test with An.
We find that on some tasks, certain models require
many heads in their FV before recovering perfor-
mance, with one example displayed in Figure 4.

The translation to English, linguistic, and factual
knowledge tasks show some evidence for localiza-
tion. They are most effective when n is relatively
small, as shown in Figure 5. However, when trans-
lating from English to another language, the more
localized n ∈ {2, 16, 32} have lower performance,
and performance improves with n ∈ {64, 128}.

Whether a model is post-trained also has an in-
teraction with An. Figure 5 highlights that post-
trained models outperform base models at higher n.
This result could suggest that the instruction-tuning
process produces models with more distributed ac-
cess to information.

We summarize the variable levels of steerability
with differing number of attention heads n across
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heads are used to construct the function vector. How-
ever, there is significant variance when averaging across
models and tasks.

all models and tasks in Figure 13 in Appendix B.4.

5 Discussion

Our findings show a clear breakdown in steering
tools across models and confusing differences in
dynamics between seemingly similar models. In
this section, we enumerate several potential hy-
potheses that may explain these differences. While
we conduct some experiments to verify them, our
limited resources preclude us from making a con-
clusive case for any of them.

Model pretraining Recent models have adopted
a two-stage pretraining process (Blakeney et al.,
2024), also referred to as mid-training (OLMo
et al., 2025), involving a second round of training
on higher quality raw corpus to increase the con-
text window (Gao et al., 2024) or improve later in-
struction following abilities for tasks (OLMo et al.,
2024). We hypothesize that the second stage, which
is performed with a much lower learning rate, may
result in late-spiking logit lens dynamics, and hence
poor results for techniques such as DoLa, as shown
in Figure 2.

To test this hypothesis, we use OLMo, which at
the time of running these experiments was the only
model with publicly accessible weights at different
checkpoints. However, we find no significant dif-
ferences in dynamics for checkpoints at the end of
stage one and two. In fact, we find OLMo starts
showing late spiking dynamics very early in the pre-
training stage at 100B tokens, as shown in Figure 6
in Appendix A.2. However, we cannot conclusively
refute this hypothesis with experiments with only
one model.

Model architecture and optimization We in-
vestigated several architectural differences among
LMs: number of layers and attention heads, num-
ber of key-value heads, vocabulary size, hidden
dimension sizes, attention types, activation func-
tions, and context length. Model differences are
summarized in Table 11 and Table 12. Among
these model differences, we find no discernible
pattern of brittleness caused by any such changes.
One exception is Gemma 2 9B which has been
trained via knowledge distillation and shows vastly
different dynamics than other models (Team et al.,
2024). For example, in logit lens, Gemma2 9B
has a top token probability of nearly 1.0 in early
layers, demonstrated in Figure 7 in Appendix A.2.
We acknowledge that all models we looked at are
trained with different training datasets and opti-
mization pipelines. With more resources, future
work may conduct controlled experiments to ablate
these differences.

Training data Finally, we speculate that the num-
ber of tokens, data quality, and style may play a
role in model differences. For example, recent mod-
els disobey the Chinchilla scaling laws (Hoffmann
et al., 2022) and saturate the models with many
tokens. It is conceivable that the amount of training
tokens supplied to the model plays a role in how
interpretable their mechanics are.

6 Conclusion

We study the generalization of three popular steer-
ing methods: DoLa, function vectors, and task vec-
tors. We find that all three techniques are extremely
brittle across models and tasks. Our analysis re-
veals that the underlying assumptions upon which
these methods are based are flawed. This work
adds to the growing evidence of robustness chal-
lenges that surgical methods aiming to modify lan-
guage model behavior face. A large amount of
interpretability research from which such steering
methods are derived continues to be shared via in-
formal channels such as blog posts with seemingly
exciting results but limited formal evaluation. As
such, we implore future research in this direction
to adopt a rigorous evaluation setup considering a
wide array of models and tasks to test the reliability
of steering approaches, as models with minor dif-
ferences may have vastly different manifestations
of key behavior.
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Limitations

Non-exhaustive hyperparameter search While
we performed an extensive hyperparameter search
for all steering methods, we did not cover all possi-
ble combinations due to our limited computational
budget. For example, for DoLa, there are a pro-
hibitively large number of bucket combinations
from which the premature layer can be selected,
while we experiment with a smaller set. We did,
however, find very similar results across all bucket
combinations providing confidence that other com-
binations are unlikely to improve the results.

Non-exhaustive model and task selection We
experimented with a wide array of popular open-
source models, however, at the time of writing this
paper, many newer models have been released that
we have not tested which may reveal different re-
sults. Additionally, for activation patching, we
choose a representative sample of tasks from prior
work. It is possible that there are other tasks are
more steerable than we report, and some worse.
However, the main message of the paper remains
the same: there exists high variability in the perfor-
mance of the steering methods we tested.

Variance explanation We observe that the be-
haviors which steering methods build upon mani-
fest in many forms and formulate multiple potential
hypotheses in §5. Wherever possible, we conduct
experiments to test the hypotheses (such as with
OLMo checkpoints and Gemma 2 public training
details). However, due to our limited resources, we
are ultimately unable to run controlled experiments
to conclusively verify or refuse any of the proposed
hypotheses.
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A Additional Details and Results for
Logit Lens

In this section, we provide additional experimental
details, results, and analysis to complement §3.

A.1 Results
Length bias in original DoLa results In Table 1
in §3.2, we discuss that Chuang et al. (2024) usesF
(Equation 2) to compute the reported metrics treat-
ing them as log-probabilities (when, in fact, they
are similar to logits). Using F gives the illusion
that DoLA improves on the baseline. We find that
this happens because F results in logit values that
are all > 0. Hence, an option which is longer in
length (in terms of number of tokens) gets a higher
score as the logits add up. This length bias leads
to several instances in TruthfulQA where the right
answer is the longest being predicted correctly.

We show that without determining any prema-
ture layers, we can artificially increase or decrease
TruthfulQA performance by adding or subtracting
a constant value from the logits at the final layer
and using the modified logits for the prediction
without applying a softmax. To introduce this bias,
we first subtract the smallest logit value from all
logits to make them all positive. As shown in Ta-
ble 7, adding a positive constant leads to higher
MC1, MC2, and MC3 values and vice versa. We
determined that setting this constant to 20 yielded
the highest improvement.

Results for all hyperparameters Our prelimi-
nary analysis revealed that a lower alpha almost
always led to better performance. Hence, with
α = 0.1 (also the value used by Chuang et al.
(2024)), we report results for all buckets we exper-
imented with in Tables 4, 5, 8 and 9. For the best
bucket found for each model, we show results over
different values of α in Tables 6 and 10. We report
the best results (according to MC1) in the main
paper (Table 1 and Table 2).

A.2 Analysis
We provide logit lens analysis plots for all models
that are not covered in Figure 2 in Figure 7. To
further analyze the disparity in the DoLA results
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Model 0-50% 25-75% 50-100% 0-100%
MC1

Llama 7B 0.2375 0.2436 0.2546 0.2436
Llama 2 7B 0.2558 0.2497 0.2534 0.2595
Llama 3 8B 0.2913 0.2876 0.2864 0.2913
Pythia 6.9B 0.2277 0.2179 0.2093 0.2301
Mistralv0.1 7B 0.2987 0.2974 0.2974 0.2987
Qwen 2 7B 0.3550 0.3733 0.3623 0.3623
OLMo 7B 0.2436 0.2399 0.2411 0.2436

MC2
Llama 7B 0.4061 0.4166 0.4414 0.4234
Llama 2 7B 0.4340 0.4350 0.4408 0.4362
Llama 3 8B 0.5129 0.5128 0.5113 0.5129
Pythia 6.9B 0.4213 0.4213 0.5097 0.4417
Mistralv0.1 7B 0.4841 0.4842 0.4842 0.4841
Qwen 2 7B 0.4935 0.5073 0.4756 0.4756
OLMo 7B 0.4176 0.4205 0.4193 0.4176

MC3
Llama 7B 0.1739 0.1797 0.1934 0.1824
Llama 2 7B 0.1935 0.1914 0.1929 0.1954
Llama 3 8B 0.2253 0.2236 0.2231 0.2253
Pythia 6.9B 0.1782 0.1733 0.1848 0.1796
Mistralv0.1 7B 0.2249 0.2245 0.2245 0.2249
Qwen 2 7B 0.2840 0.2988 0.2963 0.2963
OLMo 7B 0.1779 0.1781 0.1779 0.1779

Table 4: Bucket search for TFQA using α = 0.1 (small models). Bolded are the best scores for MC1 in each model,
which is later used for the alpha search. Continue reading in §3.2.

among different models and to better understand
how tokens are promoted across layers, in addition
to the logit lens analysis, we present an additional
analysis strengthening our hypothesis that early
layers in many models do not provide a meaningful
signal to compute premature layers.

We define a new metric, which we call apathy.
The primary motive of apathy is to quantify the ex-
tent to which transformer components are making
changes to the residual stream. The hidden vector
output at a layer, hℓ, is a function of the residual
stream from the previous layer (hℓ−1), and the out-
put from multi-head attention (MHA) and MLP
sub-layers. Formally, hℓ = hℓ−1 + hMHA + hMLP,
where, hMHA = MHA(LayerNorm(hℓ−1)) and
hMLP = MLP(LayerNorm(hℓ−1 + hMHA)). We
define apathy (A) to quantify the resiliency of the
residual stream to the additions of MHA and MLP
throughout the layers of a transformer:

A(r, h) = (1 +
r · h
∥r∥∥h∥)(∥r∥ − ∥h∥) (6)

A(hℓ−1, hMHA) corresponds to the contribution

of MHA to the residual stream, and A(hℓ−1 +
hMHA, hMLP) of MLP. Higher apathy means the
residual stream is less affected by the outputs of
MHA or MLP.

We plot the apathy metric in Figure 8. Some
models persist in low apathy for longer, meaning
the residual stream is being updated over more lay-
ers before it becomes relatively set in norm and
direction. The layer at which apathy does begin to
increase seems to match where the predicted token
promotion occurs, suggesting some interplay be-
tween the two. These findings suggest variability
in the that way models promote tokens in vocab-
ulary space, making layer contrasting techniques
that rely on logit lens (DoLa) unreliable.

Following the discussion in §5, we show the
logit lens analysis for multiple pretraining stages of
OLMo in Figure 6. We demonstrate the emergence
of token probability spiking early in training (≤
100 billion tokens). We also show the dynamics of
Gemma2 9B in Figure 7, which has a large token
probability with logit lens in its early layers.
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Model 0-25% 25-50% 50-75% 75-100%
MC1

Llama 2 70B 0.3317 0.3305 0.3341 0.3403
Llama 3 70B 0.2840 0.2803 0.2712 0.2778
Qwen 2 72B 0.3599 0.3550 0.38807 0.2791

MC2
Llama 2 70B 0.5503 0.5559 0.5742 0.5368
Llama 3 70B 0.5106 0.5072 0.5064 0.5081
Qwen 2 72B 0.6000 0.5959 0.5968 0.5112

MC3
Llama 2 70B 0.2319 0.2339 0.2474 0.2711
Llama 3 70B 0.2210 0.2201 0.2143 0.2246
Qwen 2 72B 0.2659 0.2731 0.2895 0.2740

Table 5: Bucket search for TFQA using α = 0.1 (large models). Bolded are the best scores for MC1 in each model,
which is later used for the alpha search. Continue reading in §3.2.
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Figure 6: Projected token probabilities from hidden
states at each layer of OLMo checkpoints on the Truth-
fulQA dataset. The correct and incorrect token probabil-
ities begin spiking at the same layer after 100B tokens,
suggesting this behavior emerges early in model train-
ing, and not with stag 2 of pretraining. Continue reading
in §5.

B Additional Details and Results for
Activation Patching

In this section, we provide additional experimental
details, results, and analysis to complement §4.

B.1 Additional Details on Tasks and Datasets

As described in §4.1, we follow the code imple-
mentation which includes full datasets from Hen-
del et al. (2023); Todd et al. (2024). For FVs, we
swap source and target languages to get the "[lang]
to eng" task, and the equivalent task is available by
default in TV.

0 16 32 48 64 80
0.0

0.5

1.0
Llama-2 70B

Top

Correct

Incorrect

0 16 32 48 64 80

Llama-3 70B

0 7 14 21 28
0.0

0.5

1.0
Qwen-2 7B

0 7 14 21 28 35 42

Gemma-2 9B

Projected Layer (`)

P
ro

je
ct

ed
T

ok
en

P
ro

b
ab

ili
ty

Figure 7: Projected token probabilities from hidden
states at each layer of model not reported in the main
paper on the TruthfulQA dataset. The correct and incor-
rect token probabilities begin spiking at the same layer,
which suggests that a contrast with early layers would
be relatively uninformative. Continue reading in §3.2.

B.2 Additional Details on Function Vector
Formulation

As shown in Equation 3, finding heads which mod-
ulate a task is a key aspect of the casual mediation
analysis in function vectors. We share two repre-
sentative plots for the contribution of each attention
head. GPT-J 6B in Figure 9 shows a few common
heads modulate each of its tasks, consistent with
Todd et al. (2024). Llama-3.1 8B in Figure 10
shows varied patterns in the heads which modulate
each task, reflecting the variability we observe in
our experimental results.

To see the causal indirect effect for every
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model and task, please use the following link:
https://github.com/patqdasilva/steering-off-course

B.3 Additional Details on Evaluation
As discussed in §4.1, we provide the full formula-
tion for calculating peak and average performance
recovery in FV and TV.

peak = max
An,λ,ℓ

(
1

|Pt|
∑

pti∈Pt

fvt(p
t,0
i ) = yi

f(pt,5i ) = yi
) (7)

avg = max
An,λ

(
1

L

∑

ℓ∈L

1

|Pt|
∑

pti∈Pt

fvt(p
t,0
i ) = yi

f(pt,5i ) = yi
)

(8)

Expanding on K shot evaluation in §4.1, we com-
pare zero-shot, 5-shot and 10-shot performance for
all models in Figure 11. We find that on average,
10-shot performance slightly beats out 5-shot. By
creating FVs with 10-shot examples, and evaluat-
ing the recovery according to 5-shot performance,
we slightly overestimate the effectiveness of FVs
and underestimate its brittleness. That is, to say
our findings hold well for both setups.

B.4 Additional Detail on Activation Patching
Results

For a comprehensive display of figures from mod-
els not displayed in this paper, please follow
https://github.com/patqdasilva/steering-off-course

Additional results with OLMo2 and Gemma2
using FVs Corresponding to the results from
§4.1, we show additional results for OLMo2 and
Gemma2 in Figure 12. OLMo2 shows decent FV
performance similar to OLMo, whereas Gemma2
has varying performance which is especially poor
in the 27B model.

Task Vectors: Post Training As discussed in
§4.2, we find that unlike FVs, instruction tuned
models using TVs are not more steerable than their
base versions. We display this result across tasks
in Figure 16.

Best Hyperparameters As discussed in §4.2, we
show the hyperparameters with best performance
across all models and tasks in Figure 13 (number
of heads An), Figure 14 (strength of the function
vector λ), and Figure 15 (layer ℓ).

Function Vectors: Full Hyperparameter Search
We show a contrast to the non-localized Mistral-
v0.3 7B (Country-Capital task) from Figure 4.

GPT-J 6B shown in Figure 17, which was stud-
ied extensively by Todd et al. (2024), does show
evidence for localization in the Country Capital
task. It has 448 heads while nearly recovering
its maximum performance with the FV built with
only 2 (0.44%) heads. These two models are
just one of several interactions of behavior differ-
ences between models that are difficult to parse.
We note strong robustness across all hyperparame-
ters. For every model and task tested, please visit
https://github.com/patqdasilva/steering-off-course

Task Vectors: Full Hyperparameter Search
We provide representative examples of full pa-
rameter search as dicussed in §4.2. We com-
pare a model replicated form prior work in Fig-
ure 18 to a model previously unstudied in Fig-
ure 19. For every model and task tested, please visit
https://github.com/patqdasilva/steering-off-course

C Compute Budget and Hardware

We use V100s with 16 and 32 GB for smaller mod-
els, and A100s and H100s with 80GB and 95GB
for larger models. We consider small models to
be those < 13B. The bulk of GPU hours come
from the hyperparameter search with function vec-
tors. For our small models, creating the FV takes
40 minutes, and search takes 1.5 hours. For our
large models, creating the FV takes 4 hours and
search takes 2.5 hours. With 27 smaller models and
9 larger models, across 9 tasks in FVs, this comes
out to 524 hours on V100s and 526 hours on A100s
and H100s. Total emissions are estimated to be
124.72 kgCO2eq (Lacoste et al., 2019).
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Model 0.0 0.1 0.25 0.5 0.75 0.9 Bucket used
MC1

Llama 7B 0.3182 0.2546 0.2558 0.2301 0.2387 0.2472 50-100%
Llama 2 7B 0.2889 0.2595 0.2570 0.2595 0.2472 0.2399 0-100%
Llama 3 8B 0.3170 0.2913 0.2717 0.2448 0.2399 0.2387 0-100%
Pythia 6.9B 0.2607 0.2301 0.2007 0.2167 0.2154 0.2142 0-100%
Mistralv0.1 7B 0.3158 0.2987 0.2889 0.2852 0.2766 0.2729 0-100%
Qwen 2 7B 0.3133 0.3733 0.3599 0.3207 0.3170 0.3060 25-75%
OLMo 7B 0.2509 0.2436 0.2472 0.2399 0.2448 0.2411 0-100%
Llama 2 70B 0.2962 0.3403 0.3280 0.3366 0.3378 0.3354 75-100%
Llama 3 70B 0.3537 0.2840 0.2656 0.2338 0.2203 0.2203 0-25%
Qwen 2 72B 0.3329 0.3807 0.3819 0.3917 0.3782 0.3672 50-75%

MC2
Llama 7B 0.5202 0.4414 0.4968 0.5066 0.5528 0.5562 50-100%
Llama 2 7B 0.4386 0.4362 0.4429 0.4758 0.5067 0.5126 0-100%
Llama 3 8B 0.4884 0.5129 0.5142 0.4998 0.4901 0.4882 0-100%
Pythia 6.9B 0.5253 0.4417 0.4682 0.4981 0.5043 0.5133 0-100%
Mistralv0.1 7B 0.4817 0.4841 0.5021 0.5171 0.5317 0.5329 0-100%
Qwen 2 7B 0.5420 0.5073 0.4744 0.4803 0.4902 0.4826 25-75%
OLMo 7B 0.3952 0.4176 0.4453 0.4764 0.5093 0.5074 0-100%
Llama 2 70B 0.5255 0.5368 0.5293 0.5467 0.5420 0.5426 75-100%
Llama 3 70B 0.5580 0.5106 0.4753 0.4859 0.4855 0.4744 0-25%
Qwen 2 72B 0.5771 0.5968 0.5099 0.4599 0.4486 0.4480 50-75%

MC3
Llama 7B 0.2803 0.1934 0.1900 0.1745 0.1798 0.1847 50-100%
Llama 2 7B 0.2070 0.1954 0.1852 0.1844 0.1760 0.1693 0-100%
Llama 3 8B 0.2389 0.2253 0.2140 0.1881 0.1815 0.1786 0-100%
Pythia 6.9B 0.2448 0.1796 0.1671 0.1717 0.1763 0.1745 0-100%
Mistralv0.1 7B 0.2394 0.2249 0.2107 0.2100 0.2043 0.2033 0-100%
Qwen 2 7B 0.2911 0.2988 0.2850 0.2588 0.2553 0.2473 25-75%
OLMo 7B 0.1874 0.1779 0.1740 0.1729 0.1757 0.1791 0-100%
Llama 2 70B 0.2996 0.2711 0.2631 0.2528 0.2436 0.2447 75-100%
Llama 3 70B 0.2759 0.2210 0.2080 0.1824 0.1644 0.1571 0-25%
Qwen 2 72B 0.3122 0.2895 0.2870 0.2997 0.2962 0.2862 50-75%

Table 6: α search for TFQA, using the best bucket from Table 4 and Table 5. Bolded are the highest scores MC1
scores across alpha for each model. Continue reading in §3.2.
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Model Base Best α Best Bucket DoLa DoLa w/o softmax Base w/ length bias (+20)
MC1

Llama 7B 0.2570 0.0 50-100% 0.3182 0.3158 0.3182
Llama 2 7B 0.2852 0.0 0-100% 0.2889 0.3207 0.3354
Llama 3 8B 0.3195 0.0 0-100% 0.3170 0.3317 0.3427
Pythia 6.9B 0.2252 0.0 0-100% 0.2607 0.2962 0.3023
Mistralv0.1 7B 0.3158 0.0 0-100% 0.3158 0.3354 0.3623
Qwen 2 7B 0.3550 0.1 25-75% 0.3733 0.3439 0.3831
OLMo 7B 0.2509 0.0 0-100% 0.2509 0.3121 0.3439
Llama 2 70B 0.3500 0.1 75-100% 0.3403 0.2974 0.3341
Llama 3 70B 0.3684 0.0 0-25% 0.3537 0.3305 0.3513
Qwen 2 72B 0.4418 0.5 50-75% 0.3917 0.4015 0.4039

MC2
Llama 7B 0.4055 0.0 50-100% 0.5202 0.6176 0.6151
Llama 2 7B 0.4340 0.0 0-100% 0.4386 0.6239 0.6182
Llama 3 8B 0.4884 0.0 0-100% 0.4884 0.6335 0.6489
Pythia 6.9B 0.3717 0.0 0-100% 0.5253 0.5968 0.5829
Mistralv0.1 7B 0.4814 0.0 0-100% 0.4817 0.6282 0.6433
Qwen 2 7B 0.4935 0.1 25-75% 0.5073 0.6474 0.6617
OLMo 7B 0.3957 0.0 0-100% 0.3952 0.6117 0.5187
Llama 2 70B 0.5240 0.1 75-100% 0.5368 0.4749 0.6182
Llama 3 70B 0.5817 0.0 0-25% 0.5580 0.6480 0.6476
Qwen 2 72B 0.6256 0.5 50-75% 0.4599 0.5704 0.6804

MC3
Llama 7B 0.1924 0.0 50-100% 0.2803 0.3010 0.2995
Llama 2 7B 0.2076 0.0 0-100% 0.2070 0.3048 0.3064
Llama 3 8B 0.2392 0.0 0-100% 0.2389 0.3210 0.3276
Pythia 6.9B 0.1787 0.0 0-100% 0.2448 0.3054 0.2787
Mistralv0.1 7B 0.2389 0.0 0-100% 0.2394 0.3177 0.3225
Qwen 2 7B 0.2840 0.1 25-75% 0.2988 0.3297 0.3443
OLMo 7B 0.1878 0.0 0-100% 0.1874 0.3027 0.2588
Llama 2 70B 0.2526 0.1 75-100% 0.2711 0.2202 0.3063
Llama 3 70B 0.2917 0.0 0-25% 0.2759 0.3249 0.3286
Qwen 2 72B 0.3272 0.5 50-75% 0.2997 0.2974 0.3527

Table 7: TFQA best results for DoLa compared with baseline, DoLa w/o softmax, and baseline w/ length bias.
Continue reading in §3.2.

Model 0-50% 25-75% 50-100% 0-100%
Llama 7B 0.6253 0.5927 0.5367 0.5784
Llama 2 7B 0.7281 0.7220 0.7169 0.7281
Llama 3 8B 0.7546 0.7454 0.7536 0.7536
Pythia 6.9B 0.4643 0.3996 0.3697 0.4054
Mistralv0.1 7B 0.7607 0.7597 0.7597 0.7607
Qwen 2 7B 0.6782 0.6049 0.5031 0.5061
OLMo 7B 0.6640 0.6650 0.6629 0.6640

Table 8: FACTOR bucket search (small models), using α = 0.1. Continue reading in §3.2.

Model 0-25% 25-50% 50-75% 75-100%
Llama 2 70B 0.8214 0.8195 0.7635 0.7124
Llama 3 70B 0.8552 0.8562 0.8571 0.8514
Qwen 2 72B 0.8079 0.8012 0.7056 0.6187

Table 9: FACTOR bucket search (large models), using α = 0.1. Continue reading in §3.2.
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Model Baseline 0.0 0.1 0.25 0.5 0.75 0.9 Bucket used
Llama 7B 0.5845 0.5876 0.6253 0.6059 0.5784 0.5815 0.5550 0-50%
Llama 2 7B 0.7220 0.7200 0.7281 0.7138 0.6772 0.6568 0.6568 0-100%
Llama 3 8B 0.7556 0.7587 0.7546 0.7230 0.7037 0.7006 0.6701 0-50%
Pythia 6.9B 0.5125 0.2828 0.4643 0.4797 0.4788 0.4537 0.4614 0-50%
Mistralv0.1 7B 0.7576 0.7617 0.7607 0.7301 0.6792 0.6833 0.6701 0-100%
Qwen 2 7B 0.6925 0.6843 0.6782 0.6680 0.6619 0.6191 0.6171 0-50%
OLMo 7B 0.6660 0.6619 0.6650 0.6415 0.6436 0.6242 0.6375 25-75%
Llama 2 70B 0.8320 0.8176 0.8214 0.7983 0.7905 0.7664 0.7317 0-25%
Llama 3 70B 0.8475 0.8494 0.8571 0.8127 0.7751 0.7847 0.7558 50-75%
Qwen 2 72B 0.8224 0.8243 0.8079 0.7770 0.7375 0.7355 0.7259 0-25%

Table 10: FACTOR α search using buckets from Table 8 and Table 9. Continue reading in §3.2.

19874



0 8 16 24 32
0.0

0.2

0.4

0.6

0.8

1.0
Pythia 6.9B

MHA

MLP

Top

0 8 16 24 32

Llama-3.1 8B

0 8 16 24 32
0.0

0.2

0.4

0.6

0.8

1.0
Llama 7B

0 8 16 24 32

Mistral-v0.1 7B

0 8 16 24 32
0.0

0.2

0.4

0.6

0.8

1.0
Llama-2 7B

0 8 16 24

Qwen-2 7B

0 8 162432404856647280
0.0

0.2

0.4

0.6

0.8

1.0
Llama-2 70B

0 8 162432404856647280

Qwen-2 72B

0 8 16 24 32
0.0

0.2

0.4

0.6

0.8

1.0
Llama-3 8B

0 8 16 24 32

OLMo 7B

Layer

T
ok

en
P

ro
b

ab
ili

ty
an

d
A

p
at

hy

Apathy and Token Probabilities on TruthfulQA

Figure 8: The residual stream starts to ignore MHA and MLP which seems to have some effect on when the top
token starts to increase. Each model has its own dynamics, which may help to explain failures using tools which
assume that a particular pattern in predicted. Continue reading in Appendix A.2.

19875



0 5 10 15 20 25

Layer

0.0

4.0

8.0

12.0

16.0

H
ea

d
In

d
ex

antonym

0 5 10 15 20 25

Layer

english-french

0 5 10 15 20 25

Layer

english-german

0 5 10 15 20 25

Layer

english-spanish

0 5 10 15 20 25

Layer

french-english

0 5 10 15 20 25

Layer

german-english

0 6 12 18 24

Layer

spanish-english

0.000

0.025

0.050

0.075

0.100

Casual Indirect Effect — gptj-6b
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which modulate each task reflect the variability we observe in our experimental results. Continue reading in
Appendix B.2.
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Figure 13: Best number of heads An considering all
other hyperparameters for function vectors. Data is
masked for models with zero-shot, function vector
patched accuracy of at least 10% on the task. Continue
reading in §4.2.
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patched accuracy of at least 10% on the task. Continue
reading in §4.2.
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Figure 15: Best layer ℓ considering all other hyperpa-
rameters for function vectors expressed as a percent of
all layers. Data is masked for models with zero-shot,
function vector patched accuracy of at least 10% on the
task. Continue reading in §4.2.
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§4.2.
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Figure 17: Full parameter search for GPT-J 6B on the country-capital task. Continue reading in §4.2.
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Figure 18: GPT-J 6B accuracy with task vector patched into layer ℓ in a zero-shot prompt. Consistent with Hendel
et al. (2023), this model has decent performance recovery across all tasks. Continue reading in Appendix B.4.
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Figure 19: Qwen2 7B ICL accuracy with task vector patched into layer ℓ in a zero-shot prompt. Unlike GPT-J, this
model fails to recover performance across many of its tasks. Continue reading in Appendix B.4.
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