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Abstract

Multimodal learning has celebrated remark-
able success across diverse areas, yet faces
the challenge of prohibitively expensive data
collection and annotation when adapting mod-
els to new environments. In this context, do-
main adaptation has gained growing popularity
as a technique for knowledge transfer, which,
however, remains underexplored in multimodal
settings compared with unimodal ones. This
paper investigates multimodal domain adapta-
tion, focusing on a practical partially shifting
scenario where some modalities (referred to
as anchors) remain domain-stable, while oth-
ers (referred to as drifts) undergo a domain
shift. We propose a bi-alignment scheme to
simultaneously perform drift-drift and anchor-
drift matching. The former is achieved through
adversarial learning, aligning the representa-
tions of the drifts across source and target do-
mains; the latter corresponds to an "anchor
dragging drift" strategy, which matches the dis-
tributions of the drifts and anchors within the
target domain using the optimal transport (OT)
method. The overall design principle features
Adversarial Alignment with Anchor Dragging
Drift, abbreviated as A3D2, for multimodal
domain adaptation with partially shifted modal-
ities. Comprehensive empirical results verify
the effectiveness of the proposed approach, and
demonstrate that A3D2 achieves superior per-
formance compared with state-of-the-art ap-
proaches. The code is available at: https:
//github.com/sunjunaimer/A3D2.git.

1 Introduction

Multimodal learning, which leverages heteroge-
neous and complementary signals to perform stan-
dard machine learning tasks, has risen to promi-
nence in a broad spectrum of applications, such
as medical analysis (Wang et al., 2024), social
media (Yu et al., 2023), and affective computing
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Figure 1: Multimodal domain adaptation for partial
domain shift.

(Guo et al., 2024). Nevertheless, constructing high-
quality multimodal datasets for model training is
prohibitively expensive, as data collection requires
multiple devices or sensors, and annotation de-
mands extensive manual effort. To this end, unsu-
pervised domain adaptation, which aims to transfer
knowledge from a label-rich source domain to a
related but unlabeled target domain, is prevalent for
mitigating the scarcity of annotated data. Domain
adaptation typically aligns the target and source do-
mains during training, thereby enabling the model
supervised with only source domain labels to gen-
eralize well for the target domain.

Unsupervised domain adaptation has been ex-
tensively studied in the computer vision and nat-
ural language processing communities separately,
showcasing impressive results in a multitude of uni-
modal tasks including image classification (Hoyer
et al., 2023), object detection (Du et al., 2024),
question answering (Zhang et al., 2024c), among
others. In contrast, multimodal domain adaptation
remains relatively underexplored and has garnered
increasing research interest in recent years (Zhang
et al., 2024a; Dong et al., 2025). A distinct char-
acteristic of multimodal settings is that different
modalities reside in separate physical spaces, and
hence they may experience varying degrees of do-
main shift when the environment changes.

In this paper, we particularly consider the par-
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tially shifting scenario, as illustrated in Figure 1(a),
where all modalities are classified into anchor
modalities (or anchors) and drift modalities (or
drifts): the former stays unchanged, while the lat-
ter undergoes domain shifts. This phenomenon is
commonly encountered in practical applications.
For instance, a conversational robot is equipped
with a multimodal emotion recognition system that
utilizes acoustic, lexical, and visual information to
detect a speaker’s emotions. When the working
scenario shifts from day to night, the changes in
illumination conditions induce a domain shift in
the visual modality, whereas the acoustic and lex-
ical modalities remain stable. To the best of our
knowledge, this work represents the first effort to
identify and investigate this distinct yet practical
case of multimodal domain adaptation.

Towards the goal of minimizing the discrepancy
between the source domain and the partially shifted
target domain, this work develops a multimodal do-
main adaptation (MMDA) framework, leveraging
techniques from information bottleneck (IB) the-
ory (Saxe et al., 2019; Kawaguchi et al., 2023),
adversarial learning (Long et al., 2018; Chen et al.,
2022a), and optimal transport (OT) (Fatras et al.,
2021). Specifically, we first construct the model
with pretrained backbones for each modality. In
order to retain general knowledge while adapting to
new tasks and domains, the pretrained backbones
are partially finetuned with some layers frozen.
Then, we apply IB theory to formulate the train-
ing objective, for the sake of attaining informative
representations and promoting modality indepen-
dence. Through the IB method, we enforce each
modality to independently perform label prediction,
thus preventing some "lazy" modalities from being
under-trained (Sun et al., 2023).

Subsequently, in the representation space, as Fig-
ure 1(b) shows, domain gap is reduced using two
strategies: 1) drift-drift alignment— matching the
drift across the source and target domains; that is,
we conduct adversarial alignment (AA) for each
drift using its representation and label prediction
information to achieve category-level alignment.
2) anchor-drift alignment— matching the anchor
and drift within the target domain; namely, we de-
velop an OT-based anchor-dragging-drift (ADD)
approach to push the anchor and drift closer, which
facilitates the promotion of domain alignment.

In summary, the present work proposes a novel
approach, Adversarial Alignment with Anchor
Dragging Drift (A3D2), for MMDA with partially

shifted modalities. The primary contributions are
threefold.

1. We investigate, for the first time, a practical
partial domain shift scenario in multimodal
learning and propose a novel MMDA frame-
work. Each modality learns its representation
and predicts labels, both of which are used
by the adversarial discriminator to align the
source and target domains.

2. To boost the domain alignment, we exploit
connections between the anchor and drift, and
propose to match their representation distribu-
tions using the OT method.

3. Extensive experiments conducted on widely
used benchmark datasets demonstrate the su-
perior performance of A3D2 compared to
competing approaches.

2 Related Works

2.1 Domain adaptation approaches
A plethora of works have been devoted to domain
adaptation, which can be broadly grouped into
three categories: statistical, adversarial, and op-
timal transport (OT) methods.
Statistical methods: Statistical methods usually
learn domain-invariant representations via minimiz-
ing the moment-based distribution discrepancy of
the target and source domains. Maximum mean
discrepancy (MMD) based methods, such as DDC
(Tzeng et al., 2014) and MK-MMD (Long et al.,
2015), focus on aligning the first-order moment
(i.e., the mean) of the representations. Coral (Sun
et al., 2016) and JDDA (Chen et al., 2019) are
typical second-order moment approaches, which
matches the covariance of the representations. Fur-
thermore, CMD (Zellinger et al., 2017) extends to
high-order moments matching, aligning the central
moments (mean, variance, skewness, etc.).
Adversarial methods: Starting from the pioneer-
ing work DANN (Ganin et al., 2016), numerous
studies have applied adversarial methods to align
the representation from the source and target do-
mains. MDAN (Zhao et al., 2018) addresses multi-
ple source domain adaptation and devises two ver-
sions of optimization strategies. Label prediction
information is introduced as a condition for domain
alignment in CDAN (Long et al., 2018), MADA
(Pei et al., 2018) and CAN (Wu et al., 2021). A
discriminator-free adversarial model is developed
via reusing the task-specific classifier as a discrimi-
nator in DALN (Chen et al., 2022a). CDA (Yadav
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et al., 2023) and LUHP (Zhang et al., 2024b) inte-
grate contrastive learning into domain adaptation
to achieve class-level alignment. f -DD (Wang and
Mao) introduces a novel measure, f -domain dis-
crepancy, for adversarial domain adaptation, and
obtains new target error and sample complexity
bounds. Other adversarial methods, PCL (Li et al.,
2024) and DADA(Ren et al., 2024), incorporate
data augmentation from the raw feature space and
representation space, respectively.
Optimal transport (OT) methods: Optimal trans-
port involves measuring the discrepancy between
two distributions and matching them, which has
gained popularity in domain adaptation recently
due to its solid theoretical support. COT (Liu et al.,
2023) formulates the domain alignment as an op-
timal transport problem to construct a mapping
between clustering centers in the source and target
domains. InfoOT (Chuang et al., 2023) propose
an information theoretic extension of OT that max-
imizes the mutual information between domains
while minimizing geometric distances. Work (Mon-
tesuma et al., 2024) devises an efficient OT-based
domain adaptation method for Gaussian mixture
models. To reduce the computational complexity
of conventional OT, UMOT (Fatras et al., 2021)
and POT (Nguyen et al., 2022) propose unbalanced
and partial mini-batch optimal transport for domain
adaptation, respectively, enabling OT methods to
be applicable for large-scale data.

2.2 Multimodal domain adaptation

Compared with its unimodal counterpart, multi-
modal domain adaptation remains significantly
less explored. MM-SADA (Munro and Damen,
2020) combines multimodal self-supervised align-
ment with within-modal adversarial alignment for
MMDA. MD-DMD (Yin et al., 2022) proposes
dynamically distilling knowledge across modali-
ties in adversarial learning to boost adaptability.
The study (Kim et al., 2021) develops a contrastive
learning approach with properly designed sampling
strategies to simultaneously regularize cross-modal
and cross-domain feature representations. MC-
TTA (Xiong et al., 2024) utilizes memory banks
and self-assembled source-friendly feature recon-
struction to enhance multimodal prototype align-
ment and cross-modal relative consistency. Novel
language-guided domain divergence measurement
losses are proposed in CLIP-Div (Zhu et al., 2024),
which designs a language-guided pseudo-labeling
strategy for calibrating the target pseudo labels in

vision-language domain adaptation tasks. Addi-
tionally, the recent survey paper (Dong et al., 2025)
provides a more comprehensive introduction to cur-
rent research on MMDA.

In light of the aforementioned prior works, this
paper investigates MMDA in a scenario of practi-
cal value, and proposes A3D2, building upon the
adversarial and optimal transport methods.

3 Method: A3D2

Before diving into the proposed method, A3D2, we
give the definitions of some notations to be used.
Notations: For any positive integer I , let [I]+ and
[I] denote the set {1, 2, · · · , I} and {0, 1, · · · , I},
respectively. When M denotes a matrix, we use
vector [M ]i to denote its i-th column. Let 1 de-
note any all-one vector of proper size. Without
particular statement, all vectors in this paper are
supposed to be column vector. Notation ":=" is
used for definition.

Suppose that in the multimodal learning setting,
there are M + 1 independent modalities indexed
by 0, 1, 2, · · · ,M . For consistency of expression,
we introduce an auxiliary modality, with index
M + 1, as the joint of all the M + 1 indepen-
dent modalities, which results in a total number
of M + 2 modalities. The training dataset is de-
noted as {{xm,n}m∈[M ], {yn,m}m∈[M+1]}n∈[N ]+ ,
where N is the number of samples, n indexes the
samples, pm-dimensional vector xm,n represents
the raw feature of modality m, and yn,m is the la-
bel. In some cases where all modalities share the
same label, yn,0 = yn,1 = · · · = yn,M+1 holds.
Suppose there are C categories in the classification
task; then label yn,m can be either a one-hot vec-
tor or a scalar in [C]+, and we adopt either form
as necessary in the rest of the paper. For consis-
tency, we use xn,M+1 := [xn,0;xn,1; · · · ;xn,M ]
to aggregate all modalities. Let Xm and Ym be
general feature and label random variables for all
m ∈ [M + 1], with xn,m and yn,m being their
specific instances.

As mentioned above, in the considered partial
domain shift scenario, some modalities remain sta-
ble across the source and target domains, and others
undergo shift; the former is referred to as anchors
and the latter is drifts. For brevity of description
and without loss of generality, we assume there are
one anchor and multiple drifts; that is, modality 0
represents the anchor, and all the rest M indepen-
dent modalities are the drifts. We use superscript s
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Figure 2: Model framework with 2 modalities as an example (multimodal representation Z2 is a concatenation of
Z0 and Z1; solid and dashed regular arrows denote the flows of source and target domains, respectively; red, blue
and green arrows represent the data flow of modalities 0, 1, and 2, respectively; double-headed arrows supervision
signals, corresponding to the information bottleneck loss LIB(θ), domain discrimination loss LD(θ) and optimal
transport loss LOT (θ)).

and t to distinguish the source and target domains,
and use a and d to distinguish the anchor and drift.
For example, Xd,s

m ,m ∈ [M ]+ represents the fea-
ture of drift m from source domain. Each sample
is associated with a domain label Y D ∈ 0, 1, indi-
cating whether it belongs to the source domain (0)
or the target domain (1).

In the sequel, we will present our model frame-
work and derive the training objective function,
including IB based representation learning, adver-
sarial alignment (AA) of the source and target do-
mains, and anchor-dragging-drift (ADD) strategy
using optimal transport scheme.

3.1 Model architecture

In this section, we focus on the model framework
and ignore the implementation details, which will
be elaborated later in the Numerical Results sec-
tion. Figure 2 illustrates the proposed multimodal
domain adaptation framework in an example with
two modalities: one anchor (acoustic) and one
drift (visual), namely, M = 1. The raw fea-
tures Xm, ∀m ∈ [M ] are first tokenized and fed
into the pretrained transformer-based models, of
which the top layers will be finetuned. Follow-
ing the pretrained models are sequence encoders
which further encode the sequence features into a p-
dimensional vector representation Zm,∀m ∈ [M ].
More formally, for each modality m ∈ [M ], the
corresponding pretrained model and the sequence
encoder can be summarized by a deterministic
encoder function fe

m(·;θe
m) : Rpm → Rp with

trainable parameter θe
m; then we have Zm =

fe
m(Xm;θe

m) (Zm is normalized with ℓ2-norm be-
ing 1). The multimodal representation is denoted
by ZM+1 := [Z1,Z2, · · · ,ZM ], a concatenation
of the representations of all modalities.

Each modality m ∈ [M + 1] is associated with
a classifier f c

m(·,θc
m) with parameter θc

m for la-
bel prediction; that is, Ŷm = f c

m(Zm,θc
m). The

multimodal prediction ŶM+1 is assigned to be the
ultimate predicted label.

For each drift m,m ∈ [M ]+, we will train a
domain discriminator m with parameter θD

m to fa-
cilitate the domain alignment, which will be intro-
duced latter. For brevity of expression, we use θ :=
{θc

M+1} ∪ {θe
m,θc

m}m∈[M ] ∪ {θD
m}m∈[M ]+ to col-

lect all model parameters, and θe := {θe
m}m∈[M ]

to collect the parameters of all encoders.

3.2 IB-based representation learning
With the above model framework, the information
follows Xm → Zm → Ym, ∀m ∈ [M + 1]. In-
formation bottleneck based representation learning
aims to obtain representations Zs

m, ∀m ∈ [M + 1],
such that they capture generalizable features, and
thereby alleviate the difficulty in aligning the
source and target representations.

Mathematically, the optimal representation is
generated by minimizing the following IB loss on
the source domain:

LIB(θ) :=
∑

m∈[M+1]

βI(Xs
m,Zs

m)−I(Zs
m,Y s

m), (1)
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where I(·, ·) denotes the mutual information of
any two random variables, and β is a predefined
coefficient.

From the perspective of information theory, it is
obvious that the resultant representation Zs

m retains
minimal information from the raw feature Xs

m yet
maintains the maximal information of the label Y s

m.
Therefore, Zs

m is an optimal representation in the
sense of information bottleneck theory (Saxe et al.,
2019; Kawaguchi et al., 2023). Moreover, each
individual modality m, for all m ∈ [M ], is en-
forced to generate its own optimal representation,
which promotes modality independence and pre-
vents some weak modalities from being dominated
by strong ones.

Then, we specify how the two information terms
in Eq. (1) are computed.

I(Xs
m,Zs

m)= H(Zs
m)−H(Zs

m|Xs
m)

=H(Zs
m)=EZs

m
[− log p(Zs

m)],
(2)

where H(·) represents entropy; and
H(Zs

m|Xs
m) = 0, since Zm = fe

m(Xm;θe
m) is

a deterministic function. It is a convention to
assume that Zs

m follows Gaussian distribution
N (µs

m,Σs
m) (µs

m ∈ Rp, and Σs
m ∈ Rp×p is a

diagonal matrix). As a result, we can estimate µs
m

and Σs
m with the representations zs

n,m, n ∈ [N s]+,
and hence the entropy of H(Zs

m) can be obtained
as following:

H(Zs
m) =

1

2
log |Σs

m|+
d

2
(1 + log(2π)), (3)

where |Σs
m| represents the determinant of Σs

m.
Similarly, I(Zs

m,Y s
m) can be written as:

I(Zs
m,Y s

m) = H(Y s
m)−H(Y s

m|Zs
m)

= Hs
Y,m −H(Y s

m|Zs
m)

= Hs
Y,m+

1

N s

Ns∑

n=1

log p(ys
n,m|zs

n,m), (4)

where H(Y s
m) = Hs

Y,m is a constant independent
from the model parameter θ.

Combining Eqs. (1), (2), (3) and (4) gives the in-
formation bottleneck loss as follows (with constant
terms omitted):

LIB(θ)=
M+1∑

m=0

[β
2
log |Σs

m|

− 1

N s

Ns∑

n=1

log p(ys
n,m|zs

n,m)
]
,

(5)

where the first term is a regularization for the repre-
sentation that suppresses the noisy and ineffective
information; and the second term corresponds to
the negative log-likelihood of the prediction (equiv-
alent to cross-entropy loss).

3.3 AA: drift-drift alignment
With the aforementioned IB-based learning ap-
proach, we can separately attain the representation
(Zm) and label prediction (Ŷm) of each modality
m,∀m ∈ [M ] separately. Then, for each drift
m,m ∈ [M ]+, we align its source and target do-
mains from the representation space using an ad-
versarial method.

Taking inspiration from CDAN, we incorporate
the category (i.e, label) information into the rep-
resentation when aligning the source and target
domains for the drifts. Specifically, as shown in
Figure 2, the input to the domain discriminator D
is the Kronecker product of the representation Zm

and the predicted label probability Ŷm for each
drift m,m ∈ [M ]+; that is, Sm := Zm⊗ Ŷm. The
output is the domain prediction, Ŷ D, which is

The adversarial alignment boils down to solving
the following min-max problem:

min
θG

max
θD
LD(θ) :=

M∑

m=1

[
1

N t

Nt∑

n=1

log
(
D(sd,tn,m)

)

+
1

N s

Ns∑

n=1

log
(
1−D(sd,sn,m)

)
]
. (6)

where we define θG := {θe
m,θc

m}m∈[M ]+ and
θD := {θD

m}m∈[M ]+ for brevity.
Through adversarial alignment (AA), we achieve

drift-drift alignment across the source and target
domains. In what follows, we introduce anchor-
dragging-drift (ADD) strategy for anchor-drift
alignment within the target domain.

3.4 ADD: anchor-drift alignment
As shown in Figure 1, the drift in the target domain
undergoes shifts relative to both the anchor and the
drift in the source domain. In this section, we take
advantage of the anchor to drag the drift closer in
the target domain, which indirectly reduces the gap
between the source and target domains. This is
achieved using the optimal transport (OT) method,
which is commonly adopted to match two distri-
butions. Different from conventional OT methods
that transfer the samples between domains, the pro-
posed OT scheme in this work aligns two distri-
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butions from the perspective of dimension-wise
representation.

In specific, let Z̃m collect the representa-
tions of all samples for modality m; namely,
Z̃m := [zT

1,m; zT
2,m; · · · , zT

N,m] ∈ RN×p. The i-
coordinate (i = 1, 2, · · · , p) representation [Z̃m]i
of all samples (or a batch of samples in stochastic
gradient based training) is analogous to a sample
in typical OT methods. Let Zd,t

m := {[Z̃d,t
m ]i}pi=1

and Za,t
0 := {[Z̃a,t

0 ]i}pi=1 be the dimension-wise
representations of the drift and anchor in the
target domain, respectively. The corresponding
empirical distributions are denoted by µd,t

m :=
1
p

∑p
i=1 δ[Z̃d,t

m ]i
and µa,t

0 := 1
p

∑p
i=1 δ[Z̃a,t

0 ]i
, where

δ(·) is the Dirac at location (·).
The Kantorovich optimal transport (Courty et al.,

2017) between µd,t
m and µa,t

0 is formulated as a
convex optimization problem:

π∗
m := arg min

πm∈Πm

⟨Cm,πm⟩ , (7)

where Cm := 1p×p− 1
N Z̃T

m · Z̃0 is the dimension-
wise distance (or cost) between Z̃m and Z̃0, in-
duced by similarity (recalling that zn,m has ℓ2-
norm of 1, and 1p×p represents a p × p all-one
matrix); the solution π∗

m is known as transport plan
given Cm; Πm as defined below represents a dis-
tribution space where the distribution is associated
with marginals µd,t

m and µa,t
0 .

Πm = {π ∈ Rp×p|π · 1 = µd,t
m ; πT · 1 = µa,t

0 }.
For any fixed Cm, the Wasserstein distance be-

tween the drift distribution µd,t
m and the anchor

distribution µa,t
0 is defined as:

Wm := min
πm∈Πm

⟨Cm,πm⟩ = ⟨Cm,π∗
m⟩ . (8)

During model training, we optimize Cm to en-
able the anchor to drag the drift closer; that is,
the Wasserstein distance Wm,m ∈ [M ]+ between
drift m and the anchor is minimized, which trans-
lates to minimizing the OT loss function:

LOT (θ) :=
M∑

m=1

⟨Cm,π∗
m⟩ . (9)

3.5 A3D2: bi-alignment for MMDA
With the above formulations, our bi-alignment ap-
proach, A3D2, incorporating AA and ADD, is tan-
tamount to solving the optimization problem:

min
θ;πm∈Πm

[
LIB(θ) + γ1LOT (θ)

]

+ γ2

[
min
θG
LD(θ)−min

θD
LD(θ)

]
,

(10)

Algorithm 1 A3D2: bi-alignment for MMDA

1: Initialization: initialize model parameter θ0.
2: for k = 0 to K − 1 do
3: perform forward and calculate Cm;
4: solve the problem in Eq. (7) using a covex

problem solver to obtain π∗
m,∀m ∈ [M ]+;

5: calculate the overall objective as in Eq. (10)
and perform backward pass to compute
stochastic gradient;

6: update the model parameter us-
ing an optimizer (e.g., Adam):
θk+1 ← optimizer(θk, α).

7: end for
8: Return: Model parameter θK .

where γ1 and γ2 are constant coefficients balancing
the losses.

The model training framework is summarized in
Algorithm 1, where k indexes the iteration and
α is the learning rate. In each iteration, we first
calculate Cm, and then employ an off-the-shelf
convex optimization solver to solve problem in in
Eq. (7) to obtain π∗

m; with the transport plan π∗
m,

we compute the overall loss function as in Eq. (10),
followed by the backward pass and model update.

4 Experiments

Benchmark datasets: We evaluate our method
on two benchmark datasets, IEMOCAP (Busso
et al., 2008) and MIntRec (Zhang et al., 2022),
both containing acoustic, visual, and lexical modal-
ities. IEMOCAP is for the emotion recognition
task, composed of scripted and spontaneous dyadic
conversations between actors. Following work
(Zhao et al., 2021), we select samples from the
four classes — neutral, happy, sad and angry, to
construct the dataset for our experiments. MIntRec
is a dataset collected from the TV series Superstore
for intent recognition with 20 intent categories.

For each dataset, we split it evenly and randomly
into two subsets. One subset is used directly as the
source domain dataset, and the other, after some
manipulations, serves as the target domain dataset.
Specifically, for the target domain samples of the
IEMOCAP dataset, we inject Gaussian noise with
mean=0 and variance=0.01 into the drift acoustic
modality; for the drift visual modality, the bright-
ness of the video is reduced to 10 percent of its
original level, and Gaussian noise with mean=0
and variance=0.1 is added to each frame that is
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Methods IEMOCAP MIntRec
A L V ave. A L V ave.

DT 54.15 58.67 57.59 56.80 47.84 61.42 44.66 51.31
DANN 62.20 65.17 63.38 63.58 49.10 64.32 49.89 54.44
CDAN 58.30 64.51 68.26 63.69 51.63 63.24 53.05 55.97
MADA 62.08 62.07 64.14 62.76 50.74 64.57 48.30 54.54
DALN 61.83 70.25 64.97 65.68 24.47 28.29 24.39 25.72
PCL 61.96 61.88 61.43 61.76 52.25 65.42 49.26 55.64
f -DD 61.59 64.60 59.67 61.95 51.28 59.49 47.96 52.91
LUHP 64.75 60.59 60.69 62.01 53.61 63.38 53.87 56.59
DADA 62.82 64.40 65.34 64.19 52.49 66.37 52.80 57.22
A3D2 65.15 70.84 69.20 68.40 54.46 66.08 53.96 58.17

Table 1: The performance (in terms of F1 score) comparisons of A3D2 and the existing methods (the highest and
second highest F1 scores in each column are highlighted with bold font and blue color, respectively).

D
T

Anchor: A Anchor: L Anchor: V

A
3 D

2

Figure 3: t-SNE projection of the representations of
source (blue) and target (red) domain samples.

normalized with mean=(0.485, 0.456, 0.406) and
variance=(0.229, 0.224, 0.225) for the three chan-
nels; for the drift lexical modality, 40 percent of
the words in each utterance are randomly selected
and masked. For the MIntRec dataset, Gaussian
noise with mean=0 and variance=0.005 is injected
to the acoustic modality; the brightness of the video
is reduced to 30 percent of its original level, and
Gaussian noise with mean=0 and variance=0.05 is
added to each frame; 20 percent of the words in
each utterance are randomly selected and masked.
Baseline methods: In the following Comparison
Studies section, we compare our model, A3D2,
with DANN (Ganin et al., 2016), CDAN (Long
et al., 2018), MADA (Pei et al., 2018), DALN
(Chen et al., 2022a), PCL (Li et al., 2024), f -DD
(Wang and Mao), LUHP (Zhang et al., 2024b) and
DADA(Ren et al., 2024), which are introduced in
the Related Works section.
Implementation details: For the acoustic modal-

ity, WavLM (Chen et al., 2022b) followed by a
TextCNN is employed as the feature encoder. For
the visual modality, APViT pretrained on the RAF-
DB (Li et al., 2017) database is utilized for se-
quence feature extraction, and then a one-layer
LSTM is utilized to encode the sequence feature.
Bert-base (Devlin et al., 2018) and TextCNN are
adopted for the lexical modality. The parame-
ters in the last three layers of the pretrained mod-
els are set to be trainable, with all other parame-
ters frozen. The dimension of the representations
Zm, ∀m ∈ [M ], is 256. The Adam optimizer is
used for model training with learning rate 1×10−3,
momentum coefficient (0.9, 0.999) and batch size
48. The hyperparameter settings are β = 1× 10−3,
γ1 = 10, γ2 = 20. More details of the implementa-
tion can be found from the appendix and the code in
the supplementary material. We use the weighted
F1 score as model performance metric, which is ob-
tained by averaging the results from three repeated
experiments, conducted on four Nvidia A100 GPUs
with memory of 40GB.

4.1 Comparison studies

The F1 score comparisons are reported in Table 1,
where DT refers to direct transfer, meaning the
model is trained with only the source domain data
and directly tested on the target domain samples.
In the table, the columns "A", "L", and "V" corre-
spond to the results of experiments using acoustic,
lexical, and visual as anchor, respectively, while
the column "ave." shows the average result of
the three columns. On the IEMOCAP dataset,
A3D2 improves the average result over the best
baseline approach by a substantial margin of over
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Figure 4: The distance between the source and target domains of different modalities.

AA ADD A L V ave.
✗ ✗ 54.15 58.67 57.59 56.80
✓ ✗ 62.73 66.87 68.87 66.16
✗ ✓ 63.95 63.55 69.48 65.66
✓ ✓ 65.15 70.84 69.20 68.40

Table 2: Results of ablation studies on IEMOCAP.

2.5 percentage points. For any specific modality
as an anchor, A3D2 surpasses other methods by
at least 0.4 percentage points. On the MIntRec
dataset, A3D2 generally outperforms other meth-
ods, with only one exception: DADA slightly ex-
ceeds A3D2 by 0.29 percentage points when L is
the anchor. Note that while DALN demonstrates
satisfactory performance on IEMOCAP, it falls
short on MIntRec. These comparisons validate
the superior performance of A3D2 over current
competing approaches.

Figure 3 displays the t-SNE visualization of
the representation distributions on the IEMOCAP
dataset. The upper panel shows the results of DT,
where the two domains exhibit significant mis-
match, indicating that the model generalizes poorly
on the target domain. With A3D2, the two domains
show significantly improved category-level align-
ment, as illustrated in the lower panel of Figure 3.

4.2 Ablation studies

In this section, we present the ablation studies on
the IEMOCAP dataset for the two primary compo-
nents, i.e., adversarial alignment (AA) and anchor
dragging drift (ADD). As shown in Table 2, on av-
erage, both AA and ADD individually improve the
F1-score by at least 8 percentage points compared
to the baseline, which does not employ any adapta-
tion technique. With the joint contributions of AA
and ADD, A3D2 achieves further improvement,
reaching an average F1 score of 68.40. Regarding

the specific cases where the modalities A, L, and V
serve as anchors, A3D2 outperforms AA and ADD
in the cases of A and L, and is only marginally
weaker than ADD in the case of V.

In order to verify that AA, ADD, and A3D2

can reduce the gap between the source and tar-
get domains, we calculate the average category-
wise distance between the two domains using
their representations. Specifically, the center for
class c and modality m is computed as: z̄m,c =

1∑N
n=1 1yn,m=c

∑N
n=1 zn,m · 1yn,m=c. Then, the dis-

tance between the source and target domains for
modality m is defined as: Dm := 1

C

∑C
c=1 ||z̄s

m,c−
z̄t
m,c||2. A large (small) distance indicates a large

(resp. small) gap between two domains. Figure 4
exhibits the distance for different modalities re-
sulting from all approaches, where the distance
corresponding to DT represents the original gap
between the source and target domains.

Figures 4(a), 4(b), and 4(c) show that the dis-
tance of the anchor is naturally smaller than that of
the drifts. ADD results in a negligible increase in
distance for the anchor compared with DT, since
"anchor dragging drift" in the target domain causes
the anchor to deviate from its original position.
This small deviation is insignificant because A3D2,
with the assistance of AA, can significantly reduce
the gap of the anchor between the source and target
domains. The reason can be that when AA aligns
the drifts, it implicitly aligns the anchor as well.

As for the drifts, AA largely decreases the dis-
tance for A and L compared with DT, but slightly
increases the distance for V. In comparison, it is in-
teresting that although ADD is designed to directly
bring the anchor and drift in the target domain
closer, it indirectly reduces the distance of all drifts
across the source and target domains. Via combin-
ing AA and ADD, A3D2 effectively diminishes the
domain gap.
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From the above in-depth analysis on the IEMO-
CAP dataset, we draw two conclusions: 1) for the
anchor modality, AA dominates the distance reduc-
tion. 2) for the drifts, ADD consistently reduces
the distance, while AA can lead to a small increase
for V. When AA and ADD are employed collabo-
ratively, the overall distance is reduced. Therefore,
AA and ADD complement each other and both
contribute to the success of A3D2.

5 Conclusions

In this paper, we investigate a practical and unique
multimodal domain adaptation problem, where
some modalities (i.e., anchors) remain stable, while
others (i.e., drifts) undergo shifts. Building upon
adversarial learning and optimal transport methods,
we propose a bi-alignment strategy that performs
drift-drift alignment across domains and anchor-
drift alignment within the target domain. Extensive
experimental results and a detailed analysis corrob-
orate the effectiveness of the proposed approach.

6 Limitations

The main limitation of this work is the lack of the-
oretical analysis for the OT-based cross-modality
alignment (i.e., ADD) in the context of MMDA,
which will be investigated in our future work.
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