
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 19808–19855
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

DARS: Dynamic Action Re-Sampling to Enhance Coding Agent
Performance by Adaptive Tree Traversal

Vaibhav Aggarwal*

MPI for Intelligent Systems
vaibhav_a@ee.iitr.ac.in

Ojasv Kamal*

MPI for Intelligent Systems
kamalojasv2000@gmail.com

Abhinav Japesh
Sprinklr

akjapesh@gmail.com

Zhijing Jin†

MPI-IS & University of Toronto
zjin@cs.toronto.edu

Bernhard Schölkopf†
MPI for Intelligent Systems

bs@tue.mpg.de

Abstract
Large Language Models (LLMs) have revo-
lutionized various domains, including natural
language processing, data analysis, and soft-
ware development, by enabling automation. In
software engineering, LLM-powered coding
agents have garnered significant attention due
to their potential to automate complex develop-
ment tasks, assist in debugging, and enhance
productivity. However, existing approaches of-
ten struggle with sub-optimal decision-making,
requiring either extensive manual intervention
or inefficient compute scaling strategies. To
improve coding agent performance, we present
Dynamic Action Re-Sampling (DARS), a novel
inference time compute scaling approach for
coding agents, that is faster and more effective
at recovering from sub-optimal decisions com-
pared to baselines. While traditional agents ei-
ther follow linear trajectories or rely on random
sampling for scaling compute, our approach
DARS works by branching out a trajectory at
certain key decision points by taking an alter-
native action given the history of the trajectory
and execution feedback of the previous attempt
from that point. We evaluate our approach on
SWE-Bench Lite benchmark, demonstrating
that this scaling strategy achieves a pass@k
score of 55% with Claude 3.5 Sonnet V2. Our
framework achieves a pass@1 rate of 47%,
outperforming state-of-the-art (SOTA) open-
source frameworks.1

1 Introduction

Software engineering (SWE) has become increas-
ingly critical in modern technology development,
with developers spending countless hours writ-
ing, reviewing, and maintaining code, creating
an urgent need for automation to improve pro-
ductivity (Wang et al., 2024d). Large language

* Co-first author. †Co-supervision.
1Our codes are at https://github.com/darsagent/

DARS-Agent, datasets and models at https://huggingface.
co/AGENTDARS, and a demo of our trajectory analysis tool at
https://darsagent.github.io/DARS-Agent/

models (LLMs) have emerged as promising tools
for automating various software engineering tasks,
with breakthrough works like SWE-bench (Jimenez
et al., 2023) establishing evaluation frameworks
and datasets, leading to widespread adoption of
tools such as Yang et al. (2024b); Wang et al.
(2024c).

There are three primary approaches to develop-
ing SWE agents based on LLMs. The first follows
a sequential ReAct (Yao et al., 2022) loop, where
agents such as SWE-Agent (Yang et al., 2024b)
and OpenDevin (Wang et al., 2024c) interact with
development tools and incorporate execution feed-
back to refine their predictions. The second ap-
proach generates multiple candidate solutions us-
ing temperature-based sampling and then selects
the best one through ranking (Arora et al., 2024)
or majority voting (Xia et al., 2024). The third ap-
proach, exemplified by SWE-Search (Antoniades
et al., 2024), leverages Monte Carlo Tree Search
(MCTS) (Kocsis and Szepesvári, 2006) to system-
atically explore the solution space.

However, each method has limitations: (1) Se-
quential agents struggle to recover from suboptimal
decisions due to context length constraints (Kura-
tov et al., 2024; Li et al., 2024). (2) Multi-solution
approaches lack efficient mechanisms for knowl-
edge sharing between independently generated so-
lutions. (3) Tree search methods, such as SWE-
Search (Antoniades et al., 2024), rely on scalar
value functions and suffer from slow execution
speeds, making them less effective for long-horizon
planning.

To address these challenges, we propose Dy-
namic Action Re-Sampling (DARS), which en-
hances coding agents by dynamically re-sampling
actions based on prior execution results. Instead
of generating multiple independent trajectories,
DARS selectively branches at key decision points,
using a depth-first strategy to fully explore a tra-
jectory before branching. This offers two advan-

19808

mailto:vaibhav_a@ee.iitr.ac.in
mailto:kamalojasv2000@gmail.com
mailto:akjapesh@gmail.com
mailto:zjin@cs.toronto.edu
mailto:bs@tue.mpg.de
https://github.com/darsagent/DARS-Agent
https://github.com/darsagent/DARS-Agent
https://huggingface.co/AGENTDARS
https://huggingface.co/AGENTDARS
https://darsagent.github.io/DARS-Agent/

tages: a) Long Horizon Feedback: Our experi-
ments show improved pass@1 rates (see Table 4)
by providing complete trajectory feedback before
branching. b) Efficiency: Depth-first search re-
duces memory overhead by reusing the current en-
vironment state without simulating future states.
Finally, we introduce a trajectory selection pipeline
leveraging proprietary and preference-optimized
models to identify the most promising solution
(Kim et al., 2024).

Across the experiments, our DARS method
achieves up to 47% pass@1 rate, which is open-
source SOTA performance on the SWE-Bench Lite
benchmark (Jimenez et al., 2023).

In conclusion, the main contributions of our ap-
proach are as follows:

1. We introduce DARS, an inference-time com-
pute scaling method for coding agents that
rapidly recovers from suboptimal decisions,
achieving an open source SOTA pass@1 rate
of 47% on the SWE-Bench Lite benchmark.

2. We propose a patch preference data generation
and supervised fine-tuning pipeline to select
the most promising solution among multiple
attempts.

3. We release our complete codebase, a 500M-
token execution feedback critique dataset,
model checkpoints (7B, 14B, and 32B), and
a trajectory analysis tool to support future re-
search.

2 Related Work
LLM Agents for Software Engineering. Large
Language Model (LLM) agents have been increas-
ingly employed to automate software engineering
tasks such as bug fixing and code generation. These
agents integrate tools for code editing, search, nav-
igation, and execution (Yang et al., 2024b). En-
hancements in this domain include diff-based edit-
ing (Aider, 2024), execution with Jupyter and web
search capabilities (Wang et al., 2024c), and opti-
mized repository search (Aider, 2024; Zhang et al.,
2024c; Ouyang et al., 2024; Orwall, 2024). Some
approaches further modularize functionalities to
improve efficiency (Xia et al., 2024; Arora et al.,
2024).

Recent studies have explored generating multi-
ple solutions to enhance accuracy. For instance,
Brown et al. (2024) demonstrated that sampling
250 solutions can increase accuracy by 250%.
However, methods like those proposed by Xia et al.
(2024) and Arora et al. (2024) rely on inefficient

random sampling. To address this, Antoniades et al.
(2024) introduced an approach that improves effi-
ciency through Monte Carlo Tree Search (MCTS)
(Kocsis and Szepesvári, 2006; Coulom, 2007), bal-
ancing computational resources with scalar rewards
and textual feedback. Despite these advancements,
their reliance on retrospective feedback limits early
guidance, and frequent environment resets can slow
execution.

DARS improves efficiency by branching only at
critical decisions and providing long-horizon feed-
back, reducing resets and accelerating execution.

We discuss about Inference Time Compute Scal-
ing and LLM as Code Reviewers in Appendix A.1

3 DARS Method
The main motivation behind DARS is to enhance
the agent’s ability to recover and learn from sub-
optimal decisions by taking alternative actions
while minimizing redundancy. However, errors
also scale with scaling trajectories, therefore, we
optimize our backbone SWE-Agent first by im-
proving its editing capabilities and adding various
actions to it. We then identify the most promising
action types by optimizing the trade-off between
increase in resolve rate and increase in cost due to
branching the trajectory at that point. We define
this process of branching the tree as expansion. We
finally select the most promising trajectory from
all the attempts. We go over the details of each of
these steps in the following sections.

3.1 Improving the Base SWE Agent

3.1.1 Editing Capabilities
We build on the SWE-Agent (Yang et al., 2024b)
which uses a ReAct loop to iteratively generate a
thought and an action and receive feedback from
the sandbox environment. By default, the agent
uses a whole style of editing where it needs to gen-
erate the start and end line numbers of the edit
followed by the content of edit. This type of edit
often results in numerous syntax and semantic er-
rors (see Section A.3), as the agent fails to account
for both the targeted and adjacent code, leading to
issues such as indentation errors. We enhance the
editing process using Aider (Aider, 2024), a diff-
based tool. In this approach, the agent generates
both the content to be replaced and its replacement.
Additionally, to facilitate content addition without
replacement, Aider introduces two new actions:
append and insert.
Append adds content at the end of a file, while

19809

Patch 1 Patch 2 Patch N

Score Rubrics
Regression Risk

Score 0High Risk

Score 1Moderate Risk

Score 2Low Risk

Bug Fixing
Score 0Incorrect

Score 1Partial Correct

Score 2Correct

Patch 1

Patch 2

Patch N

<regression risk analysis> Score: 2

<bug fixing analysis> Score: 1

<regression risk analysis> Score: 1

<bug fixing analysis> Score: 2

<regression risk analysis> Score: 2

<bug fixing analysis> Score: 2

Reviewer LLM

Patches 1 and 2 partially address the issue
but might miss some cases. Patch 3
comprehensively handles the pickling by
ensuring that all relevant classes
(DraggableBase, DraggableOffsetBox,
DraggableLegend) properly manage their
state, excluding non-pickable attributes and
reconnecting to the canvas when needed.
Therefore, Patch 3 is the best solution.

Conclusion

Best Patch Number: 3

Analysis

Evaluation

Patch +25 -13

Expansion

Generator LLM

Parent
Trajectory

Sibling
Action

Trajectory
Feedback

Temperature Sampling

Action
Candidate 1

Action
Candidate 3

Action
Candidate 2

Selector LLM

Selection Criteria
It should be different than
sibling action.
It should replace the previous
action, not be implemented
after it.
It should be more effective than
the previous action.

Sibling
Action

Action
Candidates

Best Action

Patch +20 -18

Patch +18 -22

Patch +25 -13

Bug Fixing
Edit

Execute

Validate

No

Issue Description

Input

Code Repository

Command Docs

Localization
Search Repo

Search File

Localize to Classes &
Functions

Localize to Edit
Locations

Reproduction

Test Script

Execute

Feedback

No

Reproduce

Update

Reproduction

Test Script

Execute

Feedback

No

Reproduce

Update

Localization
Search Repo

Search File

Localize to Classes &
Functions

Localize to Edit
Locations

Bug Fixing
Edit

Execute

Validate

No

Feedback

Generate

Figure 1: Overview of our DARS scaling method. DARS processes issue-related information and generates multiple
patches using the Expansion mechanism. These patches are then evaluated by our Reviewer LLM, which assigns
scores based on predefined Score Rubrics, ultimately selecting the best patch for output.

Insert requires a line number and the content to
be inserted at that specific location. This approach
compels the model to better consider the existing
code. Moreover, we enhance the editing process
by having the agent output both the to_replace
and replace_with contents, each followed by a $
character to properly escape special characters (e.g.,
newlines, quotes) as described in Section A.14.1.
3.1.2 New Actions
In addition to editing, we introduce several new
actions to enhance each of the three stages of our
bug-fixing process. We add the following actions
to the agent:
Execute Server. The sandbox environment limits
the execution of iterative or long-running scripts.
To address this, we add the execute server action
with persistent memory. Instead of retrieving code
output directly, the agent uses get_logs to access
execution logs. This action is especially effective
during the reproduction stage for efficiently repli-
cating bugs (see Section A.14.1).
Execute IPython. This action enables the agent
to run Python code within an IPython environment,
streamlining bug reproduction by eliminating the

need to create, write, and execute a separate file.
Search Repo. Search repo command uses a
cached RepoGraph (Ouyang et al., 2024)—a hier-
archical structure where nodes represent code defi-
nitions and edges represent dependencies between
them. By utilizing sub-graph retrieval algorithms,
RepoGraph extracts ego-graphs (Hu et al., 2024)
centered around specific keywords. This action al-
lows the agent to search for a specific keyword in
the repo and get all the files with corresponding line
numbers where the keyword is present, to aid in
precise bug localization. Undo Edit. Often times,
the agent makes a mistake in the edit and needs
to undo it. However, due to inherent limitations
of editing abilities of the agent, the agent some-
times outputs syntactically incorrect code which
degrades its reasoning (Kuratov et al., 2024) capa-
bilities and takes up its computational budget. This
action allows the agent to directly undo the last edit
efficiently (Anthropic, 2024b)

3.2 DARS Scaling

DARS begins by completing a trajectory in a depth-
first manner while storing key decision nodes in a

19810

Action Coverage Avg Iter
Search Dir 14.3 38
Insert 14.7 39
Search File 15.3 44
Open 14.3 49
Goto 15.3 47
Find File 16.7 58
Append 22.3 88
Edit 31.3 272

Table 1: Compute-coverage trade-off of expanding in
various actions. Here Avg Iter pertains to average
number of iterations across issues which indicates the
amount of compute spent in that issue.

priority queue, sorted in ascending order by node
depth. Once the current trajectory reaches a ter-
minal state—either by a submit command (see
A.14.1) or upon reaching a predefined maximum
depth—these nodes are expanded. During expan-
sion, we sample k alternative actions and select the
best one. We define key decision points as those
actions that significantly enhance the resolve rate
at minimal cost. As shown in Table 1, expanding
the trajectory at edit actions is particularly effec-
tive. This approach allows the agent to learn from
previous mistakes and recover from suboptimal
decisions, which is crucial for long-horizon tasks
like programming. Finally, if no branch submits
code before reaching the maximum depth, the code
is auto-submitted. Issues that fail to execute the
expected trajectory due to runtime errors or other
anomalies within the SWE-Agent environment are
re-run.

3.2.1 Branching Strategy
The main improvement in DARS lies in the avoid-
ance of branching out trajectory at all actions,
which costs exponential compute and its redun-
dancy leads to a low accuracy for the trajectory
selection pipeline. We use a causal analysis in Ta-
ble 1 to identify four key actions with the largest
causal impact on the model performance: edit, ap-
pend, create, and submit and further perform quali-
tative analysis in Appendix A.12 to understand the
reasons behind the results.
Create. Reproduction scripts are essential for
debugging. Insufficient details can hinder their
effectiveness and lead to incorrect fixes. By first lo-
calizing and analyzing the relevant code, the model
improves bug resolution.

A key issue is that models often fail to refine
reproduction scripts during bug fixing. While some
cases improve, others show overconfidence, with

flawed scripts being repeated. Prioritizing localiza-
tion is crucial for accurate reproduction.

The create action differs from append in repro-
duction scripts. Though both evaluate and fix bugs,
append actions generally produce better scripts.
Models are often biased by previous actions, mak-
ing only minor script changes instead of explor-
ing new paths. Early sampling of solutions during
create allows better exploration (see ref 10).

Should issue localization always precede repro-
duction? Not always. Early localization can bypass
reproduction, leading to weaker solutions or mis-
interpretations of the bug, as shown in Figure 11.
Reproducing the bug first enables a clearer under-
standing and more accurate fixes.
Append. The append action improves reproduc-
tion scripts by refining previous attempts, ensuring
tests sufficiently verify code edits (see 13)

Runtime errors arise when the model lacks code-
base or environment knowledge, hindering issue
reproduction and exhausting its reasoning context.
Expansion in append actions mitigates this by ac-
celerating the reproduction phase, reducing turns
needed for localization. This allows more iterations
for editing and testing, improving bug resolution.
The benefit occurs in two ways: direct bug identifi-
cation during expansion or improved reproduction
scripts enabling better localization. (see 14)
Edit. The agent sometimes generates semantically
incorrect code, leading to an edit-Python loop. As
context length grows, its reasoning weakens, trap-
ping it in an unproductive cycle without a clear exit
(see 15)

The agent frequently produces code with basic
syntax errors, such as mismatched parentheses or
incorrect indentation, leading to a cycle of repet-
itive fixes. Due to reasoning flaws, it often gets
stuck applying the same ineffective edits—such as
repeatedly adding a closing bracket—even when
the fix has already failed (see 16).
Submit. While the model can fix bugs, it some-
times introduces regressions. To prevent this, it
should verify changes by running tests and refining
edits based on results. Expansion in this action
prompts the model to reassess its fixes and correct
issues before submission. For example, in the fol-
lowing case, the model fixes a bug but introduces a
regression. By reevaluating its changes, it catches
and resolves the issue (see 12).

We further cut down the redundancy by consider-
ing second-degree expansions. The above actions
namely create, append, edit, and submit usually

19811

occur in the same order. The higher the action in
the tree, the higher the impact of expanding the tree
at that action. Therefore, if a branch is expanded
at create, we only expand the tree at append, edit,
and submit the next time. Similarly, a branch ex-
panded at edit is only expanded at submit the next
time. We follow this rule with an exception in the
case of append, since empirically it has found that
this has led to a high resolve rate for the extra cost
incurred. Finally, for each branch, we put a cap on
the number of expansions of each type to prevent
the tree from growing exponentially.
3.2.2 Expansion Strategy
We use a depth-first strategy to explore the cur-
rent trajectory before branching out, which has
two main advantages: Speed and Long-Horizon
Feedback. After reaching a terminal condition, we
continue from the node with the lowest depth in
the priority queue. In Figure 8, we find that low-
est depth-first is the most effective strategy, as the
flexibility to explore decreases with node depth.

3.3 Best Trajectory Selection

After the agent has generated multiple trajectories,
we select the most promising trajectory from all the
attempts in two stages namely trajectory pruning
and trajectory selection. We begin by cleaning the
patches submitted by each trajectory by removing
any bug reproduction files from it. We then prune
any redundant trajectories which lead to the same
cleaned patch. In the second stage, we use off-
the-shelf open and close source models as well as
our custom supervised-fine-tuned models to choose
the best trajectory based on custom rubrics namely
reproduction, fix, and potential to introduce new
bugs motivated by (Kim et al., 2024).
Patch Preparation. We begin with cleaning the
patches by removing everything except the bug fix
part. This includes removing the bug reproduction
script, readme / documentation changes, pycache
files etc. We then generate critiques for each patch
based on the three rubrics namely reproduction, fix,
and potential to introduce new bugs. To ground the
predictions of the model, we use the execution out-
put obtained from running the tests after applying
the patch.
Patch Sampling. For a given issue, based on
the distribution of number of patches generated by
DARS for that issue, we sample all combinations
of patches from 2 to 6 patches. We further do a
fine-grained sampling of negative patches by di-
viding all the negative patches in buckets based on

the combinations of tests that fail after applying
the patch, to get a balanced dataset. For positive
patches, we sample from the set of all the positive
patches if there are any. For cases where there are
no positive patches, we just use the ground truth
patch.

4 Experimental Setup

Framework Base Model Pass@1
SWE-Agent GPT-4o 18.3
Moatless Tools GPT-4o 24.7
Aider GPT-4o & Claude 3 Opus 26.3
MASAI GPT-4o 27.3
Agentless-1.5 GPT-4o 27.3
SWE-Search GPT-4o 31.0
DARS (Ours) GPT-4o + Deepseek R1 37.0
SWE-Agent Claude 3.5 Sonnet V2 23.0
Moatless Tools Claude 3.5 Sonnet V2 38.3
Moatless Tools Claude 3.5 V2 38.3
Agentless-1.5 Claude-3.5 V2 40.7
Kodu-v1 Claude-3.5 Sonnet V2 44.7
OpenHands Claude 3.5 Sonnet V2 41.7
DARS (Ours) Claude 3.5 Sonnet + Deepseek R1 47.0

Table 2: Comparative analysis of various software en-
gineering agents’ performance on SWE-Bench Lite
dataset. We present results only for the language models
that were used by the respective authors, as evaluating
every possible combination of models and frameworks
is highly resource-intensive.

4.1 DARS Scaling

Dataset. We use the SWE-Bench Lite benchmark,
a widely used subset of the SWE-Bench dataset
(Jimenez et al., 2023). It comprises 300 GitHub
issues from 12 real-world software projects, each
containing an issue report and the corresponding
codebase.

7B 14B 32B

Vanilla FT Vanilla FT Vanilla FT R1
GPT-4o 33.0 33.3 35.7 37.0 36.0 36.7 37.0
Gemini-1.5-pro 26.3 26.3 27.0 27.7 29.7 29.0 33.0
Gemini-2.0-flash 26.7 27.0 26.3 27.7 28.0 28.7 28.3
Claude 3.5 Sonnet 35.7 38.7 39.7 41.7 41.3 42.0 47.0

Table 3: Performance Comparison across 7B, 14B, and
32B parameter DeepSeek R1 Distill Qwen reviewer
models

Evaluation Metrics. We evaluate model per-
formance using multiple metrics. Resolve Rate
(Pass@1) measures the fraction of instances fixed
on the first attempt, while Pass@k represents the
expected success rate within k attempts. To as-
sess efficiency, we track the Average Cost per
Instance (in dollars) and the Cost Scaling Factor,

19812

which compares scaled resource costs to the base
agent. Lastly, we record the Number of Attempts
required for a successful fix.

Method Overall Pass@1 Precision
5 look aheads 5 2 0.54
10 look aheads 8 5 0.68
Path Summary 9 5 0.54
Only Sibling Action 8 5 0.72
Complete 10 9 0.51

Table 4: Variation of performance with horizon of con-
text during expansion.

Baselines. We test our approach against various
SWE agents including SWE-Agent (Yang et al.,
2024b), Moatless Tools (Orwall, 2024), and Open-
Hands (Wang et al., 2024c), MASAI (Arora et al.,
2024), Large Language Monkeys (Brown et al.,
2024), Agentless (Xia et al., 2024), and SWE-
Search (Antoniades et al., 2024). In terms of LLMs,
we test our approach with various models includ-
ing GPT-4o (OpenAI, 2025), Claude 3.5 Sonnet V2
(Anthropic, 2024a), Gemini 2.0 Flash, and Gemini
1.5 Pro (Team et al., 2023).
Hyperparameters. The DARS algorithm relies
on several key hyperparameters. Num Expansions
is set to 2, defining the number of expansions per
decision point, while Expansion Temperature (0.8)
controls the sampling temperature for alternative
actions. The algorithm runs for 300 iterations (Num
Iterations), with a maximum branch depth of 50
(Max Branch Depth). Action limits are defined by
Expansion Limit Edit, Append, Submit, and Create,
each set to 1 which caps the number of times those
actions can be expanded within a branch. Num Ex-
pansion Sampling (3) specifies the number of sam-
pled actions per expansion, and Num Lookahead
(50) determines how many steps from previous tra-
jectory are considered during tree expansion.

4.2 Model Training
Dataset. We use Nebius’s trajectory dataset
(Badertdinov et al., 2024), comprising 80K trajec-
tories from 3K unique issues across 1,077 open-
source software repositories. These issues are en-
tirely disjoint from SWE-Bench Lite. After clean-
ing and filtering redundant patches, we obtain 42K
unique patches (7.3K positive, 34.7K negative),
with 837 unique issues correctly solved. Using
GPT-4o (OpenAI, 2025), we generate critiques for
all patches, leading to 150K training examples con-
taining approximately 500M tokens.
Model Setup. We fine-tune open-weight LLMs

on the generated dataset. The model architecture
follows Qwen 2.0 (Yang et al., 2024a), a Mixture-
of-Experts (MoE) model utilizing Rotary Positional
Embeddings (Su et al., 2024), SwiGLU (Dauphin
et al., 2017) activation, QKV bias (Su, 2023) for
attention, and RMSNorm (Jiang et al., 2024) nor-
malization.
Training Setup. We use Deepseek’s Distilled
Qwen-2.5 (et al., 2025) checkpoint as the base
model for 7B, 14B, and 32B parameter variants,
fine-tuning them with 8 H100 GPUs. Training is
distributed via DeepSpeed (Aminabadi et al., 2022),
with LoRA (Hu et al., 2021) adapters for memory
efficiency and FlashAttention 2 (Dao, 2023) for
acceleration.

We conduct a learning rate sweep over 1e-6, 5e-
6, and 1e-5, selecting optimal values for the 32B,
14B, and 7B models, respectively. The batch size
is set to 48 for 7B/14B models and 32 for 32B.
Training runs for 1 epoch over the dataset with a
max sequence length of 14K tokens, a warmup of
100 steps, and weight decay of 0.0.

LoRA Configuration: We use rank r = 8, alpha
= 32, and a dropout rate of 0.1.

Optimization: We apply AdamW (Loshchilov
and Hutter, 2019) with a cosine learning rate sched-
uler, BF16 mixed precision, and ZeRO stage 3.
Reviewer Model Inference. We infer all
pre-trained and fine-tuned reviewer models using
vLLM (Kwon et al., 2023). A temperature sweep
over 0, 0.5, and 0.6 is performed, as recommended
by Deepseek authors. We set a top-p of 0.95.

5 Experiments

In this section, we first demonstrate the perfor-
mance of our DARS model against various base-
lines, and then explore two key research questions
(RQs) to analyze various aspects of its optimality.

5.1 Overall Performance
In this section, we compare the performance of
our approach against various baselines and mod-
els. We summarize the results in Table 2. We
find that our approach achieves a pass@1 rate of
47.0% with Claude 3.5 V2 Sonnet and Deepseek
R1 as Reviewer which is the open-source SOTA
performance on the SWE-Bench Lite benchmark at
the time of this submission.2 We further compare
various vanilla and fine-tuned models reviewer in

2Deepseek R1 family of models often fail to generate the
solution in the desired format, therefore, we use GPT-4o to
parse the outputs in such cases.

19813

Framework Model Cost Scaling Factor # Attempts Single Rollout Coverage ∆ Precision
Agentless GPT-4o – 40 – 42 – –
MASAI GPT-4o – 5 23 35 34.28 –
Large Language Monkeys DeepSeek-Coder 250 250 15.9 56 71 14
SWE-Search GPT-4o 14.00 5.00 25.70 34.00 24.41 20.00
DARS (Ours) GPT-4o 7.60 5 21.67 43.34 50.00 75.00

Table 5: Compute Scaling Efficiency comparison across various frameworks and metrics. Here Single Rollout
represents the performance of the agent when a single trajectory is generated.

SWE-Agent Improved SWE-Agent DARS

Model Resolve Rate (%) Cost ($) Resolve Rate (%) Cost ($) Score Cost ($)

Gemini 1.5 pro 14.33 0.56 18.67 0.58 33.00 9.85
Gemini 2.0 flash 16.33 0.05 15.67 0.06 28.33 0.70
GPT-4o 18.33 0.89 21.67 0.80 37.0 7.92
Deepseek V3 - - 30.67 0.06 - -
Claude 3.5 Sonnet V2 - - 32.67 1.61 47 12.24

Table 6: Comparison of effectiveness and efficiency of SWE-Agent, Improved SWE-Agent, and DARS

Table 3. We see an average increase of 2.6% across
fine-tuned models with maximum increase of 4.15
% in case of the 14B model. However, 40% of
examples have perfect precision (all the patches are
correct), which diminishes the gain in performance
due to fine-tuning. We compare the accuracy of all
the reviewers for trajectories generated by various
models after removing such examples in Table 7

5.2 RQ1: How efficient is the compute scaling
of DARS?

The goal of this research question is to evaluate
the efficiency of DARS in terms of compute scal-
ing and its impact on solution quality. Specifi-
cally, we report the cost-vs-reward trade-off by an-
alyzing key efficiency metrics such as cost scaling
factor, accuracy per attempt, number of attempts,
coverage, and precision. Our findings indicate
that DARS achieves the most optimal cost scal-
ing while maintaining high coverage and precision,
outperforming baselines in redundancy reduction.
Notably, while Large Language Monkeys achieve
the highest coverage, this comes at an impracti-
cal compute cost, making DARS the more feasible
approach.
Methodology. We compare the performance vs.
cost trade-off of DARS against various baselines
that scale compute at inference time. The evalua-
tion is conducted through five key efficiency met-
rics: (a) cost scaling factor, (b) accuracy per at-
tempt, (c) number of attempts, (d) coverage of the
solution set, and (e) precision of the solution set.
Results. Table 5 summarizes our findings. While

DARS ranks second to Large Language Monkeys
in terms of coverage improvement per attempt, the
latter achieves this by scaling compute by a factor
of 250, which is infeasible in real-world scenarios.
Additionally, DARS exhibits significantly higher
precision, enhancing the effectiveness of the tra-
jectory selection pipeline. We also observe that
hindsight feedback is less effective, as completely
random sampling methods like MASAI outperform
search-based approaches like SWE-Search in cov-
erage improvement.

5.3 RQ2: How important is long-horizon
planning?

The goal of this research question is to assess the
impact of long-horizon planning on the perfor-
mance of DARS in coding tasks. Specifically, we
report how varying the lookahead value affects the
agent’s ability to generate effective patches. Our
findings show that increasing the lookahead value
improves solution coverage, with the complete tra-
jectory approach achieving the highest success rate.
However, certain lookahead strategies, such as sib-
ling action expansion, exhibit high precision while
suffering from limited adaptability.
Methodology. We investigate the importance of
long-horizon planning by varying the lookahead
value, which determines how many steps from the
previous trajectory are considered during tree ex-
pansion. We evaluate five configurations: (a) 0-
lookahead (random sampling), (b) 5-lookahead, (c)
10-lookahead, (d) complete trajectory, and (e) sum-
marized trajectory. Additionally, we test the sibling

19814

Reviewers GPT-
4o

Gemini
1.5 Pro

Gemini
2.0 Flash

Claude
3.5 Sonnet

Closed Source
GPT-4o 62.12 48.19 50.00 51.02
Open Source
R1 71.64 78.31 64.06 74.49
R1-Distill-7B 53.73 54.22 56.25 41.84
R1-Distill-14B 65.67 56.63 54.69 54.08
R1-Distill-32B 67.16 66.27 62.50 59.18
Fine-tuned
R1-Distill-7B 55.22 54.22 57.81 51.02
R1-Distill-14B 71.64 59.04 60.94 60.20
R1-Distill-32B 70.15 63.86 65.62 61.22

Table 7: This table presents the classification accuracy
of various reviewer models for trajectories generated by
different models. To depict the true potential of reviewer
models, we remove the cases, where all the patches for
generated for a given issue resolve the issue.

action expansion, where only sibling actions are
provided without any lookahead. The experiment
is conducted on 20 randomly selected issues.

Results. Table 4 summarizes our findings. We
observe a strong correlation between lookahead
depth and solution coverage. The complete tra-
jectory approach achieves the highest success rate,
resolving 10 out of 20 issues (50%), while the sum-
marized variant reaches a 45% success rate (9/20).
This highlights the importance of maintaining full
trajectory context for effective problem-solving.

Although the sibling action approach yields high
precision, this result is skewed by a small subset
of cases where it performed exceptionally well. In
contrast, the complete trajectory method, despite
lower precision, demonstrates superior Pass@1 ac-
curacy—aligning with DARS’s objective of gener-
ating diverse and effective patches.

The single lookahead approach resolves two
fewer issues than the complete trajectory method,
primarily due to trajectory depth limitations. This
issue arises in cases where the agent falls into bug-
fixing and reproduction loops (edit-python loops),
repeatedly encountering the same obstacles without
historical context.

The 5-lookahead configuration performs the
worst, as the restricted context provides only phase-
specific errors (e.g., reproduction phase errors in
append expansions, bug-fixing errors in edit expan-
sions) without access to prior trajectory outcomes.
This lack of context hinders the model’s reasoning
and decision-making capabilities.

Original Filtered
Model Cov #Att Prec #Att Prec

GPT-4o 43.33 8.00 0.70 4.00 0.71
Gemini 1.5

Pro 39.00 8.21 0.62 6.23 0.61

Gemini 2.0
Flash 36.00 6.34 0.64 3.77 0.61

Claude 3.5
Sonnet 55 10.07 0.71 6.62 0.72

Table 8: This table presents the initial coverage, Number
of Attempts (#Att), and Precision (Prec) before (Origi-
nal) and after patch filtering (Filtered) stage.

6 Ablation Studies

6.1 Improved SWE-Agent

We evaluate our enhanced SWE-Agent, featur-
ing advanced editing capabilities and new actions,
against the base model on the SWE-Bench Lite
benchmark. As shown in Table 6, the improved
SWE-Agent achieves an average 14.7% higher re-
solve rate across all models while maintaining a
similar cost per instance.

1 3 5
k

25

30

35

40

45

50

55

Pa
ss

@
k

Pass@k vs k

Model

GPT-4o
Gemini-1.5-Pro
Gemini-2.0-Flash
Claude-Sonnet-3.5-V2

Figure 2: This figure presents coverage variation vs k.
Here ∞ corresponds to submission of all the patches
generated for an issue.

6.2 DARS Stage Analysis

This section presents deep insights into individual
stages of DARS and their performance. There are
two key stages in DARS: multi trajectory gener-
ation, best trajectory selection which further has
two stages namely trajectory pruning and trajectory
selection for various models and summarize the
results in Table 8. We first analyze the recall and
precision for multi trajectory generation to under-
stand the effect of compute scaling on performance
and redundancy for each model. We then analyze
the capabilities of various models in final trajec-
tory selection tested on the trajectories generated
by Claude 3.5 Sonnet in Table 7.

19815

6.3 Pass@k vs k

In previous sections, we analyzed pass@k where k
is a variable. Here, we study variation of pass@k
for different fixed values of k. We prompt the re-
viewer model (GPT-4o in this case) for the top k
patches and compute the pass@k for k = 1, 3, 5;
see Figure 2.. We find that the pass@k increases
with k until k = 5, where it saturates.

7 Conclusion

We introduced DARS, a novel method that re-
samples actions at key decision points to recover
from suboptimal choices more effectively than
linear or random sampling. On the SWE-Bench
Lite benchmark, DARS achieves a state-of-the-art
pass@1 rate of 47% with Claude 3.5 Sonnet V2.
We release our code, datasets, and models to sup-
port further research.

Limitations

We currently allocate compute using a static
method with fixed depth and no early stopping,
which limits our efficiency. A reward model (simi-
lar to MCTS) could evaluate and prioritize promis-
ing paths, enabling smarter exploration and early
stopping decisions. While BFS might seem intu-
itive, its inefficiency with limited lookaheads and
path history makes it impractical. We propose to
implement absolute path scoring to guide explo-
ration depth and stopping decisions, while main-
taining an upper depth limit.

Ethical Considerations

The use of Large Language Models (LLMs) in
software engineering carries security and ethical
risks. To mitigate these, DARS executes all LM-
generated code in isolated, ephemeral environ-
ments to prevent unintended system modifications.
We employ a structured verification pipeline to re-
duce biased or unsafe outputs and ensure adher-
ence to best coding practices. While AI-driven au-
tomation can be misused, we release our work un-
der responsible AI guidelines and encourage safe-
guards against malicious applications. Our code,
datasets, and models are open-source to promote
transparency and responsible AI research.

Acknowledgment

We thank Gopal Dev and Apoorva Vashisth for
reviewing parts of the paper. We also thank Vincent

Berenz and Jojumon Kavalan for setting up our
GPU access at Max Planck Institute.

This material is based in part upon work sup-
ported by the German Federal Ministry of Educa-
tion and Research (BMBF): Tübingen AI Center,
FKZ: 01IS18039B; by the Machine Learning Clus-
ter of Excellence, EXC number 2064/1 – Project
number 390727645.

References
Aider. 2024. Swe-bench lite. https://aider.chat/

2024/05/22/swe-bench-lite.html. Accessed:
[date of access].

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia
Zhang, Ammar Ahmad Awan, Cheng Li, Du Li, Elton
Zheng, Jeff Rasley, Shaden Smith, Olatunji Ruwase,
and Yuxiong He. 2022. Deepspeed inference: En-
abling efficient inference of transformer models at
unprecedented scale. Preprint, arXiv:2207.00032.

Zachary Ankner, Mansheej Paul, Brandon Cui,
Jonathan D Chang, and Prithviraj Ammanabrolu.
2024. Critique-out-loud reward models. arXiv
preprint arXiv:2408.11791.

Anthropic. 2024a. Announcing claude 3.5 sonnet. Ac-
cessed: 2025-01-30.

Anthropic. 2024b. Anthropic quick-
starts. https://github.com/anthropics/
anthropic-quickstarts.

Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi
Xie, Anirudh Goyal, and William Wang. 2024. Swe-
search: Enhancing software agents with monte carlo
tree search and iterative refinement. arXiv preprint
arXiv:2410.20285.

Daman Arora, Atharv Sonwane, Nalin Wadhwa, Ab-
hav Mehrotra, Saiteja Utpala, Ramakrishna Bairi,
Aditya Kanade, and Nagarajan Natarajan. 2024. Ma-
sai: Modular architecture for software-engineering ai
agents. arXiv preprint arXiv:2406.11638.

Ibragim Badertdinov, Maria Trofimova, Yuri Anapol-
skiy, Sergey Abramov, Karina Zainullina, Alexander
Golubev, Sergey Polezhaev, Daria Litvintseva, Si-
mon Karasik, Filipp Fisin, Sergey Skvortsov, Maxim
Nekrashevich, Anton Shevtsov, and Boris Yangel.
2024. Scaling data collection for training software
engineering agents. Nebius blog.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682–17690.

19816

https://aider.chat/2024/05/22/swe-bench-lite.html
https://aider.chat/2024/05/22/swe-bench-lite.html
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://arxiv.org/abs/2207.00032
https://www.anthropic.com/news/claude-3-5-sonnet
https://github.com/anthropics/anthropic-quickstarts
https://github.com/anthropics/anthropic-quickstarts

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Rémi Coulom. 2007. Efficient selectivity and backup
operators in monte-carlo tree search. In Comput-
ers and Games, pages 72–83, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. Preprint,
arXiv:2307.08691.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In International conference on
machine learning, pages 933–941. PMLR.

DeepSeek-AI et al. 2025. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learn-
ing. Preprint, arXiv:2501.12948.

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard
Mella, Taco Cohen, and Gabriel Synnaeve. 2024.
Rlef: Grounding code llms in execution feed-
back with reinforcement learning. arXiv preprint
arXiv:2410.02089.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math rea-
soning with self-evolved deep thinking. Preprint,
arXiv:2501.04519.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Yuntong Hu, Zhihan Lei, Zheng Zhang, Bo Pan, Chen
Ling, and Liang Zhao. 2024. Grag: Graph retrieval-
augmented generation. Preprint, arXiv:2405.16506.

Zixuan Jiang, Jiaqi Gu, Hanqing Zhu, and David Pan.
2024. Pre-rmsnorm and pre-crmsnorm transform-
ers: equivalent and efficient pre-ln transformers. Ad-
vances in Neural Information Processing Systems,
36.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. Preprint, arXiv:2405.01535.

Levente Kocsis and Csaba Szepesvári. 2006. Bandit
based monte-carlo planning. In Machine Learning:
ECML 2006, pages 282–293, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rod-
kin, Dmitry Sorokin, Artyom Sorokin, and Mikhail
Burtsev. 2024. Babilong: Testing the limits of llms
with long context reasoning-in-a-haystack. arXiv
preprint arXiv:2406.10149.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024. Long-context llms strug-
gle with long in-context learning. arXiv preprint
arXiv:2404.02060.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Arindam Mitra, Luciano Del Corro, Guoqing Zheng,
Shweti Mahajan, Dany Rouhana, Andres Codas,
Yadong Lu, Wei-ge Chen, Olga Vrousgos, Corby
Rosset, et al. 2024. Agentinstruct: Toward gener-
ative teaching with agentic flows. arXiv preprint
arXiv:2407.03502.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. Preprint,
arXiv:2112.00114.

OpenAI. 2025. Hello gpt-4o. Accessed: 2025-01-30.

Adam Orwall. 2024. moatless-tools. https://github.
com/aorwall/moatless-tools.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhi-
han Zhang, Mengzhao Jia, Jiawei Han, Hongming
Zhang, and Dong Yu. 2024. Repograph: Enhancing
ai software engineering with repository-level code
graph. Preprint, arXiv:2410.14684.

19817

https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2307.08691
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2405.16506
https://arxiv.org/abs/2405.16506
https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/2405.01535
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://openai.com/index/hello-gpt-4o/
https://github.com/aorwall/moatless-tools
https://github.com/aorwall/moatless-tools
https://arxiv.org/abs/2410.14684
https://arxiv.org/abs/2410.14684
https://arxiv.org/abs/2410.14684

Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyna Zhang,
Fan Yang, and Mao Yang. 2024. Mutual reasoning
makes smaller llms stronger problem-solvers. arXiv
preprint arXiv:2408.06195.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815.

Guijin Son, Hyunwoo Ko, Hoyoung Lee, Yewon Kim,
and Seunghyeok Hong. 2024. Llm-as-a-judge & re-
ward model: What they can and cannot do. arXiv
preprint arXiv:2409.11239.

Jianlin Su. 2023. Rope + bias = better length extrapola-
tion.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian
Yu, Haitao Mi, and Dong Yu. 2024. Toward self-
improvement of llms via imagination, searching, and
criticizing. arXiv preprint arXiv:2404.12253.

Polina Tsvilodub, Fausto Carcassi, and Michael Franke.
2024. Towards neuro-symbolic models of language
cognition: Llms as proposers and evaluators.

Nan Wang, Yafei Liu, Chen Chen, and Haonan Lu.
2024a. Genx: Mastering code and test gener-
ation with execution feedback. arXiv preprint
arXiv:2412.13464.

Peifeng Wang, Austin Xu, Yilun Zhou, Caiming Xiong,
and Shafiq Joty. 2024b. Direct judgement preference
optimization. arXiv preprint arXiv:2409.14664.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu,
Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi
Song, Bowen Li, Jaskirat Singh, et al. 2024c. Open-
devin: An open platform for ai software developers as
generalist agents. arXiv preprint arXiv:2407.16741.

Yanlin Wang, Wanjun Zhong, Yanxian Huang, Ensheng
Shi, Min Yang, Jiachi Chen, Hui Li, Yuchi Ma, Qianx-
iang Wang, and Zibin Zheng. 2024d. Agents in
software engineering: Survey, landscape, and vision.
Preprint, arXiv:2409.09030.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Tianhao Wu, Janice Lan, Weizhe Yuan, Jiantao Jiao, Ja-
son Weston, and Sainbayar Sukhbaatar. 2024. Think-
ing llms: General instruction following with thought
generation. arXiv preprint arXiv:2410.10630.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystify-
ing llm-based software engineering agents. arXiv
preprint arXiv:2407.01489.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

John Yang, Carlos E Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. 2024b. Swe-agent: Agent-computer inter-
faces enable automated software engineering. arXiv
preprint arXiv:2405.15793.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou,
Yuqiang Li, and Wanli Ouyang. 2024a. Access-
ing gpt-4 level mathematical olympiad solutions via
monte carlo tree self-refine with llama-3 8b. arXiv
preprint arXiv:2406.07394.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024b.
Generative verifiers: Reward modeling as next-token
prediction. arXiv preprint arXiv:2408.15240.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik
Roychoudhury. 2024c. Autocoderover: Autonomous
program improvement. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 1592–1604.

19818

https://spaces.ac.cn/archives/9577
https://spaces.ac.cn/archives/9577
https://arxiv.org/abs/2409.09030
https://arxiv.org/abs/2409.09030
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

A Appendix

A.1 More Related Works

Inference Time Compute Scaling. Scaling com-
pute at inference time has been shown to enhance
LLM performance across various tasks. For in-
stance, Silver et al. (2016, 2017) improve decision-
making by searching game states before selecting
a move. Similarly, LLM-focused approaches Wei
et al. (2023); Tian et al. (2024); Nye et al. (2021);
Kojima et al. (2022) enhance reasoning by sam-
pling additional tokens. Graph-based methods Yao
et al. (2024); Besta et al. (2024); Luo et al. (2024);
Zhang et al. (2024a); Qi et al. (2024) further opti-
mize planning and exploration of the solution space,
enabling more structured and efficient problem-
solving.
LLMs as Code Reviewers. LLMs have
demonstrated strong judgment capabilities Son
et al. (2024); Tsvilodub et al. (2024); Ankner et al.
(2024). Some approaches leverage LLMs directly
to generate critiques and feedback Wang et al.
(2024b); Kim et al. (2024). However, in structured
domains like coding and math, feedback can be
sampled from the environment, as seen in Wang
et al. (2024a); Guan et al. (2025), where LLMs
are augmented with external feedback to improve
critique generation. This feedback is then used to
train models to act as reviewers for selecting opti-
mal solutions. Two primary training strategies ex-
ist: supervised fine-tuning Tsvilodub et al. (2024);
Ankner et al. (2024); Wang et al. (2024a); Zhang
et al. (2024b); Mitra et al. (2024) and reinforce-
ment learning methods such as Direct Preference
Optimization Rafailov et al. (2024) and Proximal
Policy Optimization Schulman et al. (2017), used
by Wu et al. (2024); Gehring et al. (2024).

A.2 Agent Performance Across Repositories

This section analyzes model performance across
different repositories using the SWE-Bench Lite
benchmark. Our goal is to identify biases in how
models handle code from various sources.

We summarize our findings in Figure 3 and ob-
serve that models perform best on Seaborn and Re-
quests, achieving 65-75% accuracy, while scientific
computing libraries (e.g., sympy, xarray, SciKit-
learn) and web frameworks (e.g., Flask, Django)
show moderate performance (40-60%). In con-
trast, Astropy and Sphinx consistently rank lowest
(30-40%), indicating that models struggle more
with specialized scientific tools and documentation

systems than with visualization and HTTP client
libraries.

These findings highlight domain-specific varia-
tions in model effectiveness, guiding improvements
in generalization across repositories.

0

10

20

30

40

50

60

70

80

50%

57%

48%

75%

33%

40%

67%

35%

70%

35%

Claude 3.5 Sonnet

0

10

20

30

40

50

60

70

80

33%

41%
39%

50%

67%

40%

50%

41%

52%

30%

GPT-4o

0

10

20

30

40

50

60

70

80

17%

36% 35%

50%

67%

20%

33%

24%

65%

27%

Gemini-1.5-Pro

0

10

20

30

40

50

60

70

80

17%

34%

22%

50% 50%

20%

33%
29%

48%

21%

Gemini-2.0-Flash

Is
su

e
s

R
e
so

lv
e
d

 (
%

)

Model Performances on Individual Repositories

astropy

django

matplotlib

seaborn

flask

requests

xarray

pylint

pytest

scikit-learn

sphinx

sympy

Figure 3: Repo-wise coverage of for each model

A.3 Improved Editing

We compare the performance of the agent when it
uses the whole style of editing and the diff style of
editing. We analyze the number of various types
of syntactic errors committed by the agent while
editing the code in both the styles of editing. We
perform our analysis across two models namely
Gemini 2.0 Flash and Gemini 1.5 Pro. Here No
Match error pertains to the situation in diff editing
where the text to be replaced does not match text in
the file. File Error occurs when the model tries to
make an edit when no file is opened. Syntax Error
is thrown by the linter in cases like indentation
error or erroneous variable referencing. Finally,
Content Error occurs in case of diff editing, when
the agent provides the new content in edit, append,
or insert command as an empty string or provides
the content to replace and new content as the same
string.

We summarize the results in Table 9. In both
the styles of editing, the major source of errors is
syntax errors. We find that the diff style of editing
leads to 1% less errors compared to the whole style
of editing. However, this effect is much more pro-
nounced in terms of semantics as diff style achieves
36% higher pass@1 rate.

19819

GPT-4o-mini Gemini 1.5 (Pro)
Whole Diff Whole Diff

Total Edits 11,931 8,507 3,605 4,113
Success Samples 4,905 3,090 1,995 2,590
Success Rate (%) 41.1 36.3 55.3 62.9
Error Types
No Match 0 1,159 0 655
Content Error 0 1,640 0 143
Syntax Error 7,003 2,600 1,610 706
File Error 0 18 0 19
Pass@1 (%) 7 8.67 14.38 21.44

Table 9: Comparison of various types of syntactical
errors committed in whole and diff setting.

Model Correct Localization (%)

GPT-4o 74.37
Gemini 2.0 Flash 69.44
Gemini 1.5 Pro 64.82
Claude 3.5 Sonnet 80.70

Table 10: Various models’ ability to correctly localize
issues.

A.4 Localization Analysis

We analyze the ability of the agent to correctly lo-
calize the bug in the codebase. We find the overlap
between the predicted location and the actual loca-
tion based on the git patch of the proposed solution
vs the actual solution patch and calculate the per-
centage of correct localizations. We summarize the
results in Table 10. Average correct localization
across all models is 72.3 %, which shows that the
agent is usually able to correctly localize the bug
in the codebase.

A.5 Variation of Performance with Max
Depth and Number of Iterations

We analyze the optimality of two key search hyper-
parameters: max depth and number of iterations.
We simulate the trajectories of our agent for differ-
ent values of these hyperparameters and analyze
the coverage of the agent for each value.

We summarize the results in Figure 4 and Fig-
ure 5 for variation with depth and iterations respec-
tively. We find that both the curves show a decaying
trend with increasing values of the hyperparame-
ters and saturate for our values of 50 and 300 for
max depth and number of iterations respectively
which shows that our values are optimal for the
agent.

20 40 60 80 100

Depth Limit

0

20

40

60

80

100

120

140

160

C
u

m
u

la
ti

ve
Is

su
es

R
es

ol
ve

d

Depth vs. Resolution Rate

Model

GPT-4o

Gemini-2.0-Flash

Gemini-1.5-Pro

Claude-Sonnet-3.5-V2

Figure 4: Variation of coverage with maximum branch
depth

0 50 100 150 200 250 300

Iterations

0

20

40

60

80

100

120

140

160

C
u

m
u

la
ti

ve
Is

su
es

R
es

ol
ve

d

Iterations vs. Resolution Rate

Model

GPT-4o

Gemini-2.0-Flash

Gemini-1.5-Pro

Claude-Sonnet-3.5-V2

Figure 5: Variation of coverage vs number of iterations

A.6 Issues vs Models
Model-Specific Issue Resolution. Venn diagram of
resolved issues by model. Each model can solve
a handful of unique instances. We summarize the
results in Figure 6.

A.7 Left-Right Branch Analysis
We study the effectiveness of our expansions by
comparing the depths of branches before and after
expansion, focusing on cases where both the left
and right branches reach a conclusion, meaning
they terminate when the agent returns a submit ac-
tion. Additionally, we analyze how different expan-
sion paths lead to conclusions by comparing two
scenarios: (1) when the right-side expansion suc-
cessfully reaches a conclusion while the left-side
fails to do so, and (2) when the left-side expan-
sion reaches a conclusion while the right-side does
not. We summarize our findings in Table 12 and
Table 11.

Submit expansions rarely achieve convergence,
which is anticipated given their terminal position in
the sequence. To accurately assess the efficacy of
Submit expansions, an increased maximum depth
threshold specifically for Submit operations would
be necessary. Create expansions demonstrate sig-

19820

Figure 6: Venn diagram of resolved issues by model.
Each model can solve a handful of unique instances.

nificant effectiveness in reaching conclusions, sug-
gesting that initial localization strategies can fa-
cilitate convergence in specific scenarios. Expan-
sions in edit and append operations successfully
break edit-python iteration cycles, leading to more
efficient conclusion paths. Analysis reveals a con-
sistent pattern where dual-path conclusions and
right-path iterations exhibit lower counts compared
to left-path iterations, aligning with the hypothesis
that expansions reduce errors. However, append
operations demonstrate elevated average iterations
because the model now creates a more comprehen-
sive testing script that involves additional editing
and validation steps, resulting in increased overall
depth 17. Contrary to expectations, in edit, cre-
ate, and append expansion operations, left-path
expansions frequently achieve conclusions while
right-path expansions do not. For edit and append:
The model creates a more complicated reproduc-
tion script which leads to an error, which the model
is not able to to resolve 19. In create, the agent
finds it easy to locate the issue after reproduction.
While, in the expanded branch, could not localize
it 18. Another reason for this pattern is that the
agent sometimes submits prematurely (often after
reproduction). In the right path, it recognizes this
mistake and corrects it.

A.8 Error Scaling Analysis

In this section, we present the scaling of various
error types as we scale compute. We summarize
the results in Table 13.

Action After Expansion Before Expansion

Edit 32 39
Create 41 27
Append 34 36
Submit - 24

Table 11: Comparison of path reaches by action type.
Here, before and after expansion pertain to cases where
conclusion is only reached before and after expansion
respectively

Action Avg Dep
Bef Exp

Avg Dep
Aft Exp

Edit 21.2 20.8
Create 22.4 21.4
Append 22.1 22.6
Submit 16.9 22.1

Table 12: Comparison of action path depths before and
after expansion

A.9 How to effectively expand the tree?

Understanding how to expand the search tree effi-
ciently is crucial for balancing computational cost
and solution quality in our coding agent. We in-
vestigate this research question to determine which
actions should be prioritized for branching and in
what order they should be expanded. Specifically,
we report the trade-off between branching cost and
resolution rate for different actions, as well as the
impact of various branching strategies on search
efficiency. Our findings show that branching at key
actions like edit, create, and append leads to the
highest resolve rates, and that a Lowest Depth First
approach improves early-stage exploration but con-
verges with other strategies over time. Finally we
understand the compute-performance trade-off of
number of expansions for each expansion type in a
branch.

A.9.1 Action Selection
Methodology. We analyze the computational cost
vs resolve rate trade-off of branching various ac-
tions in the trajectory. We first run the agent to
expand at eight different actions namely search_dir,
insert, search_file, open, goto, find_file, append,
and edit. We then perform a causal analysis to de-
termine the most promising actions by comparing
decrease in resolve rate and number of iterations
for each action. We then analyze the impact of
branching at different actions on the performance
of the agent.
Results. We find that branching at actions that are

19821

Action Type Error Types SWE
Agent DARS

Search
File

File Not Found 108 446
Syntax Error 0 3
Success 727 2635

Create
Directory Error 132 131
File Exists 4 22
Success 361 1276

Append Content Error 0 3
File Error 0 4
Syntax Error 9 214
Success 359 2518

Edit

No Match 382 884
Content Error 367 724
Syntax Error 422 1820
File Error 150 311
Success 1296 7206

Search
Repo

Syntax Error 74 268
Success 528 2581

Search
Dir

Dir Not Found 4 107
Syntax Error 3 29
Success 114 814

Find
File

Dir Not Found 8 17
No Match Found 32 214
Success 63 385

Insert Syntax Error 30 659
Success 114 1857

Execute
IPython

Connection Error 8 56
Response Error 44 2
Success 40 396

Execute
Server

Server Error 3 125
Success 131 1542

Undo
Edit

No Edit Made 5 27
Success 0 38

Table 13: Error scaling comparison between SWE-
Agent and DARS

typically used in the reproduction and fix stages
like edit, create, append leads to the highest resolve
rate. We summarize the results in Table 1.

Figure 7: Percent increase in number of iterations per
percent increase in resolve rate vs number of expansions
in a branch.

A.9.2 Order of Action Selection
Methodology. We explore various strategies to
expand the tree at different actions. We use the
runs in the previous section and simulate strategies
pertaining to the order of branching at different ac-
tions. We experiment with three different strategies
namely First In First Out (FIFO), Last In First Out
(LIFO), and Lowest Depth First. We plot the cover-
age vs number of iterations curve for each strategy
to determine the most promising strategy.
Results. In Figure 8 we find that the Lowest Depth

19822

First strategy early on as it promotes exploration
at the lower depths of the tree. This allows the
agent to explore more possibilities and make better
decisions. But if the agent is run for long enough,
all the strategies converge to the same point as all
the possible states are explored eventually.

Figure 8: Variation of coverage of traversal strategies
with iterations

A.9.3 Number of Expansion Types Per
Branch

Methodology. We investigate the compute-
performance trade-off associated with multiple ex-
pansions of the same type within a branch. For
each expansion type, we allow k expansions within
a branch, where k ranges from 1 to 4. Our analysis
measures two key metrics: the relative increase in
node count (representing computational cost) and
the resolution rate. We plot the ratio of computa-
tional cost increase to performance improvement
against k to determine the optimal number of ex-
pansions.
Results. As shown in Figure 7, for all action
types except "open," the cost-performance ratio in-
creases with k, indicating that computational costs
grow more rapidly than performance gains. This
suggests that performing more than one expansion
of the same type per branch is computationally in-
efficient. For the "open" action type, the initial
cost-performance ratio is prohibitively high, mak-
ing even a single expansion impractical.

A.10 How to effectively select the best
trajectory?

Optimizing our agent requires effective tree expan-
sion, trajectory selection, and action evaluation.
Due to computational constraints and LLM con-
text limitations, we adopt a structured approach to
improve efficiency.

We first analyze tree expansion, studying how

different actions—edit, append, create, and sub-
mit—impact coverage and performance. Next, we
tackle trajectory selection, implementing a two-
stage pipeline: filtering to remove irrelevant infor-
mation and ranking to identify the best trajectory.
We compare pairwise and global ranking methods
across different filtering configurations. Finally,
we quantify the impact of expansion actions, isolat-
ing their contributions to coverage, accuracy, and
efficiency.

A.10.1 Trajectory Content Filtering

A trajectory contains several components like
command descriptions, various actions and their
thoughts, observations to each action etc., not all
of which are relevant to determine if a particular
trajectory is would solve the bug. Therefore, we ex-
periment with various components of the trajectory
to determine the best combination.

Methodology. Based on the three key stages of
the bug fixing process - Reproduction, Localiza-
tion, and Fix, we identify certain key components
of the trajectory that are relevant to each of these
stages. These components include the reproduc-
tion script, the edited files, the output after running
the reproduction script, and the final patch. We
then experiment with various combinations of these
components to determine the best combination.

A.10.2 Trajectory Ranking

Methodology. To find the best trajectory, we
experiment with two different ranking methods:
pairwise knockout ranking and global ranking. In
pairwise knockout ranking, we compare each pair
of trajectories and eliminate the one that is worse
until we are left one. In global ranking, we rank all
the trajectories based on our rubricks.

Results. We summarize the results of the trajec-
tory ranking in Table 14 for each type of filtering
pipeline and ranking strategy. We find that only the
final patch is the most effective component to deter-
mine the best trajectory. This result is significant
for two reasons. First, it makes our trajectory se-
lection model applicable to any coding agents as a
git patch is a common output format for all agents.
Moreover, it also makes the trajectory selection
pipeline more efficient as it only needs to consider
the final patch to determine the best trajectory.

19823

Combination Pairwise Ranking Global Ranking
RS + EF + RO + FP 30.67 33.00
RS + EF + FP 30.67 33.67
RS + RO + FP 30.67 33.67
RS + FP 30.67 34.00
FP 30.67 34.67

Table 14: Performance comparison of different scoring
combinations using pairwise and global ranking meth-
ods. The combinations use the following components:
RS (Final reproduction scripts), EF (Final edited files),
RO (Final reproduction output), and FP (Final Patch).

A.11 Contribution of expansion in each
Action

We quantify the contribution of each action in the
trajectory to the final performance of the agent. We
analyze the performance of the agent by simulating
expansions for certain combinations of actions and
studying its variation with the coverage. We sum-
marize the results in Table 15. We can see that edit
actions (edit and append) and reproduction actions
(create) lead to the highest increase in performance.
While expansion in submit command leads to min-
imal increase in performance, it does not lead to
much redundancy either. While append leads to
highest solve rate, it also leads to highest cost. Edit
and create actions lead to a good balance between
performance and cost.

Exp Actions Cov Avg
Iter Acc #

Att Pre

Edit, Append, Submit, Cre-
ate

54.7 194 81 11 0.72

Edit, Append, Create 54.3 177 46 6 0.72
Append, Create 51.0 146 35 5 0.70
Edit, Create 49.3 81 23 3 0.70
Edit, Append 47.6 96 23 3 0.70
Append 42.7 80 22 2 0.66
Create 41.3 51 12 1 0.66
Edit 39.3 44 12 1 0.66
No Expansion 31.0 27 11 1 0.57

Table 15: Performance of DARS for various combina-
tion of expansion actions (Exp Actions). We compare
across several metrics such as coverage (Cov), average
number of iterations across issues (Avg Iter), accuracy
of reviewer model (Acc), average number of attempts
(# Att), and precision (Pre)

In the previous analysis, we focus on the con-
tributions of different combinations of expansion
actions on the final coverage. However, in the anal-
ysis, the results depend on all the actions in the
combination. To de-couple the effect of each ex-
pansion type, we perform another analysis where,

for each expansion action, we contrast the number
of cases where a) the branch before expansion does
not resolve the issue, but the branch after expansion
does, b) the branch before the expansion resolve
the issue but the branch after the expansion does
not resolve the issue, and c) both branches resolve
the issue. We summarize our results in Figure 9.
We can still see that majority of expansions are
lead to solutions on both branches which shows
that our approach still has a considerable amount
of redundancy. We see highest efficiency for edit
and append expansions and lowest for submit ex-
pansions.

60.4%

21.3%
18.4%

60%

21.9%
18.1%

70.1%

17.1%
12.8%

95.6%

3.4%

 Append

Submit

Edit

Create

Figure 9: These figures present the proportions marked
by ● for the cases where the branch before expansion
does not resolve the issue, but the branch after expan-
sion does, ● for the cases where the branch before the
expansion resolve the issue but the branch after the ex-
pansion does not resolve the issue, and ● for the cases
where both branches resolve the issue.

A.12 Expansion Qualitative Analysis

19824

Before Expansion

+import matplotlib.pyplot as plt

+from matplotlib.colors import LogNorm

+import numpy as np

+print("Starting test script...")

+# Create test data with known values

+img = np.logspace(0, 4, 50*50).reshape(50, 50)

+print(f"Image range: {img.min():.2f} to {img.max():.2f}")

+fig, ax = plt.subplots(1, 1)

+plot = ax.imshow(img, cmap='gray')

+cb = fig.colorbar(plot, ax=ax)

+print("Initial plot created, now changing norm...")

+plot.norm = LogNorm(vmin=img.min(), vmax=img.max())

+print(f"New norm created with vmin={img.min():.2f}, vmax={img.max():.2f}")

+print("Attempting update_normal...")

+cb.update_normal(plot)

+# update_bruteforce is not available in current matplotlib version

+# using draw() to ensure updates are applied

+plt.draw()

+print("Verifying colorbar norm...")

+print(f"Plot norm type: {type(plot.norm)}")

+print(f"Colorbar norm type: {type(cb.norm)}")

+print(f"Plot norm range: {plot.norm.vmin:.2f} to {plot.norm.vmax:.2f}")

+print(f"Colorbar norm range: {cb.norm.vmin:.2f} to {cb.norm.vmax:.2f}")

+print("Test completed successfully if norms match")

+plt.show(

After Expansion

+import matplotlib.pyplot as plt

+from matplotlib.colors import LogNorm

+import numpy as np

+img = 10**np.random.normal(1, 1, size=(50, 50))

+fig, ax = plt.subplots(1, 1)

+plot = ax.imshow(img, cmap='gray')

+cb = fig.colorbar(plot, ax=ax)

+# Create new norm with proper bounds from the data

+data = plot.get_array()

+new_norm = LogNorm(vmin=data.min(), vmax=data.max())

+plot.norm = new_norm

+# Test the fixed update_normal method

+print("Testing update_normal with LogNorm...")

+cb.update_normal(plot) # should now work correctly with the new norm

+plt.savefig("test_output.png")

+print("Test completed successfully")

Figure 10: Improved reproduction script due to create expansion

After Expansion Before Expansion

+from sympy import MatrixSymbol, init_printing, pprint

+from sympy.abc import n

+init_printing()

+# Create matrix symbols

+x = MatrixSymbol("x", n, n)

+y = MatrixSymbol("y*", n, n)

+# Try to pretty print their sum

+print("Attempting to pretty print x + y:")

+pprint(x + y)

+print("Script completed successfully.")

+from sympy.abc import n

+# Test cases

+tests = [

+ MatrixSymbol("x", n, n) + MatrixSymbol("y*", n, n),

+ -MatrixSymbol("x", n, n) + MatrixSymbol("y*", n, n),

+ MatrixSymbol("x", n, n) - MatrixSymbol("y*", n, n)

+]

+for i, expr in enumerate(tests, 1):

+ print(f"\nTest {i}:")

+ try:

+ print("Expression:")

+ pprint(expr)

+ except Exception as e:

+ print(f"Error occurred: {type(e).__name__}")

+ print(f"Error message: {str(e)}")

+print("\nScript completed.")

Figure 11: Poor reproduction script because the model misunderstands the bug when localizing the issue before
reproducing it

19825

Before Expansion

Test Patch:

+from sympy import MatrixSymbol, init_printing, pprint

+from sympy.abc import n

+init_printing()

+# Create matrix symbols

+x = MatrixSymbol("x", n, n)

+y = MatrixSymbol("y*", n, n)

+# Try to pretty print their sum

+print("Attempting to pretty print x + y:")

+pprint(x + y)

+print("Script completed successfully.")

Fix Patch:

@@ -501,10 +501,13 @@ def _f(rv):

if not (rv.is_Pow and rv.base.func == f):

return rv

- if (rv.exp < 0) == True:

- return rv

- if (rv.exp > max) == True:

+ if rv.exp.is_complex:

return rv

+ if rv.exp.is_real:

+ if (rv.exp < 0) == True:

+ return rv

+ if (rv.exp > max) == True:

After Expansion

Test Patch:

+from sympy import *

+from sympy.simplify.fu import TR6

+

+def test_powers():

+ x = Symbol("x")

+ print("Testing various power cases...")

+ # Test complex power

+ print("\n1. Complex power:")

+ result = TR6(cos(x)**I)

+ print("cos(x)**I =", result)

+

+ # Test original cases

+ print("\n2. Regular cases:")

+ print("cos(x)**2 =", TR6(cos(x)**2))

+ print("cos(x)**4 =", TR6(cos(x)**4))

+ print("cos(x)**(-2) =", TR6(cos(x)**(-2)))

+

+if __name__ == "__main__":

+ test_powers()

Fix Patch:

@@ -501,9 +501,16 @@ def _f(rv):

if not (rv.is_Pow and rv.base.func == f):

return rv

- if (rv.exp < 0) == True:

+ # First handle complex non-real exponents

+ if rv.exp.is_complex and not rv.exp.is_real:

return rv

- if (rv.exp > max) == True:

+ # Then handle real exponents with proper error handling

+ try:

+ if (rv.exp < 0) == True:

+ return rv

+ if (rv.exp > max) == True:

+ return rv

+ except TypeError: # catches invalid comparison of complex numbers

return rv

if rv.exp == 2:

return h(g(rv.base.args[0])**2)

Figure 12: Re-evaluating the trajectory after submitting leads to the model finding out about certain corner cases
and fixing them

19826

After ExpansionBefore Expansion

Expansion Analysis

Action:

append $’from django.db import models
from collections import namedtuple

from django.test import TestCase

class TestModel(models.Model):

 value = models.IntegerField()

Range = namedtuple("Range", ["near", "far"])

print("Setting up test...")

try:

 # Create a range with named tuple

 range_tuple = Range(near=1, far=10)

 from django.db.models.sql.query import Query

 query = Query(TestModel)

 result = query.resolve_lookup_value(range_tuple)

 print("ERROR: Expected to fail but didn't")

except TypeError as e:

 if "missing 1 required positional argument: 'far'" in str(e):

 print("Successfully reproduced the error: ", str(e))

 else:

 print("Unexpected error:", str(e))’

THOUGHT
1. Previous Action Summary: - Created a test script to reproduce named tuple handling issue in Django - Implemented basic Django settings configuration - Successfully
demonstrated the fix works with a simple test case
2. Key Issues: - Test only covers basic case with a single named tuple - No edge cases or complex scenarios tested - No validation of SQL query generation - Minimal error handling
3. Potential Improvements: - Add multiple named tuple types with different field counts - Test nested named tuples - Verify behavior with empty/None values - Include SQL query
validation - Test with actual database operations
4. Impact on Trajectory: - More comprehensive testing would provide better confidence - SQL validation would ensure query correctness - Edge cases would prevent future
regressions DISCUSSION I'll create an enhanced version of the test script that includes more comprehensive testing scenarios. This version will test multiple named tuple types,
nested structures, and verify SQL query generation.

Action:

append $'import os
import sys

from collections import namedtuple

from django.conf import settings

from django.db import models

Configure minimal Django settings

settings.configure(

 DEBUG=True,

 DATABASES={

 "default": {

 "ENGINE": "django.db.backends.sqlite3",

 "NAME": ":memory:",

 }

 },

 INSTALLED_APPS=["django.contrib.contenttypes"],

)

import django

django.setup()

Create a test model

class TestModel(models.Model):

 value = models.IntegerField()

 class Meta:

 app_label = "test_app"

Create a named tuple

Range = namedtuple("Range", ["near", "far"])

Figure 13

After ExpansionBefore Expansion

Reproduction Analysis

Action:

search_repo "URLResolver"

Action:

open django/urls/resolvers.py

Action:

search_file "to_python" django/urls/resolters.py

Action:

search_file "to_python" django/urls/resolvers.py

Action:

goto 260

THOUGHT
The error output shows that we’ve successfully reproduced the issue. The problem occurs in the URL resolver when handling Http404 exceptions from path converters. Let’s look at
the relevant code in Django’s URL resolver. Based on the traceback, we need to examine ‘djangourlsresolvers.py‘ around line 260 where the converter’s ‘to_python‘ method is called.

Action:

open django/urls/resolvers.py 260

Figure 14: Append expansion leads to better reproduction script which leads to better localization.

19827

After ExpansionBefore Expansion

Expansion Analysis

Action:

edit $”from django.db import models\nfrom django.conf import settings ...”
$”from django.db import models ...”

Thought:

The error indicates that the Django app registry is not properly initialized before

defining the model. I'll fix this by ensuring the Django setup is completed before

defining the `SimpleModel` class.

Action:

python reproduce_delete_issue.py

Thought:

The script has been updated to properly initialize Django before defining the model. I'll

now execute the script again to verify if the fix works as intended.

Action:

edit $”from django.db import models\nfrom django.conf import settings ...”
$”from django.db import models ...”

Thought:

The error indicates that the database table for the `SimpleModel` class has not been

created. This is because the database schema was not migrated. I'll fix this by adding

the necessary migration steps to create the table before running the test.

Action:

python reproduce_delete_issue.py

Thought:

The script has been updated to include database migration steps. I'll now execute the

script again to verify if the fix works as intended.

 Action:

edit $' INSTALLED_APPS=["__main__"],' $' INSTALLED_APPS=["__main__",
"django.contrib.contenttypes"],'

Thought:

The error persists because the migrations are being created but not applied correctly.

This might be due to the `INSTALLED_APPS` configuration or the way the migration

commands are being executed. I'll explicitly include the `SimpleModel` in the migration

process by ensuring the app registry is properly initialized and the migrations are

applied correctly.

.

.

.

.

.

Thought
The previous action attempted to address issues with Django's app label and migration
paths by setting a custom AppConfig and adjusting the `INSTALLED_APPS` to include
`reproduce_delete_issue.MainAppConfig`. However, the attempt to migrate the
database still fails with the error `"App '__main__' does not have migrations."`

Key Issues:
1. The `app_label` for the `SimpleModel` class is still set to `"__main__"`, which might not
align with the configuration changes (e.g., `reproduce_delete_issue.MainAppConfig`).
2. Even though migrations were generated and moved to the `__main__/migrations/`
folder, Django still fails to recognize them, likely due to mismatched configurations
between the app label and the migration path.
3. The custom `AppConfig` `name = "__main__"` might not align with Django's
expectations for a valid app name.

Improvements:
1. Update the `app_label` in the `Meta` class of `SimpleModel` to match the updated app
configuration (`reproduce_delete_issue`).
2. Adjust the `AppConfig` name to use `"reproduce_delete_issue"` instead of
`"__main__"`.
3. Ensure the migration folder structure (`reproduce_delete_issue/migrations`) and the
`app_label` are aligned correctly.

Potential Impact: These changes should allow Django to properly recognize the
app and its migrations, enabling successful migration and resolution of the issue.

DISCUSSION I will update the `app_label` in the `Meta` class of `SimpleModel` to match
the updated app configuration (`reproduce_delete_issue`) and adjust the `AppConfig`
name to ensure alignment with Django's expectations.

Action:

edit $' class Meta:\n app_label = "__main__"' $' class Meta:\n app_label =
"reproduce_delete_issue"'

Observation:

[File updated (edited at line 1589). Please review the changes and make

sure they are correct (correct indentation, no duplicate lines, etc). Edit

the file again if necessary.]

Figure 15: Expanding in edit helps the model break out of edit-python loop.

19828

After ExpansionBefore Expansion

Expansion Analysis

Action:

edit $”'invalid': _("'%(value)s' value has an invalid format. It must be in
[DD] [HH:[MM:]]ss[.uuuuuu] format.")” $”'invalid': _(\"'%(value)s' value
has an invalid format. It must be in [DD] [[HH:]MM:]ss[.uuuuuu] format.\")”

Observation:

[No exact match found in

/django__django/django/db/models/fields/__init__.py. Did you mean: ```

'invalid': _("'%(value)s' value has an invalid format. It must be in " ```

]

.

.

.

.

.

THOUGHT
The repeated syntax errors indicate that the `$"..."` notation is not being interpreted correctly. I'll switch to using `$'...'` notation, which is the correct format for escaping special
characters like parentheses and quotes. Additionally, I'll include the exact continuation line to ensure the `to_replace` string matches the source code.

Action:

edit $”'invalid': _("'%(value)s' value has an invalid format. It must be in
[DD] [HH:[MM:]]ss[.uuuuuu] format.")” $”'invalid': _(\"'%(value)s' value
has an invalid format. It must be in [DD] [[HH:]MM:]ss[.uuuuuu] format.\")”

Observation:

[File updated (edited at line 1589). Please review the changes and make

sure they are correct (correct indentation, no duplicate lines, etc). Edit

the file again if necessary.]

Figure 16: Model often hallucinates by repeatedly outputting the same action. The model realizes that during
expansion and fixes it.

19829

Thought:

The previous script focused on two test cases but could be more comprehensive in testing edge cases and different types of expressions. The current test cases show that our fix

for the alignment works in simple cases, but we should also test:

1. More complex nested sums

2. Sums with different types of terms (products, powers, etc.)

3. Multiple sums in sequence

4. Cases with parentheses and without

5. Different types of expressions added to sums

The current trajectory shows that we've improved the alignment by adjusting baselines, but we should verify this works consistently across all cases.

DISCUSSION

I'll create a more comprehensive test script that covers additional cases including nested sums, multiple terms, and different expression types. This will help ensure our fix works

universally.

Action
python reproduce.py

Thought:

Let's run our test script again to see if the alignment has been improved with our changes. The modification adjusts the baseline for simple terms (Mul and Symbol) to better align

with the sum.

Action:

edit $' prettyF.baseline = max_upper + sign_height//2\n if isinstance(expr.function, Add):\n prettyF.baseline =
prettyF.baseline + 1' $' prettyF.baseline = max_upper + sign_height//2\n if isinstance(expr.function, Add):\n # Adjust baseline
based on expression height\n h = prettyF.height()\n if h > 2:\n prettyF.baseline = (h + sign_height)//2'

Thought:

Looking at the output, we can see that our change has improved some cases but not all. The alignment is still not perfect. Let's try a different approach by adjusting the baseline

calculation based on the height of the expression. We'll modify the code to take into account both the sum's height and the expression's complexity.

Action:

edit $' # change F baseline so it centers on the sign\n base_adjust = d - (prettyF.height()//2 - prettyF.baseline) -
adjustment\n if isinstance(expr.function, Add):\n base_adjust -= 1 # Lower Add expressions slightly\n

prettyF.baseline -= base_adjust\n first = False' $' # change F baseline so it centers on the sign\n
base_adjust = d - (prettyF.height()//2 - prettyF.baseline) - adjustment\n if isinstance(expr.function, Add):\n

base_adjust -= 2 # Lower Add expressions more\n prettyF.baseline -= base_adjust\n first = False'

Thought:

Looking at the output, we've made good progress. The alignment is better in most cases, but we still need to handle the final baseline adjustment differently. Let's modify both

adjustments to work together better:

Action:

submit

Thought:

Looking at the output, we've achieved good alignment in all test cases. The changes have successfully addressed the alignment issues:

1. Test case 1: Simple sum + constant - Perfect alignment

2. Test case 2: Sum + product - Well aligned

3. Test case 3: Nested sums + constant - Properly aligned

4. Test case 4: Multiple sums + constant - Good alignment between sums and terms

5. Test case 5: Sum of polynomial + product - Much better alignment with parenthesized expression

The combination of our adjustments:

- Different baseline adjustments for parenthesized vs. non-parenthesized expressions

- Coordinated initial and final baseline calculations

- Proper handling of Add expressions

has successfully resolved the alignment issues described in the PR. Let's submit our changes.

Figure 17: Model Produces a more comprehensive test script after expansion leading to more steps in the expanded
branch.

19830

After ExpansionBefore Expansion

Action:

python reproduce.py

Thought:

Now let's run the script again to see if we can reproduce the issue. This should

show us the error where the view function is receiving too many arguments.

Action:

search_repo "URLResolver"

Thought:

Perfect! We've successfully reproduced the issue. The error shows that our view

function is receiving 3 arguments when it expects only 1 or 2. This is happening

because Django is trying to pass both the matched groups and named groups from

the URL pattern. Let's search the repository to find where URL pattern matching is

handled.

Action:

open django/urls/resolvers.py

Thought:

DISCUSSION Let's look at the URL resolver code in django/urls/resolvers.py since

that's where the URL pattern matching is handled. We'll open this file to

understand how the arguments are being passed to the view.

Action:

find_file "urls.py" django

Thought:

Since this issue is related to URL pattern handling and view functions, we should look

in the core URL handling code in Django. The error occurs when Django is trying to

pass arguments to a view function, so we should look in the URL resolver or view

handling code. Let's search for relevant files in the django directory.

Action:

search_repo "get_response"

Thought:

The issue seems to be related to how Django handles view function arguments from

URLs. Let's search for code that handles view function calls using search_repo to find

relevant functions.

Action:

search_repo "wrapped_callback"

Thought:

Let's search more specifically for code that handles view function calls. Since the error

is about argument handling in views, let's search for "wrapped_callback" which was

mentioned in the error trace.

Action:

find_file "resolvers.py" django

Thought:

The issue appears to be in how Django handles optional URL parameters. Let's look at

the URL resolver code since that's where the `callback_args` and `callback_kwargs`

are being created. Let's search for the URL resolver code.

.

.

.

Figure 18: The agent finds it easy to locate the issue after reproduction. While, in the expanded branch, could not
localize it.

19831

After ExpansionBefore Expansion

Action:

python reproduce.py

Thought:

Now let's run the script again to see if we can reproduce the issue. This should

show us the error where the view function is receiving too many arguments.

Action:

search_repo "URLResolver"

Thought:

Perfect! We've successfully reproduced the issue. The error shows that our view

function is receiving 3 arguments when it expects only 1 or 2. This is happening

because Django is trying to pass both the matched groups and named groups from

the URL pattern. Let's search the repository to find where URL pattern matching is

handled.

Action:

open django/urls/resolvers.py

Thought:

DISCUSSION Let's look at the URL resolver code in django/urls/resolvers.py since

that's where the URL pattern matching is handled. We'll open this file to

understand how the arguments are being passed to the view.

Action:

find_file "urls.py" django

Thought:

Since this issue is related to URL pattern handling and view functions, we should look

in the core URL handling code in Django. The error occurs when Django is trying to

pass arguments to a view function, so we should look in the URL resolver or view

handling code. Let's search for relevant files in the django directory.

Action:

search_repo "get_response"

Thought:

The issue seems to be related to how Django handles view function arguments from

URLs. Let's search for code that handles view function calls using search_repo to find

relevant functions.

Action:

search_repo "wrapped_callback"

Thought:

Let's search more specifically for code that handles view function calls. Since the error

is about argument handling in views, let's search for "wrapped_callback" which was

mentioned in the error trace.

Action:

find_file "resolvers.py" django

Thought:

The issue appears to be in how Django handles optional URL parameters. Let's look at

the URL resolver code since that's where the `callback_args` and `callback_kwargs`

are being created. Let's search for the URL resolver code.

.

.

.

Figure 19: The model creates a more complicated reproduction script which leads to an error, which the model is
not able to to resolve.

19832

A.13 Trajectory Analysis Tool

19833

Figure 20: Overview of the entire trajectory

Figure 21: Problem Statement Node

19834

Figure 22: System Node

Figure 23: User Node

19835

Figure 24: Assistant Node

Figure 25: Assistant Node

19836

A.14 Prompts

A.14.1 Backbone Agent Prompts
This is the system prompt for the backbone agent. This contains the abstract commands, their usage and
general guidelines for the agent. The agent is expected to follow these commands to interact with the
environment and solve the issues in the repository.

System Prompt

SETTING: You are an autonomous programmer working in a command-line interface with a
special file editor. Your task is to solve issues within a repository by analyzing, editing, and testing
code.
Available Commands:
<command_docs>

open:
docstring: opens the file at the given path in the editor. If
line_number is provided, the window will be move to include that line
signature: open <path> [<line_number>]
arguments:
- path (string) [required]: the path to the file to open
- line_number (integer) [optional]: the line number to move the window
to (if not provided, the window will start at the top of the file)

goto:
docstring: moves the window to show <line_number>
signature: goto <line_number>
arguments:
- line_number (integer) [required]: the line number
to move the window to

scroll_down:
docstring: moves the window down 100 lines
signature: scroll_down

scroll_up:
docstring: moves the window down 100 lines
signature: scroll_up

create:
docstring: creates and opens a new file with the given name
signature: create <filename>
arguments:
- filename (string) [required]: the name of the file to create

submit:
docstring: submits your current code and terminates the session
signature: submit

search_dir:
docstring: searches for search_term in all files in dir. If dir is
not provided, searches in the current directory
signature: search_dir <search_term> [<dir>]

19837

arguments:
- search_term (string) [required]: the term to search for
- dir (string) [optional]: the directory to search in (if
not provided,
searches in the current directory)

search_file:
docstring: searches for search_term in file. If file is not provided,
searches in the current open file
signature: search_file <search_term> [<file>]
arguments:
- search_term (string) [required]: the term to search for
- file (string) [optional]: the file to search in (if not provided,
searches in the current open file)

find_file:
docstring: finds all files with the given name in dir. If dir is not
provided, searches in the current directory
signature: find_file <file_name> [<dir>]
arguments:
- file_name (string) [required]: the name of the file to search for
- dir (string) [optional]: the directory to search in (if
not provided,
searches in the current directory)

edit:
docstring: Replaces occurrence of $<to_replace> with $<new_content> in
the currently open file.
signature: edit $<to_replace> $<new_content>
arguments:
- to_replace (string) [required]: The text to be replaced in the file.
- new_content (string) [required]: The new text to replace with.

undo_edit:
docstring: Reverts the last edit made to the specified file. If no
file is provided, reverts the last edit on the currently open file.
signature: undo_edit [file_path]
arguments:
- file_path (string) [optional]: The path to the file to undo the
last edit for.

insert:
docstring: Inserts $<content> at the given <line_number> in the
currently open file.
signature: insert <line_number> $<content>
arguments:
- line_number (int) [required]: The line number where the content
should be inserted.
- content (string) [required]: The content to insert at the specified
line number.

19838

append:
docstring: Appends $<content> to the end of the currently open file.
signature: append $<content>
arguments:
- content (string) [required]: The content to append to the end of the
file.

execute_ipython:
docstring: Executes Python code in a persistent cell, returning its
output. Variables persist between executions.
signature: execute_ipython $<code>
arguments:
- code (string) [required]: Python code to execute in the cell.

execute_server:
docstring: To run long-lived processes such as server or daemon. It runs
the command in the background and provides a log of the output.
signature: execute_server <command>
arguments:
- command (string) [required]: Bash command to execute in the shell.

search_repo:
docstring: searches in the current repository with a specific function
or class, and returns the def and ref relations for the search term.
signature: search_repo <search_term>
arguments:
- search_term (string) [required]: function or class to look for in
the repository.

</command_docs>
General Guidelines:

1. One command at a time: Always execute a single command and wait for feedback before
proceeding.

2. Proper indentation: When editing files, ensure correct indentation for each line.

3. File awareness: Pay attention to the currently open file and working directory.

4. Search functionality: Use search_repo command to gather information when needed.

5. For interactive sessions: Start it using execute_server command.

You need to format your output using two fields; discussion and command. Your output should
always include one discussion and one command field EXACTLY as in the following example:
DISCUSSION
First I’ll start by using ls to see what files are in the current directory. Then maybe we can look at
some relevant files to see what they look like.

ls -a

The following is the first user prompt for the agent. This prompt is used to describe the issue to the
agent and provides special instructions regarding the use of various commands described in the system

19839

prompt.

Tool Instructions

instance_template:
Here’s the issue you need to address, as described in the PR:
<pr_description>
{issue}
</pr_description>
You’re in the repository’s root directory. Can you help me implement the necessary changes to the
repository so that the requirements specified in the <pr_description> are met?
Start by creating a minimal script to replicate and verify the bug described in the issue.
Ensure the bug is reproducible before making any changes. After implementing a fix,
use the same script to confirm the issue is resolved. Include debugging messages, like
print("Script completed successfully."), to indicate successful execution. The script
should be focused on verification and ensuring no new errors are introduced.
Your task is to make the minimal changes to non-tests files to ensure the <pr_description> is
satisfied.
If a command fails, do not repeat it. It will not work the second time unless you modify it. Always
adapt or use a different command.
Note: Please give only single tool call in a single step.
Follow these steps to resolve the issue:

1. Explore the repository structure to familiarize yourself with its layout.

2. Create a script to reproduce the error and execute it using the BashTool.

3. Edit the source code to resolve the issue, making minimal changes.

4. Rerun your reproduce script to confirm the error is fixed.

5. Consider edge cases and ensure your fix handles them.

Important Instructions for Command Usage:

1. File Navigation:

• Always be aware of the currently open file and the current working directory.
• The currently open file might be in a different directory than the working directory.
• Some commands, like ’create’, may change the current open file.
• For efficient navigation to specific lines (e.g., line 583), use ’goto’ instead of multiple

scroll_down commands.

2. Code Editing Commands (edit, append, insert):

• If the assistant would like to add the line ’ print(x)’, it must fully write the line
out, with all leading spaces before the code!

• Prefix content with $ to ensure the string is treated as a literal, avoiding the need for escape
characters.

• Use $'...' Notation: Always use $'...' for strings in edit, append, and insert commands
to correctly interpret escape sequences like \n.

• Avoid $"..." as it treats escape sequences literally.
• To add characters like \n or \t as literal strings within code, use double backslashes.
• Escape single or double quotes within code as \' or \".

19840

• Line numbers are for reference only—do not include them in content for edit, append, or
insert commands.

3. Edit Command:

• The to_replace argument must exactly match the existing source code.
• Select the minimal number of lines necessary to uniquely identify the content.
• Prefix to_replace and new_content with $.
• Ensure new_content includes correct indentation.
• To remove lines, set new_content to an empty string.
• Note that to_replace and new_content must be different.

4. Insert Command:

• Specify the exact line number for insertion.
• This command will not modify content before or after the specified line.

5. Append Command:

• Use append to add content to the end of a file.
• This is ideal after a create_file command.

6. Search Command:

• search_repo searches the current repository for specified functions or classes.
• It provides definition (def) and reference (ref) relationships for the search term.
• search_term is the function or class name to search for.

7. Execute_server Command:

• Use the execute_server command to run a server or process in the background.
• Usage: execute_server 'Your_Command'. Make sure to use quotes.
• execute_server get_logs: Retrieves the last 100 lines of the server / process logs.
• execute_server stop: Stops the background Bash server process.

(Open file: {open_file})
(Current directory: {working_dir})
bash-$

Here is a demonstration prompt for the backbone agent. This prompt is used to demonstrate the correct
usage of the commands and the interface to the agent.

Demonstration Template

Here is a demonstration of how to correctly accomplish this task. It is included to show you how
to correctly use the interface. You do not need to follow exactly what is done in the demonstration.

--- DEMONSTRATION ---
We're currently solving the following issue within our repository.
Here's the issue text:
ISSUE:
Fix: TimeDelta Precision Errors
Use microsecond integer arithmetic to fix high precision

19841

timedelta errors.

Fixes #1865
Let's first start by reproducing the results of the issue. The issue
includes some example code for reproduction, which we can use. We'll
create a new file called `reproduce.py` and paste the example code
into it.
```
create reproduce.py
```
[File: /marshmallow-code__marshmallow/reproduce.py (1 lines total)]
1:
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
Now let's paste in the example code from the issue.\n
```
append $'from marshmallow.fields import
TimeDelta\nfrom datetime import timedelta\n\ntd_field =
TimeDelta(precision="milliseconds")\n\nobj = dict()\nobj["td_field"] =
timedelta(milliseconds=345)\n\n
print(td_field.serialize("td_field", obj))'
```
[File: /marshmallow-code__marshmallow/reproduce.py
(9 lines total after edit)]
(this is the beginning of the file)
1:from marshmallow.fields import TimeDelta
2:from datetime import timedelta
3:
4:td_field = TimeDelta(precision="milliseconds")
5:
6:obj = dict()
7:obj["td_field"] = timedelta(milliseconds=345)
8:
9:print(td_field.serialize("td_field", obj))
(this is the end of the file)
[File updated (edited at line 1). Please review the changes and
make sure they are correct (correct indentation, no duplicate lines,
etc). Edit the file again if necessary.]
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
Now let's run the code to see if we see the same output as the issue.\n
```
python reproduce.py
```
344
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$

19842

We are indeed seeing the same output as the issue.The issue suggests
that we should look at line 1474 of the `fields.py` file to see
if there is a rounding issue. Let's open the `fields.py` file and
navigate to line 1474 to see the relevant code. First we should
find the `fields.py` file in the repository. It is likely to be in
the `src/marshmallow` directory, but we
should check to be sure.\n
```
ls -F
```
AUTHORS.rst
CHANGELOG.rst
CODE_OF_CONDUCT.md
CONTRIBUTING.rst
LICENSE
MANIFEST.in
NOTICE
README.rst
RELEASING.md
azure-pipelines.yml
docs/
examples/
performance/
pyproject.toml
reproduce.py
setup.cfg
setup.py
src/
tests/
tox.ini
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
It looks like the `src` directory is present, which
suggests that the `fields.py` file is likely to be
in the `src` directory. Let's use find_file to see where it is.\n
```
find_file "fields.py" src
```
Found 1 matches for "fields.py" in /marshmallow-code__marshmallow/src:
/marshmallow-code__marshmallow/src/marshmallow/fields.py
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
It looks like the `fields.py` file is present in the
`./src/marshmallow/` directory. The issue also points to a
specific URL with line number 1474.
We should navigate to that line in fields.py to see the relevant
code for the `TimeDelta` serialization.\n
```

19843



open src/marshmallow/fields.py 1474
```
[File: /marshmallow-code__marshmallow/src/marshmallow/fields.py
(1997 lines total)]
(1458 more lines above)
1459: self.WEEKS,
1460:)
1461:
1462: if precision not in units:
1463: msg = 'The precision must be {} or "{}".'.format(
1464: ", ".join([f'"{each}"' for each in units[:-1]]),

units[-1]
1465:)
1466: raise ValueError(msg)
1467:
1468: self.precision = precision
1469: super().__init__(**kwargs)
1470:
1471: def _serialize(self, value, attr, obj, **kwargs):
1472: if value is None:
1473: return None
1474: base_unit = dt.timedelta(**{self.precision: 1})
1475: return int(value.total_seconds() / base_unit.total_seconds())
1476:
1477: def _deserialize(self, value, attr, data, **kwargs):
1478: try:
1479: value = int(value)
1480: except (TypeError, ValueError) as error:
1481: raise self.make_error("invalid") from error
1482:
1483: kwargs = {self.precision: value}
1484:
1485: try:
1486: return dt.timedelta(**kwargs)
1487: except OverflowError as error:
1488: raise self.make_error("invalid") from error
1489:
1490:
1491:class Mapping(Field):
1492: """An abstract class for objects with key-value pairs.
1493:
1494: :param keys: A field class or instance for dict keys.
1495: :param values: A field class or instance for dict values.
1496: :param kwargs: The same keyword arguments that :class:`Field`

receives.
1497:
1498: .. note::
1499: When the structure of nested data is not known,

you may omit the
1500: `keys` and `values` arguments to prevent content validation.

19844

1501:
1502: .. versionadded:: 3.0.0rc4
1503: """
1504:
1505: mapping_type = dict
1506:
1507: #: Default error messages.
1508: default_error_messages = {"invalid": "Not a valid mapping type."}
1509:
1510: def __init__(
1511: self,
1512: keys: typing.Optional[typing.Union[Field, type]] = None,
1513: values: typing.Optional[typing.Union[Field, type]] = None,
1514: **kwargs,
1515:):
1516: super().__init__(**kwargs)
1517: if keys is None:
1518: self.key_field = None
1519: else:
1520: try:
1521: self.key_field = resolve_field_instance(keys)
1522: except FieldInstanceResolutionError as error:
1523: raise ValueError(
1524: '"keys" must be a subclass or instance of '
1525: "marshmallow.base.FieldABC."
1526:) from error
1527:
1528: if values is None:
1529: self.value_field = None
1530: else:
1531: try:
1532: self.value_field = resolve_field_instance(values)
1533: except FieldInstanceResolutionError as error:
1534: raise ValueError(
1535: '"values" must be a subclass or instance of '
1536: "marshmallow.base.FieldABC."
1537:) from error
1538: if isinstance(self.value_field, Nested):
1539: self.only = self.value_field.only
1540: self.exclude = self.value_field.exclude
1541:
1542: def _bind_to_schema(self, field_name, schema):
1543: super()._bind_to_schema(field_name, schema)
1544: if self.value_field:
1545: self.value_field = copy.deepcopy(self.value_field)
1546: self.value_field._bind_to_schema(field_name, self)
1547: if isinstance(self.value_field, Nested):
1548: self.value_field.only = self.only
1549: self.value_field.exclude = self.exclude
1550: if self.key_field:

19845

1551: self.key_field = copy.deepcopy(self.key_field)
1552: self.key_field._bind_to_schema(field_name, self)
1553:
1554: def _serialize(self, value, attr, obj, **kwargs):
1555: if value is None:
1556: return None
1557: if not self.value_field and not self.key_field:
1558: return self.mapping_type(value)
(439 more lines below)
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
We are now looking at the relevant section of the `fields.py` file
where the `TimeDelta` serialization occurs. The issue suggests that
there is a rounding problem near line 1474. The current implementation
uses integer division, which truncates the decimal part and can lead
to incorrect rounding on line 1475.To fix this issue, we should ensure
that the division results in a float, and then round the result to
the nearest integer before converting it to an int. This should
preserve the milliseconds precision as expected. Let's make the
necessary edit to the code.\n
```
edit $' return int(value.total_seconds() /
base_unit.total_seconds())'
$' return int(round(value.total_seconds() /
base_unit.total_seconds()))'
```
[File: /marshmallow-code__marshmallow/src/marshmallow/fields.py
(1997 lines total after edit)]
(1424 more lines above)
1425:
1426: :param precision: Influences how the integer is interpreted

during
1427: (de)serialization. Must be 'days', 'seconds', 'microseconds',
1428: 'milliseconds', 'minutes', 'hours' or 'weeks'.
1429: :param kwargs: The same keyword arguments that :class:`Field`

receives.
1430:
1431: .. versionchanged:: 2.0.0
1432: Always serializes to an integer value to avoid rounding

errors.
1433: Add `precision` parameter.
1434: """
1435:
1436: DAYS = "days"
1437: SECONDS = "seconds"
1438: MICROSECONDS = "microseconds"
1439: MILLISECONDS = "milliseconds"
1440: MINUTES = "minutes"
1441: HOURS = "hours"

19846

1442: WEEKS = "weeks"
1443:
1444: #: Default error messages.
1445: default_error_messages = {
1446: "invalid": "Not a valid period of time.",
1447: "format": "{input!r} cannot be formatted as a timedelta.",
1448: }
1449:
1450: def __init__(self, precision: str = SECONDS, **kwargs):
1451: precision = precision.lower()
1452: units = (
1453: self.DAYS,
1454: self.SECONDS,
1455: self.MICROSECONDS,
1456: self.MILLISECONDS,
1457: self.MINUTES,
1458: self.HOURS,
1459: self.WEEKS,
1460:)
1461:
1462: if precision not in units:
1463: msg = 'The precision must be {} or "{}".'.format(
1464: ", ".join([f'"{each}"' for each in units[:-1]]),

units[-1]
1465:)
1466: raise ValueError(msg)
1467:
1468: self.precision = precision
1469: super().__init__(**kwargs)
1470:
1471: def _serialize(self, value, attr, obj, **kwargs):
1472: if value is None:
1473: return None
1474: base_unit = dt.timedelta(**{self.precision: 1})
1475: return int(round(value.total_seconds() /

base_unit.total_seconds()))
1476:
1477: def _deserialize(self, value, attr, data, **kwargs):
1478: try:
1479: value = int(value)
1480: except (TypeError, ValueError) as error:
1481: raise self.make_error("invalid") from error
1482:
1483: kwargs = {self.precision: value}
1484:
1485: try:
1486: return dt.timedelta(**kwargs)
1487: except OverflowError as error:
1488: raise self.make_error("invalid") from error
1489:

19847

1490:
1491:class Mapping(Field):
1492: """An abstract class for objects with key-value pairs.
1493:
1494: :param keys: A field class or instance for dict keys.
1495: :param values: A field class or instance for dict values.
1496: :param kwargs: The same keyword arguments that :class:`Field`

receives.
1497:
1498: .. note::
1499: When the structure of nested data is not known, you may
1500: omit the `keys` and `values` arguments to prevent content

validation.
1501:
1502: .. versionadded:: 3.0.0rc4
1503: """
1504:
1505: mapping_type = dict
1506:
1507: #: Default error messages.
1508: default_error_messages = {"invalid": "Not a valid mapping type."}
1509:
1510: def __init__(
1511: self,
1512: keys: typing.Optional[typing.Union[Field, type]] = None,
1513: values: typing.Optional[typing.Union[Field, type]] = None,
1514: **kwargs,
1515:):
1516: super().__init__(**kwargs)
1517: if keys is None:
1518: self.key_field = None
1519: else:
1520: try:
1521: self.key_field = resolve_field_instance(keys)
1522: except FieldInstanceResolutionError as error:
1523: raise ValueError(
1524: '"keys" must be a subclass or instance of '
1525: "marshmallow.base.FieldABC."
(472 more lines below)
[File updated (edited at line 1475). Please review the changes and make
sure they are correct (correct indentation, no duplicate lines, etc).
Edit the file again if necessary.]
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
The code has been updated to use the `round` function, which should fix
the rounding issue. Before submitting the changes, it would be prudent
to run the reproduce.py code again to ensure that this change has
the desired effect. I see that "Current directory" is still
`/marshmallow-code__marshmallow`, so we can just run `reproduce.py`

19848

directly.\n
```
python reproduce.py
```
345
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
The output has changed from 344 to 345, which suggests that the rounding
issue has been fixed. Let's remove the reproduce.py file since it is no
longer needed.\n
```
rm reproduce.py
```
Your command ran successfully and did not produce any output.
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
rm doesn't have any output when it deletes successfully, so that must
have worked. Now that we have fixed the issue, we should submit our
changes to the code base. Let's submit the changes using the `submit`
command.\n
```
submit
```
--- END OF DEMONSTRATION ---

Here is a template for the next step prompt. Observations from the environment are provided to the
agent using this template.

Next Step Template

{observation}
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

This template is used to indicate that the last command the agent executed was successful and did not
produce any output.

Next Step no Output Template

Your command ran successfully and did not produce any output.
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

This template is specifically tailored for the search_repo command. It is used to display the search
results to the agent.

19849

Search Results

Your command ran successfully and produced the following related
functions/classes for {search_term}:
For each item, `fname` denotes the source file, `line`
denotes the line number, `kind` means whether it
is definition or reference, and `info` contains the specific content.
{codegraph_context}
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

A.14.2 Expansion Prompts

This section provides templates for the expansion prompts. These prompts are used to guide the agent in
suggesting improved alternate actions using execution feedback from the previous trajectory.

Edit Expansion Template

You will be given information about a previous action and its trajectory.
Your goal is to suggest a refined or alternative action that better resolves
the issue at hand.
Here is the information about the previous modification:

Previous action:
<previous_action>
{action}
</previous_action>

Trajectory after the action:
<previous_trajectory>
{prev_traj}
</previous_trajectory>

Instructions:
1. Analyze the previous action and its trajectory.
2. Suggest a replacement action that improves upon the previous one.
3. Focus on refining the current edit, modifying different sections,
or making small insertions as needed.
4. Keep your suggestion concise and directly related to the file
modification.

Before providing your final suggestion, wrap your analysis
process in <analysis> tags. In this analysis:
1. Summarize the previous action and its trajectory
2. Identify the key issues or shortcomings in the previous action
3. List potential improvements or alternative approaches
4. Consider how these changes might affect the trajectory

You need to format your output using three fields; analysis,
discussion and command.

19850

Insert Expansion Template

You will be given information about a previous action and its trajectory.
Your goal is to suggest a single, concise improvement that replaces the
previous action. Here's the information about the previous modification:

Previous action:
<action>
{action}
</action>

Trajectory after the action:
<prev_traj>
{prev_traj}
</prev_traj>

Your task is to analyze this information and suggest one improvement.
This improvement should replace the previous action, not be a next step.
Focus on one of these approaches:
1. A different insertion with varied content
2. An insertion in a new location
3. Editing existing content for a more effective resolution

Before providing your final suggestion, wrap your analysis process in
<analysis> tags. In this analysis:
1. Summarize the previous action and its trajectory
2. Identify the key issues or shortcomings in the previous action
3. List potential improvements or alternative approaches
4. Consider how these changes might affect the trajectory

You need to format your output using three fields; analysis,
discussion and command.

Append Expansion Template

Your goal is to suggest alternative content for appending to a file,
based on a previous action and its outcome.
Here's the information about the previous operation:

<previous_action>
{action}
</previous_action>

<previous_trajectory>
{prev_traj}
</previous_trajectory>

Your task is to suggest a replacement for the previous append action, not to
provide the next action in the sequence. The reproduction script you've
written may lack completeness on its own. Would you like to review
it and write a more comprehensive version of the script, incorporating

19851

the context of the previous trajectory?

1. Analyze the previous action:
- What specific content was appended?
- What was the likely purpose of this content?

2. Brainstorm at least three alternative content ideas:
- Describe each alternative and how it differs from the original.
- Number each alternative for easy reference.

3. Evaluate each alternative:
- How does it potentially improve exploration?
- What new insights might it provide?

4. Select the best alternative:
- Which option do you think is most promising?
- Justify your choice in 1-2 sentences.

Before providing your final suggestion, wrap your analysis process in
<analysis> tags. In this analysis:
1. Summarize the previous action and its trajectory
2. Identify the key issues or shortcomings in the previous action
3. List potential improvements or alternative approaches
4. Consider how these changes might affect the trajectory

You need to format your output using three fields; analysis, discussion and
command.

Submit Expansion Template

You are about to submit the changes. Have you double-checked that your
changes don't affect other test cases or have any unintended consequences or
completely fix the issue? Please review once more before submitting.

Create Expansion Template

Before trying to reproduce the bug, let's first try to localize the issue,
we can test the issue after the fix.

Critic Prompt Template

You are an AI system tasked with selecting the best alternative action to
replace a previously executed action in a process or workflow. Your goal is
to evaluate the given alternatives and choose the most effective
replacement.
Here is the previously executed action:
<previous_action>

{previous_action}
</previous_action>

19852

Here is the list of alternative actions to consider:
<alternative_actions>
{actions}
</alternative_actions>

Instructions:
1. Evaluate each action in the list of alternative actions based on the
following criteria:

a. It must be different from the previous action.
b. It should replace the previous action, not be implemented after it.
c. It should be more effective than the previous action.

2. Analyze each action inside <action_analysis> tags, following this
structure:

- List each action with a number.
- For each action, explicitly state whether it meets each of the three
criteria.
- Provide a brief explanation for why the action does or doesn't meet
each criterion.
- If the action meets all criteria, give it a numerical
effectiveness score (1-10).

3. After evaluating all actions, select the best one that meets all the
criteria and is the most effective replacement for the previous action.

4. Provide the index of the best action using <best_action_index>
tags starting from 0.

Example output format:
<action_analysis>
[All actions analysis one by one]
</action_analysis>

<best_action_index>[Your selected best action index]</best_action_index>

A.14.3 Trajectory Selection Prompts

This prompt is used to get the best patch among all the patches generated by the agent. It two rubrics to
evaluate the patches and select the best one.

Patch Analysis Guidelines

SETTING: You are an expert software engineering evaluator analyzing patches for GitHub issues.
Your task is to evaluate and select the most effective solution patch.
Evaluation Criteria:

1. Bug Fixing Score (0-2):
0: Incorrect changes that won't fix the issue
1: Partially correct changes (might fix some cases)
2: Correct changes that fully fix the issue

2. Regression Risk (0-2):

19853

0: High regression risk
1: Moderate regression risk
2: Low regression risk

Analysis Format:
<patch_analysis>

<patch_number>[Number]</patch_number>
<bug_fixing_analysis>
[Analysis of fix approach]
<score>[0-2]</score>

</bug_fixing_analysis>
<regression_risk_analysis>
[Analysis of risks]
<score>[0-2]</score>

</regression_risk_analysis>
</patch_analysis>

Key Considerations:

1. Core issue resolution effectiveness

2. Potential regression impacts

3. Edge case handling

4. Implementation quality

Your analysis should include:

• Detailed patch changes evaluation

• Side-by-side comparison

• Edge case consideration

• Independent assessment

Final Output Format:
<best_patch>[Selected patch number]</best_patch>

This prompt is used to critique a generated patch based on the output of running test cases after applying
the patch.

Critique Generation Template

SETTING: You are an expert software engineer evaluating a proposed patch for a GitHub issue.
Your task is to analyze and critique the effectiveness of the solution.
Evaluation Steps:

1. Examine patch content in: <patch>[patch content]</patch>

2. Review issue details in: <github_issue>[issue description]</github_issue>

3. Consider patch status in: <patch_status>[status details]</patch_status>

4. Apply scoring criteria:

Bug Fixing Score (0-2):

19854

0: Incorrect changes
1: Partially correct changes
2: Correct changes

Regression Risk (0-2):
0: High regression risk
1: Moderate regression risk
2: Low regression risk

5. Review test results in: <bug_fixing_tests>[test results]</bug_fixing_tests>
<regression_risk_tests>[risk results]</regression_risk_tests>

Analysis Format:
<evaluation>

[Detailed analysis including:
- Relevant patch/issue quotes
- Solution explanation
- Effectiveness assessment
- Risk-benefit analysis]

</evaluation>
Critique Format:
<critique>

[Concise (<100 words) summary focusing on:
- Key effectiveness points
- Critical impact factors
Note: Positive for solved status,

negative for unsolved status]

</critique>
Important Notes:

• Avoid mentioning specific test names

• Maintain clear, focused language

• Analyze as if status and test results were unknown

• Keep critique concise and impactful

19855

