
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 19442–19459
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Reversal of Thought: Enhancing Large Language Models with
Preference-Guided Reverse Reasoning Warm-up

Jiahao Yuan1*, Dehui Du1†, Hao Zhang1, Zixiang Di1, Usman Naseem2

1East China Normal University
2Macquarie University

Abstract

Large language models (LLMs) have shown
remarkable performance in reasoning tasks but
face limitations in mathematical and complex
logical reasoning. Existing methods to improve
LLMs’ logical capabilities either involve trace-
able or verifiable logical sequences that gener-
ate more reliable responses by constructing log-
ical structures yet increase computational costs,
or introduces rigid logic template rules, reduc-
ing flexibility. In this paper, we propose Re-
versal of Thought (RoT), a plug-and-play and
cost-effective reasoning framework designed
to enhance the logical reasoning abilities of
LLMs during the warm-up phase prior to batch
inference. RoT utilizes a Preference-Guided
Reverse Reasoning warm-up strategy, which
integrates logical symbols for pseudocode plan-
ning through meta-cognitive mechanisms and
pairwise preference self-evaluation to generate
task-specific prompts solely through demon-
strations, aligning with LLMs’ cognitive pref-
erences shaped by RLHF. Through reverse rea-
soning, we utilize a Cognitive Preference Man-
ager to assess knowledge boundaries and fur-
ther expand LLMs’ reasoning capabilities by
aggregating solution logic for known tasks and
stylistic templates for unknown tasks. Exper-
iments across various tasks demonstrate that
RoT surpasses existing baselines in both rea-
soning accuracy and efficiency.

1 Introduction

Large language models (LLMs) like Qwen (Bai
et al., 2023), Llama (Dubey et al., 2024), and GPT-
4 (Achiam et al., 2023) have demonstrated remark-
able performance in various reasoning tasks via
single-step prompting with few shots upon scal-
ing model size (Plaat et al., 2024) but remain re-
stricted in mathematical and intricate logical rea-
soning domains (Arkoudas, 2023; Stechly et al.),

*51275900024@stu.ecnu.edu.cn
†Corresponding Author: dhdu@sei.ecnu.edu.cn

Figure 1: Comparison between CoT (Yao et al., 2024;
Besta et al., 2024; Yang et al., 2024a) and Reversal of
Thought (RoT)

which has spurred more effective multi-step Chain-
of-Thought (CoT) prompting (Wei et al., 2022)
approaches for activating step-by-step logical ca-
pabilities. However, LLMs are prone to unfaith-
fulness, resulting in cascaded intermediate errors
(Bao et al., 2024; Yang et al., 2024b).

Recent studies have advanced CoT to guide
LLMs, mainly through either multi-step prompting
such as introducing planning-and-solve (Plaat et al.,
2024; Yang et al., 2024a), self-consistency (Narang
et al.; Wang et al., 2024a) and recursive reason-
ing process (Lee and Kim, 2023; Yu et al., 2024)
through Tree-of-Thought (ToT) (Yao et al., 2024),
Graph-of-Thought (GoT) (Besta et al., 2024), or
multi-role (Zhang et al.; Suzgun and Kalai, 2024) to
enhance logical capabilities and mitigate hallucina-
tion, yet this has stealthily increased inference cost
due to the multi-step inference. Buffer-of-Thought
(BoT) (Yang et al., 2024a) attempts to reduce think-
ing steps by leveraging Retrieval-Augmented Gen-

19442

eration (RAG) to retrieve gold thought templates
from the buffer. However, it sacrifices flexibility
due to the initialization of pre-set manual thought
templates. Therefore, achieving accurate reasoning
in LLMs while minimizing resource consumption
remains a significant challenge.

In summary, existing methods primarily rely on
multi-query CoT which injects knowledge (Suzgun
and Kalai, 2024; Plaat et al., 2024) or data struc-
ture (Yao et al., 2024; Besta et al., 2024) to optimize
decisions making, and encounter three significant
limitations: (1) limitation in logical reasoning:
Despite attempting different logic data structures
(Yao et al., 2024; Besta et al., 2024; Yang et al.,
2024a), an effective initiative Chain-of-Thought
paradigm that suits and improves logical reasoning
remains elusive (Bao et al., 2024); (2) unfaithful-
ness and cascaded errors: Single-step or multi-
step methods are liable to cause LLMs to output hal-
lucinations, leading to cascading logic errors (Bao
et al., 2024); (3) Trade-off between enhanced
logic capabilities and resource consumption: Re-
cent CoT advancements via multi-step or multi-role
prompting increase costs and achieving a balance
between logical flexibility, accuracy, and cost is of
great significance for practical application.

To address above limitations, inspired by meta-
cognition (Fleur et al., 2021) and and cognitive pref-
erence (Uddin, 2021; Zhou et al., 2023; Margatina
et al., 2023), we propose Reversal of Thought
(RoT), a plug-and-play and cost-effective frame-
work that enables LLMs to explore cognitive pref-
erence on logical pseudocode solely using reverse
prompting with given demos without additional
task-related affirmations, as depicted in Figure 1.
Our key contributions are as follows:

• To the best of our knowledge, we are the first
to introduce a reversal reasoning for cognitive
preference that enhances logical reasoning in
LLMs by combining meta-cognitive with cog-
nitive preference, resulting in a more modu-
lar and cost-efficient framework for complex
tasks.

• We propose a Preference-Guided Reverse Rea-
soning framework that enhances LLMs’ task
cognition by employing a reverse reasoning
warm-up strategy and preference-based self-
evaluation to improve logical reasoning based
on LLMs’ cognitive preferences.

• We introduce a Cognitive Preference Manager

to evaluate knowledge boundaries, enabling
the automatic adaptation of cognitive prefer-
ence styles for unknown logic tasks and effi-
cient aggregation of solution logic for known
tasks.

2 Related Work

2.1 Chain-of-Thought (CoT) Prompting

Chain-of-Thought (CoT) prompting (Wei et al.,
2022) has been proven to be a promising approach
that incorporates an intermediate logic chain to en-
hance LLMs’ logic. Recent studies primarily aimed
at improving logical accuracy by external valida-
tion mechanisms (Bi et al., 2025) like symbolic
reasoning (Cai et al., 2023; Pan et al.), stepwise ver-
ification including self-consistency (Narang et al.;
Yu et al., 2024; Wang et al., 2024a), self-refine
(Madaan et al., 2024), self-reflection (Renze and
Guven, 2024) and more hierarchical information
such as Least-to-Most (Zhou et al.), Cumulative-
Reasoning (Zhang et al.) and Multi-experts (Suz-
gun and Kalai, 2024) strategies, but faced chal-
lenges related to cumulative errors (Bao et al.,
2024) or poor flexibility (Yang et al., 2024a). Addi-
tionally, numerous studies also proposed more stan-
dardized recursive or backtracking branch forms
from the logical data structure, including Tree-
of-Thought (ToT) (Yao et al., 2024), Graph-of-
Thought (GoT) (Besta et al., 2024) and Buffer-of-
Thought (BoT) (Yang et al., 2024a). However, an
efficient logical reasoning method that strikes a
balance among reasoning accuracy, flexibility, and
cost has yet to be discovered. Our method is acti-
vated through meta cognition (Fleur et al., 2021)
by introducing reverse reasoning to form effective
LLMs-taste prompts within cognitive preference
(Uddin, 2021) for plan-and-solve with logical pseu-
docode at least.

2.2 Knowledge Boundary for Enhancing
Large Language Models

Integrating knowledge boundary within LLMs has
emerged as a prospective strategy for enhancing
their ability to avoid reasoning hallucinations of
unknown knowledge through knowledge bound-
ary constraints which requires additional algorith-
mic efforts (Yin et al., 2024; Chen et al.), external
graph knowledge (Tian et al., 2024), and training
consumption (Sun et al., 2024). Additionally, they
focus on avoiding responses to unknown or incor-
rect prompts rather than proposing bold and proac-

19443

tive solutions to expand knowledge boundary in a
heuristics without training. We proposed a prompt-
based method utilizing LLMs pretrained knowl-
edge boundary, inspired by meta cognition (Fleur
et al., 2021) and cognitive preference for unknown
knowledge (Uddin, 2021). Our method conducts
reverse prompting on probing knowledge through
demonstrations to obtain LLMs-taste problem cog-
nitions, aggregates and distills original prompt into
cognitive preference version.

3 Reversal of Thought

3.1 Overview

Tell me and I forget. Teach me and I remember.
Involve me and I learn.

Franklin (2005)

As the aforementioned wisdom related to human
cognitive learning implies, merely telling or teach-
ing is inadequate (Bao et al., 2024). Moreover,
most LLMs have undergone extensive pre-training
(Achiam et al., 2023; Bai et al., 2023; Dubey et al.,
2024) and reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022), instilling
in LLMs a propensity for specific cognitive pat-
terns, which manifests in two progressive layers of
LLMs-taste description: (1) Stylistic template: en-
compassing grammatical and syntactic structures
in descriptions for thinking problems. (2) Solu-
tion logic: comprising problem-solving reasoning
and methodological cues. Therefore, Reversal of
Thought (RoT) involves answering the following
two research questions (RQs):

• RQ1: How to make LLMs output preference
cognitive templates and logic for specific tasks
and activate known cognitive boundaries?

• RQ2: How to autonomously use cognitive tem-
plates with incorrect response to expand the
possible knowledge boundaries?

To activate and enhance LLMs logical flexibility,
accuracy, and the ability to autonomously construct
meta-cognition without training for logical reason-
ing, inspired by meta-cognition (Fleur et al., 2021)
and cognitive preference (Uddin, 2021; Zhou et al.,
2023; Margatina et al., 2023), we introduce Rever-
sal of Thought (RoT), a cost-effective paradigm
that enables LLMs to first explore cognitive pref-
erence on logical pseudocode solely through given
examples without additional task-oriented affirma-
tion, activates the pre-trained known logic under

Algorithm 1 Preference-Guided Reverse Reason-
ing (PGRR)
Require: P : Initial prompt, D: Input-output demonstrations,

warm: Number of warm iterations
1: (1) Reverse Reasoning Warm-up:
2: for i = 1 to warm do
3: R(i) ← MLLM(Pr, D, i) {Generate candidate re-

sponses}
4: P i

res ← 1

|R(i)|
∑

Ri,j∈R(i) exp(P (Ri,j |Pr, D))

5: end for
6: R← ⋃warm

i=1 R(i) {Collect all responses}
(2) Pairwise Preference Evaluation:

7: for i = 0 to warm− 1 do
8: Ppre(Ri+1 ≻ Ri)← exp(MLLM(Peval, Ri+1, Ri))
9: end for

10: for i = 0 to warm− 1 do
11: for j = 0 to i− 1 do
12: Ppre(Ri ≻ Rj)← Ppre(Ri ≻ Rj) {Utilize pref-

erence transitivity}
13: end for
14: end for

(3) Preference-Guided Ranking:
15: for i = 1 to warm do
16: P̄pre(Ri)← 1

warm−1

∑warm
j=1
j ̸=i

Ppre(Ri ≻ Rj)

17: end for
18: Popt ← argmaxRi

(
P i
res+P̄pre(Ri)

2

)

19: return Popt {Optimal LLMs-taste prompt}

Reverse Reasoning Warm-up (detailed in section
3.2), and then optimizes the original prompt for
LLMs-taste prompt via Cognitive Preference Man-
ager (detailed in section 3.3) to determine the trans-
fer of cognitive preference style for unknown logic
template and aggregation of known solution logic,
as depicted in Figure 2.

3.2 Reverse Reasoning with Meta-cognition
Preference-Guided Reverse Reasoning. In-
spired by RLHF (Ouyang et al., 2022) utilizing
preference data, and to derive high-cognitive pref-
erence prompt P ∗ that enhance logical reasoning
in LLMs, we propose a Preference-Guided Re-
verse Reasoning (PGRR) framework (detailed in
alogrithm 1) mapping input-output demonstrations
D from an initial prompt P to an optimal LLM-
taste prompt Popt from prompt candidates.

(1) Reverse Reasoning Warm-up. We query
the LLM MLLM with a reversal prompt and demon-
strations {Pr, D} (detailed in figure 4) for warm
iterations, generating a set of prompt candidates
for solution R = {R1, R2, . . . , Rwarm} and their
corresponding average probabilities P i

res:

R =
warm⋃

i=1

R(i) =
warm⋃

i=1

MLLM(Pr, D, i), (1)

19444

Figure 2: Architecture of Reversal-of-Thought (RoT). RoT comprises two primary components: Preference Guided
Reverse Reasoning, which enhances logical reasoning by activating LLMs’ cognitive preferences, and Cognitive
Preference Manager, which assesses knowledge boundaries and adapts cognitive styles for various tasks.

P i
res =

1

|Ri|
∑

Ri,j∈R
exp(P (Rij |Pr, D)). (2)

where R(i) represents the i-th generated re-
sponse. MLLM(Pr, D, i) is the model output based
on the reversal prompt Pr and demonstrations D
for the i-th iteration. P (Rij |Pr, D) denotes log
probability for each token Rij ∈ Ri from LLMs.

(2) Pairwise Preference Evaluation. To ac-
quire the most LLMs-taste prompt, we pair candi-
date responses R as data pairs {Ri, Ri+1} where
i = 0, 1, · · · , warm − 1 to calculate the relative
preference P (Ri+1 ≻ Ri) through LLM’s self-
evaluation of its preference for Ri+1 over Ri, for-
mally define as:

Ppre(Ri+1 ≻ Ri) = exp(MLLM(Peval, Ri+1, Ri))
(3)

where MLLM(Peval, Ri+1, Ri) represents that re-
quire LLM to select more preferred data through
Peval with a structure as "Please choose your more
preferred instruction (A/B): (A).Ri+1; (B).Ri".

Following the principle of preference transitiv-
ity (Liu et al., 2024), we extend P (Ri+1 ≻ Ri)
to P (Ri ≻ Rj) to reduce computational cost
from, thereby forming a preference matrix Ppre ∈
Rwarm×warm, formally:

Ppre(Ri ≻ Rj) =

1 i = j∏i−1
k=j Ppre(Rk+1 ≻ Rk) i > j

1− Ppre(Rj ≻ Ri) i < j

(4)

(3) Preference-Guided Ranking. To iden-
tify the most LLMs-preferred and high-quality re-
sponse, we compute each response Ri’s overall
preference score P̄pre(Ri), and averaging both av-
erage probabilities P i

res in matrix Ppre and prefer-
ence score P̄pre(Ri) to obtain the best LLM-taste
prompt Popt:

P̄pre(Ri) =
1

warm− 1

warm∑

j=1
j ̸=i

Ppre(Ri ≻ Rj), (5)

Popt = argmax
Ri

(
P i
res + P̄pre(Ri)

2

)
. (6)

Reverse Logic for Meta-cognition. Within re-
verse reasoning, we further follow meta-cognitive

19445

Algorithm 2 Cognitive Preference Manager (CPM)
Require: P : Original prompt, P ∗: Reverse-reasoned prompt,
Memb: Offline LLM embedding model, δ: Similarity
threshold

1: Ptask ← P, P ∗
task ← P ∗

2: s←Memb(Ptask, P
∗
task) Calculate embedding similar-

ity between Ptask and P ∗
task.

3: if s ≥ δ then
4: Known detected: Enhance and refine P to optimized

instructions Pfinal.
5: Aggregate relevant task-specific knowledge.
6: return Pfinal.
7: else
8: UnKnown detected: Adapt and expand Ptask.
9: Leverage cognitive preference templates T and P to

generate optimized instructions Pfinal.
10: return Pfinal.
11: end if

(Suzgun and Kalai, 2024) using plan-and-solve by
integrating logical algorithm pseudo-code to im-
prove reasoning comprehension. And we incor-
porate fundamental mathematical logic symbols,
including logical operators, quantifiers, inequali-
ties and conditional statements, to facilitate model
reasoning detailed in Appendix A.1.

3.3 Cognitive Preference Manager

Cognitive Preference Manager. After reverse
reasoning for LLMs-cognitive description P ∗, We
introduce an offline-deployed LLM embedding
model Memb to assist Cognitive Preference Man-
ager (CPM) in determining whether reverse reason-
ing under reverse prompt Pr and demonstrations
D reaches the knowledge boundary or cognitive
error by calculating the similarity and setting a
threshold δ (0.6∼0.8 is recommended for optimal
performance in distinguishing knowledge bound-
aries) between orginal task defination Ptask from P
and LLMs-cognitive task defination P ∗

task from P ∗,
and finally get a cognitive signal Scog, formally:

Scog =

{
unknown , sim (Memb(Ptask),Memb(P

∗
task)) < δ

known , sim (Memb(Ptask),Memb(P
∗
task)) ≥ δ

(7)

where sim(∗) is a cosine similarity function that
computes the similarity between two embedding
vectors.

By efficiently evaluating cognitive results, CPM
integrates alternative aggregation strategies for
MLLM based on Scog

1, as detailed in ap-
pendix A.2: (1) Solution logic aggregation

1we use Scog to conduct reverse evaluation of GPT-4 in
our experiments.

for known tasks: MLLM merges beneficial as-
pects from the original prompt P with the LLM-
taste prompt P ∗ to create the final prompt Pfinal.
(2) Stylistic template aggregation for unknown
tasks:MLLM extracts a cognitive preference tem-
plate for thinking T from the incorrect context
in the LLM-taste prompt, and integrates meta-
cognitive elements from the original prompt P into
T to construct the final prompt Pfinal.

Consequently, we utilize the final LLM-
preferred prompt to query the LLM MLLM with
a specific problem input, problem, to obtain the
final logical answer, answer:

answer = MLLM(Pfinal, problem) (8)

4 Experiments

4.1 Datasets and Tasks

To comprehensively validate our Reverse of
Thought (RoT), following ToT (Yao et al., 2024),
meta-prompting (Suzgun and Kalai, 2024) and
BoT (Yang et al., 2024a), we assess it with base-
lines across a broad range of eight tasks across
five logical benchmarks that encompass mathemat-
ical and algorithmic reasoning, domain-specific
knowledge, and literary creativity: (1) Game of
24 (Yao et al., 2024; Xiang et al., 2025) challenges
LLMs to create a mathematical expression utilizing
each of four given numbers exactly once to achieve
24 2. We use 1000 samples drawn from a mix
of both datasets for robust large-scale evaluation.
(2) BIG-Bench (Suzgun et al., 2023; Srivastava
et al., 2023) involves Geometric Shapes, Multi-
Step Arithmetic Two and Word Sorting and
Checkmate-in-One from BIG-Bench suite 3 (Sri-
vastava et al., 2023). (3) Python Puzzles (Schus-
ter et al., 2021) comprises a collection of challeng-
ing programming puzzles crafted in Python, cover-
ing various difficulty levels 4. (4) Multilingual
Grade School Math (MGSM) (Shi et al., 2022)
is a multilingual adaptation of the GSM8K dataset
(Cobbe et al., 2021), featuring translations of a sub-
set of examples into ten diverse languages5. (5)
Shakespearean Sonnet Writing (Suzgun and
Kalai, 2024) require LLMs to compose with the

2https://www.4nums.com/game/
3https://huggingface.co/datasets/google/

bigbench
4https://github.com/microsoft/

PythonProgrammingPuzzles
5https://github.com/google-research/url-nlp/

tree/main/mgsm

19446

https://www.4nums.com/game/
https://huggingface.co/datasets/google/bigbench
https://huggingface.co/datasets/google/bigbench
https://github.com/microsoft/PythonProgrammingPuzzles
https://github.com/microsoft/PythonProgrammingPuzzles
https://github.com/google-research/url-nlp/tree/main/mgsm
https://github.com/google-research/url-nlp/tree/main/mgsm

rhyme scheme "ABAB CDCD EFEF GG" while in-
corporating three 6 or five 7 specified words verba-
tim.

4.2 Baselines

In our experiments, we compare RoT with five clas-
sic and latest state-of-the-art prompting baselines:

• CoT Prompting: Following Suzgun and
Kalai (2024); Yang et al. (2024a), we employ
GPT-4 to decompose instruction into logic in-
termediate reasoning steps activated by "Let’s
think step by step".

• Meta-Prompting: Suzgun and Kalai (2024)
introduced general, task-agnostic prompts as
a scaffold to guide LLMs effectively perform
logic tasks.

• Graph-of-Thought (GoT): Besta et al.
(2024) modeled reasoning as a graph, where
nodes are thoughts and edges define their rela-
tionships to solve complex problems.

• Tree-of-Thought (ToT): Yao et al. (2024) or-
ganized reasoning in a tree structure, allowing
LLMs to explore multiple thought paths and
select the most promising ones for problem-
solving, enhancing their complexity manage-
ment in logical reasoning tasks.

• Buffer of Thought (BoT): Yang et al. (2024a)
introduced a meta-buffer that stores high-level
thought templates, allowing for the adaptive
retrieval and instantiation of relevant tem-
plates to enhance reasoning efficiency.

4.3 Experiment Setup

To ensure fair comparisons with previous meth-
ods, following Yao et al. (2024); Zhang et al.;
Suzgun and Kalai (2024), we utilize two LLMs:
GPT-3.5-turbo and GPT-4, as the foundational
model via OpenAI API for our RoT experiments in-
cluding both main experiments and ablation study.
For candidate generation, we use a temperature
of 0.7, encouraging diversity in proposed solution.
For instantiating reasoning steps, we adopt a lower
temperature of 0.1, promoting more deterministic
and stable logical progression. For the warmup
hyperparameter, we experimented with values of

6https://huggingface.co/datasets/
turingmachine/meta-prompting

7https://github.com/iljones00/
Shakespearean-Sonnets-GPT

{1, 3, 5, 10}, accessed in batches for reverse rea-
soning warm-up through OpenAI API. Our find-
ings suggest that a value of 5 optimally balances
between logical accuracy and cost-efficiency. For
embedding model Memb, we utilize a huggingface
model stella_en_1.5B_v5 8, a high-performance
model with the smallest parameter countamong the
top three on the MTEB leaderboard (Muennighoff
et al., 2023), offline deployed on a single NVIDIA
GeForce RTX 4090 GPU.

Knowledge Boundary and Cognitive Preference
Consistency. As described in Section 3.3, we
trigger knowledge boundary using Scog by compar-
ing sim(Ptask,MLLM(D,Pr)task) with a thresh-
old δ = 0.7. We first evaluate GPT-3.5-turbo
& GPT-4 on experimental tasks to distinguish be-
tween known and unknown domains in both 1-shot
and 2-shot settings9 and subsequently conduct hu-
man evaluations of average cognitive preference
consistency Concog based on stylistic and gram-
matical norms on P ∗ across various tasks, with
three professional annotators validating cognitive
preferences on a 1–5 scale.

4.4 Evaluation Metrics

Reasoning Accuracy. Following Suzgun and
Kalai (2024); Yao et al. (2024), we introduce
a LLM10 to validate the final logical reasoning
against gold results (Correct/Wrong). We then com-
pute logical accuracy Acclogic for each logical task
by tallying the number of correct responses.

Reasoning Efficiency. Following Yang et al.
(2024a), we evaluate reasoning efficiency in terms
of complexity by calculating T , calculated as the
average time spent per task across all samples in
the test dataset:

T =
1

N

M∑

i=1

N∑

j=1

Tij (9)

where N is the total number of tasks, M is the total
number of samples, and Tij represents the time
taken for the i-th task on the j-th sample.

8https://huggingface.co/dunzhang/stella_en_1.
5B_v5, License:mit

9To achieve better cost savings and fairness, we set the
few-shot for all methods to 1-shot and 2-shot.

10we select the latest openai-o1 as judger during the
development of our work, https://openai.com/index/
introducing-openai-o1-preview/

19447

https://huggingface.co/datasets/turingmachine/meta-prompting
https://huggingface.co/datasets/turingmachine/meta-prompting
https://github.com/iljones00/Shakespearean-Sonnets-GPT
https://github.com/iljones00/Shakespearean-Sonnets-GPT
https://huggingface.co/dunzhang/stella_en_1.5B_v5
https://huggingface.co/dunzhang/stella_en_1.5B_v5
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

Baselines Game of 24
Geometric

Shapes
Multi-Step
Arithmetic

Word
Sorting

Checkmate-
in-One

Python
Puzzles

MGSM
Sonnet
Writing

GPT-3.5-turbo

CoT (NeurIPS)
Wei et al. (2022)

1-shot 26.3 50.2 73.9 71.9 25.7 30.1 75.0 58.6

2-shot 29.6 53.2 76.2 74.6 25.4 30.6 77.4 61.3

Meta-prompting
Suzgun and Kalai

(2024)

1-shot 59.6 69.5 83.1 90.0 47.4 40.2 80.3 69.5

2-shot 60.2 71.0 85.1 91.5 48.0 41.1 81.5 71.4

ToT (NeurIPS) Yao
et al. (2024)

1-shot 66.7 56.2 81.9 89.2 44.2 38.2 78.3 63.5

2-shot 67.3 58.5 82.3 90.3 45.2 39.5 79.4 65.3

GoT (AAAI)
Besta et al. (2024)

1-shot 69.7 58.6 79.1 88.8 45.4 35.3 80.3 62.2

2-shot 70.4 58.9 79.0 89.5 46.0 36.7 81.0 63.7

BoT (NeurIPS) Yang
et al. (2024a)

1-shot 74.7 83.1 87.6 93.2 67.9 48.2 81.1 71.1

2-shot 75.5 84.3 88.3 94.4 68.5 48.0 82.3 73.0

RoT (Ours)
1-shot 82.8 88.4 89.2 95.2 71.5 50.2 82.3 75.5
2-shot 87.8 88.7 89.5 95.6 72.6 50.4 84.7 75.8

GPT-4

CoT (NeurIPS)
Wei et al. (2022)

1-shot 31.3 57.4 83.1 80.7 35.8 35.3 83.9 66.3

2-shot 32.7 60.9 85.5 82.7 36.7 35.9 84.3 70.2

Meta-prompting
Suzgun and Kalai

(2024)

1-shot 64.6 76.7 89.6 97.6 58.2 45.0 85.1 78.7

2-shot 66.3 78.2 90.7 98.4 58.9 45.6 85.5 79.8

ToT (NeurIPS) Yao
et al. (2024)

1-shot 73.7 58.6 88.8 95.2 49.8 43.8 84.7 68.7

2-shot 74.5 60.1 90.3 96.0 48.8 45.2 86.3 69.8

GoT (AAAI)
Besta et al. (2024)

1-shot 74.7 56.2 87.6 95.6 49.0 42.6 85.9 68.3

2-shot 73.5 57.7 88.7 96.8 51.2 43.5 86.7 62.5

BoT (NeurIPS) Yang
et al. (2024a)

1-shot 82.8 90.4 94.8 99.2 87.1 51.8 87.9 79.1

2-shot 83.7 90.7 96.8 99.6 88.3 52.8 87.5 79.8

RoT (Ours)
1-shot 97.0 94.8 98.4 99.6 91.2 54.6 88.7 89.2
2-shot 98.0 95.2 99.2 100.0 92.0 57.3 90.0 92.0

Table 1: Comparison of RoT with baselines across 1-shot and 2-shot settings for reasoning accuracy.

5 Results and Discussion

5.1 Knowledge Boundary and Cognitive
Preference Consistency

Knowledge Boundary. As shown in Table 2, our
findings provide preliminary support for our hy-
pothesis concerning cognitive knowledge bound-
aries of LLMs in reverse reasoning across cur-
rent task benchmarks in one-shot and two-shot
settings (Yao et al., 2024; Suzgun et al., 2023;
Srivastava et al., 2023; Schuster et al., 2021;
Shi et al., 2022; Suzgun and Kalai, 2024). No-
tably, GPT-3.5-turbo & GPT-4 excel in struc-
tured reasoning tasks such as Game of 24,
Geometric Shapes, and Checkmate-in-One, con-
sistently achieving strong results in both one-shot
and two-shot settings. In contrast, tasks such as
MGSM (avg) and Python Puzzles fall into an un-
known category in the one-shot scenario, stemming
from multi-source problems that are challenging to
make reverse reasoning without sufficient context,
indirectly supporting the rationale for our CPM

approach.

Cognitive Preference Consistency. Our human
evaluation of Concog yielded high scores of 4.32
in the 2-shot setting and 4.01 in the 1-shot setting,
further validating that LLMs exhibit cognitive pref-
erences shaped by RLHF (Ouyang et al., 2022).

Task 1-shot 2-shot

Kno. Unkno. Kno. Unkno.

Game of 24 ✓ ✓
MGSM (avg) ✓ ✓
Multi-Step Arithmetic ✓ ✓
WordSorting ✓ ✓
Python Puzzles ✓ ✓
Geometric Shapes ✓ ✓
Checkmate-in-One ✓ ✓
Sonnet Writing ✓ ✓

Table 2: Knowledge Boundary under Reversal Reason-
ing for GPT-3.5-turbo and GPT-4 with identical results.
Kno. for Known, Unkno. for Unknown.

19448

Ablation study Game of
24✓

Geometric
Shapes✓

Multi-Step
Arithmetic✓

Word
Sorting✓

Checkmate-
in-One✓

Python
Puzzles× MGSM× Sonnet

Writing✓
GPT-3.5-turbo

RoT
1-shot 82.8 88.4 89.2 95.2 71.5 50.2 82.3 75.5
2-shot 87.8 88.7 89.5 95.6 72.6 50.4 84.7 75.8

w/o PGRR
1-shot 74.7 72.3 74.3 74.7 65.5 44.2 78.7 69.6
2-shot 75.5 72.6 75.4 76.2 66.9 44.4 79.0 69.8

w/o Logic 1-shot 76.7 80.7 81.5 84.3 66.3 45.8 77.5 72.9
2-shot 76.5 80.2 81.9 85.1 66.5 46.0 78.2 73.0

w/o CPM
1-shot 80.8 86.0 88.4 93.2 70.3 39.8 72.7 74.2
2-shot 81.6 86.7 88.3 93.5 71.0 47.2 80.2 75.0

GPT-4

RoT
1-shot 97.0 94.8 98.4 99.6 91.2 54.6 88.7 89.2
2-shot 98.0 95.2 99.2 100.0 92.0 57.3 90.0 92.0

w/o PGRR
1-shot 77.8 74.7 78.7 79.5 80.7 45.0 85.9 72.7
2-shot 78.6 75.0 79.0 81.0 82.3 46.8 86.0 73.0

w/o Logic 1-shot 85.9 83.1 87.1 89.2 81.5 49.8 85.5 86.1
2-shot 86.7 83.5 87.9 89.5 83.5 50.0 86.7 77.0

w/o CPM
1-shot 92.0 90.0 94.8 97.6 89.2 40.6 84.7 88.8
2-shot 93.9 90.3 95.2 98.4 89.1 51.6 86.3 91.5

Table 2: Ablation study of RoT across various tasks in 1-shot and 2-shot settings. ✓ indicates known tasks in both
1-shot and 2-shot; × indicates unknown tasks in 1-shot.

5.2 Reasoning Accuracy and Efficiency

(1) RoT can activate LLMs’ reasoning accuracy.
As shown in Table 1, RoT consistently outper-
forms all baselines across various reasoning tasks,
with particularly notable improvements observed
in GPT-4. Specifically, compared with the best
BoT, RoT achieves significant gains in tasks such
as Game of 24 (+17.15% in 1-shot and +17.08%
in 2-shot), Geometric Shapes (+4.87% in 1-shot
and +4.96% in 2-shot), and Checkmate-in-One
(+4.71% in 1-shot and +4.19% in 2-shot), demon-
strating our flexibility of leveraging cognitive
preference in LLM to activate logic capabilities
through reverse reasoning (case study detailed
in appendix B). For GPT-3.5-turbo, RoT also
demonstrates substantial improvements, such as
Game of 24 (+10.84% in 1-shot and +16.29%
in 2-shot) and Geometric Shapes (+6.38% in 1-
shot and +5.22% in 2-shot), further emphasizing
its versatility in activating logic through cognitive
preference management.

(2) RoT demonstrates better tradeoff between
reasoning accuracy and efficiency across base-
lines. As shown in Figure 3, RoT achieves com-
petitive performance in reasoning efficiency, out-
performing baselines and being second only to BoT,
while BoT’s dependence on numerous pre-defined
golden thought templates limits its flexibility. In
contrast, our RoT, as a plugin strategy, emphasizes
exploring optimal prompt for solution and task data
instantiation after reverse reasoning warm-up.

Figure 3: Inference time comparison, measured as the
average duration from inference start to evaluation end,
including all steps.

5.3 Ablation Study

As shown in Table 2, we conducted three abla-
tion studies to evaluate key components: (1) w/o
PGRR: Removing Preference-Guided Reverse Rea-
soning(PGRR) for exploring LLMs-taste prompts;
(2) w/o Logic: Excluding mathematical logic for
pseudo-code plan-and-solve; and (3) w/o CPM:
Eliminating Cognitive Preference Manage(CPM)
for both known and unknown tasks.

Impact of PGRR. Excluding Preference-Guided
Reverse Reasoning (PGRR) results in a significant
reduction in overall task performance, as seen in
tasks like the Game of 24 (98.0% to 78.6% for
GPT-4, 87.8% to 75.5% for GPT-3.5-turbo) and
WordSorting (100% to 81% for GPT-4, 95.6% to
76.2% for GPT-3.5-turbo), indicating w/o PGRR

19449

weaken model’s cognition to task-specific require-
ments.

Impact of Logic. Removing mathematical logic
from RoT leads to notable declines in tasks re-
quiring structured problem-solving, such as Multi-
Step Arithmetic (99.2% to 87.9% for GPT-4, 89.5%
to 81.9% for GPT-3.5-turbo) and Checkmate-in-
One (92.0% to 83.5% for GPT-4, 72.6% to 66.5%
for GPT-3.5-turbo), underscoring w/o Logic neg-
atively affects structured problem-solving for com-
plex reasoning.

Impact of CPM. Lacking Cognitive Preference
Manager (CPM) has a particularly pronounced ef-
fect on unknown tasks, with Python Puzzles drop-
ping from 54.6% to 45.0% for GPT-4 and 50.2%
to 39.8% for GPT-3.5-turbo, while MGSM de-
creased from 84.7% to 80.2% for GPT-3.5-turbo
and from 90.0% to 86.3% for GPT-4, indicating
w/o CPM weaken RoT’s flexibility for tackling
known tasks and unknown tasks 11.

6 Conclusion

In this paper, we propose Reversal of Thought
(RoT), a novel and plug-and-play framework
to enhance the logical reasoning capabilities of
LLMs. By integrating reverse reasoning with
meta-cognitive mechanisms and cognitive prefer-
ence management, RoT improves reasoning ac-
curacy and efficiency while minimizing compu-
tational costs, which leverages Preference-Guided
Reverse Reasoning and Cognitive Preference Man-
ager, which optimally aligns LLM reasoning pro-
cesses with their cognitive preferences shaped by
their pretraining and RLHF. Comprehensive exper-
iments across diverse reasoning tasks demonstrate
that RoT consistently outperforms state-of-the-art
baselines in both known and unknown task scenar-
ios, demonstrating the potential to expand knowl-
edge boundaries through cognitive preference tem-
plate. Our research provides valuable insights into
future studies focused on further enhancing LLMs’
reasoning capacities by dynamically exploring cog-
nitive preferences for complex reasoning tasks.

Limitations

Reversal of Thought (RoT) introduce a reverse rea-
soning warm-up to activate cognitive preference for
LLMs to enhance logic capabilities and introduce a

11Please refer to Appendix B.1.1 for case study on known
task and Appendix B.2.1 for case study on unknwon task.

cognitive preference manager to determine knowl-
edge boundary and utilize cognitive preference for
known and unknown tasks.

While RoT has performed exceptionally in logic
accuracy and efficiency, We discuss major chal-
lenge in its reliance on two-shot demonstration
inputs involving two distinct problem cases. We
observed that RoT may struggles with one-shot
learning in multi-source tasks. we partially and
effectively mitigates this issue through the integra-
tion of Cognitive Preference Manager (CPM) and
two-shot learning.

In future work, we aim to extend RoT’s capabili-
ties by incorporating In-Context Learning (ICL) or,
alternatively, adopting Auto-prompt based demon-
stration selection strategies (Zhang et al., 2023;
Jin and Lu, 2024), which will allow for greater
flexibility in adapting to varied contexts and im-
prove its performance on more complex reasoning
tasks. Furthermore, we believe that utilizing Rever-
sal of Thought in teacher-student model distillation,
which could further amplify the practical value of
our approach.

Finally, we acknowledge the challenges posed
by the inherent instability of large language mod-
els. Future research may benefit from investigating
robust candidate solutions—such as hybrid scoring
mechanisms (Wang et al., 2024b; Minh et al., 2024;
Wang et al., 2024c)—that can be integrated with
RoT to further enhance its reliability and overall
performance through joint optimization.

Ethical Considerations

Since the datasets used in our experiments focus
on pure mathematical and algorithmic reasoning,
domain-specific knowledge, and literary creativ-
ity, which are all sourced from publicly available
datasets (Yao et al., 2024; Suzgun et al., 2023; Sri-
vastava et al., 2023; Schuster et al., 2021; Shi et al.,
2022; Suzgun and Kalai, 2024; Xiang et al., 2025)
and devoid of any personal privacy or sensitive
ethical information. Therefore, we do not identify
any immediate ethical concerns regarding our cur-
rent work. Additionally, we conduct human eval-
uations of cognitive preference consistency with
three anonymous professional annotators following
our instructions (detailed in appendix C).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

19450

Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Konstantine Arkoudas. 2023. Gpt-4 can’t reason. arXiv
preprint arXiv:2308.03762.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Guangsheng Bao, Hongbo Zhang, Linyi Yang, Cunxi-
ang Wang, and Yue Zhang. 2024. Llms with chain-
of-thought are non-causal reasoners. arXiv preprint
arXiv:2402.16048.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 17682–17690.

Jinhe Bi, Danqi Yan, Yifan Wang, Wenke Huang,
Haokun Chen, Guancheng Wan, Mang Ye, Xun Xiao,
Hinrich Schuetze, Volker Tresp, and Yunpu Ma. 2025.
Cot-kinetics: A theoretical modeling assessing lrm
reasoning process. Preprint, arXiv:2505.13408.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Qiguang Chen, Libo Qin, WANG Jiaqi, Jingxuan Zhou,
and Wanxiang Che. Unlocking the capabilities of
thought: A reasoning boundary framework to quan-
tify and optimize chain-of-thought. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Damien S Fleur, Bert Bredeweg, and Wouter van den
Bos. 2021. Metacognition: ideas and insights from
neuro-and educational sciences. npj Science of
Learning, 6(1):13.

Benjamin Franklin. 2005. Tell me and i forget. teach
me and i remember. involve me and i learn.

Ziqi Jin and Wei Lu. 2024. Self-harmonized chain of
thought. arXiv preprint arXiv:2409.04057.

Soochan Lee and Gunhee Kim. 2023. Recursion of
thought: A divide-and-conquer approach to multi-
context reasoning with language models. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 623–658.

Yinhong Liu, Han Zhou, Zhijiang Guo, Ehsan Shareghi,
Ivan Vulic, Anna Korhonen, and Nigel Collier. 2024.
Aligning with human judgement: The role of pair-
wise preference in large language model evaluators.
arXiv preprint arXiv:2403.16950.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Katerina Margatina, Timo Schick, Nikolaos Aletras, and
Jane Dwivedi-Yu. 2023. Active learning principles
for in-context learning with large language models.
In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 5011–5034.

Nguyen Nhat Minh, Andrew Baker, Clement Neo, Allen
Roush, Andreas Kirsch, Wand AI Independent, Ravid
Shwartz-Ziv, and Wand AI. 2024. Turning up the
heat: Min-p sampling for creative and coherent llm
outputs. In The Thirteenth International Conference
on Learning Representations.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. Mteb: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014–2037.

Sharan Narang, Aakanksha Chowdhery, and Denny
Zhou. Self-consistency improves chain of thought
reasoning in language models.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful
logical reasoning. In The 2023 Conference on Empir-
ical Methods in Natural Language Processing.

Aske Plaat, Annie Wong, Suzan Verberne, Joost
Broekens, Niki van Stein, and Thomas Back. 2024.
Reasoning with large language models, a survey.
arXiv preprint arXiv:2407.11511.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint arXiv:2405.06682.

19451

https://arxiv.org/abs/2505.13408
https://arxiv.org/abs/2505.13408

Tal Schuster, Ashwin Kalyan, Alex Polozov, and
Adam Tauman Kalai. 2021. Programming puzzles.
In Thirty-fifth Conference on Neural Information Pro-
cessing Systems Datasets and Benchmarks Track.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. In The Eleventh International Conference
on Learning Representations.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Kaya Stechly, Matthew Marquez, and Subbarao Kamb-
hampati. Gpt-4 doesn’t know it’s wrong: An analysis
of iterative prompting for reasoning problems. In
NeurIPS 2023 Foundation Models for Decision Mak-
ing Workshop.

Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin
Wang, Shuo Shang, Ji-Rong Wen, and Rui Yan. 2024.
Determlr: Augmenting llm-based logical reasoning
from indeterminacy to determinacy. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9828–9862.

Mirac Suzgun and Adam Tauman Kalai. 2024.
Meta-prompting: Enhancing language models
with task-agnostic scaffolding. arXiv preprint
arXiv:2401.12954.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, et al. 2023. Challenging big-bench tasks and
whether chain-of-thought can solve them. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 13003–13051.

Yuan Tian, Nan Xu, and Wenji Mao. 2024. A theory
guided scaffolding instruction framework for llm-
enabled metaphor reasoning. In Proceedings of the
2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Pa-
pers), pages 7731–7748.

Lucina Q Uddin. 2021. Cognitive and behavioural flexi-
bility: neural mechanisms and clinical considerations.
Nature Reviews Neuroscience, 22(3):167–179.

Xinglin Wang, Shaoxiong Feng, Yiwei Li, Peiwen Yuan,
Yueqi Zhang, Boyuan Pan, Heda Wang, Yao Hu, and
Kan Li. 2024a. Make every penny count: Difficulty-
adaptive self-consistency for cost-efficient reasoning.
arXiv preprint arXiv:2408.13457.

Xinglin Wang, Yiwei Li, Shaoxiong Feng, Peiwen Yuan,
Boyuan Pan, Heda Wang, Yao Hu, and Kan Li. 2024b.
Integrate the essence and eliminate the dross: Fine-
grained self-consistency for free-form language gen-
eration. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 11782–11794.

Zhiyuan Wang, Jinhao Duan, Lu Cheng, Yue Zhang,
Qingni Wang, Xiaoshuang Shi, Kaidi Xu, Heng Tao
Shen, and Xiaofeng Zhu. 2024c. Conu: Conformal
uncertainty in large language models with correctness
coverage guarantees. In Findings of the Association
for Computational Linguistics: EMNLP 2024, pages
6886–6898.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Al-
balak, Anikait Singh, Chase Blagden, Duy Phung,
Rafael Rafailov, Nathan Lile, Dakota Mahan, et al.
2025. Towards system 2 reasoning in llms: Learn-
ing how to think with meta chain-of-though. arXiv
preprint arXiv:2501.04682.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. 2024a. Buffer of thoughts: Thought-
augmented reasoning with large language models.
Advances in Neural Information Processing Systems,
37:113519–113544.

Xiaocheng Yang, Bingsen Chen, and Yik-Cheung Tam.
2024b. Arithmetic reasoning with llm: Prolog gen-
eration & permutation. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 2: Short Papers),
pages 699–710.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Xunjian Yin, Xu Zhang, Jie Ruan, and Xiaojun Wan.
2024. Benchmarking knowledge boundary for large
language model: A different perspective on model
evaluation. arXiv preprint arXiv:2402.11493.

Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao,
and Zhou Yu. 2024. Teaching language models to
self-improve through interactive demonstrations. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 5127–5149.

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew C
Yao. Cumulative reasoning with large language mod-
els.

19452

https://arxiv.org/abs/2106.05784

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023. Automatic chain of thought prompting
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-
to-most prompting enables complex reasoning in
large language models. In The Eleventh International
Conference on Learning Representations.

Siyuan Zhou, Xinran Xu, Xiangyu He, Faxin Zhou,
Yu Zhai, Jinglu Chen, Yuhang Long, Lifen Zheng,
and Chunming Lu. 2023. Biasing the neurocogni-
tive processing of videos with the presence of a real
cultural other. Cerebral Cortex, 33(4):1090–1103.

A Experimental Details

A.1 Prompt for Reverse Reasoning

Prompt for Reverse Reasoning

Instruction
You are a highly distinguished expert in mathematics and information reasoning. Based on the given
example, define the specific task, including the task definition, pseudocode, logical pseudocode,
case examples, and input-output format.
1. Understand Task Description:
Meticulously study demonstrations to deeply understand generic task description.
2. Plan Generic Pseudocode:
Provide pseudocode in text form and plan an efficient algorithm to complete the task with your
experiences.
3. Formulate Logical Pseudocode:
Convert the pseudocode into generic logical algorithm pseudocode using ONLY logical symbols:
Logical Operators:
Conjunction: A ∧B ; Disjunction: A ∨B
equivalence: A ≡ B , Negation: ¬A
Quantifiers:
Universal quantifier: ∀x; Existential quantifier: ∃x
Inequalities:
Less than: x < y; Greater than: x > y
Less than or equal to: x ≤ y
Greater than or equal to: x ≥ y
Equals: x = y; Not equals: x ̸= y
Conditional Statements:
If A then B: A ⊃ B
If A ∧B then C: (A ∧B) ⊃ C
If A ∨B then C: (A ∨B) ⊃ C
If ∀x(P (x)) then Q: ∀x(P (x)) ⊃ Q
If ∃x(P (x)) then Q: ∃x(P (x)) ⊃ Q etc.
Input: [Demonstration] Output: [Output]

Figure 4: Prompt for Reverse Reasoning

19453

A.2 Prompt for CPM (Known/Unknown)

Prompt for CPM (Known/Unknown)

Instruction
You are an expert in information synthesis, proficient in combining complementary insights and
extracting essential details from the viewpoints of the distilled task definition, detailed generic
logical pseudocode, case example, and input-output format.
1. For Known:
The Reversal Prompt and Benchmark Prompt should complement each other. Analyze the content
and structure of both prompts to identify their accuracy, similarities and differences. Synthesize
the key points and integrate them into a unified and coherent output.
2. For Unknown:
Extract a cognitive preference template T from any inaccuracies in the LLM-taste prompt. Integrate
meta-cognitive elements from the original prompt P into this template to enhance T .
Input:
LLM-Taste Prompt:[LLM-Taste Prompt]
Benchmark Prompt:[Benchmark Prompt]
Output: [Output]

Figure 5: Prompt for CPM (Known/Unknown)

19454

B Case Study

B.1 Case Study for Known Task (Game of 24)
B.1.1 Pfinal Case study for Game of 24

Pfinal Case study for known task after CPM

Task Defination
The task is to find a feasible mathematical expression using the four input numbers (a, b, c, d) in
the order they are given, such that the result equals 24. The feasible solution should involve basic
arithmetic operations (+, -, ×, /) and parentheses if necessary.
Logical Pseudocode
For each permutation P (A,B,C,D) in permutations of [A, B, C, D]:

For each operation opn ∈ (+,−,×,÷), where n ∈ {0, 1, 2, 3}:

• For each permute ∃(Expression == 24) ∨ (Expression = permute[0] op1 permute[1]
op2 permute[2] op3 permute[3]):

• If ∃(Expression == 24), then:
– Print(Expression)
– Terminate the process.

• Else, continue checking the next permutation.

If no solution is found, print "No feasible solution exists.".
Case Examples:
Example 1: Input: 4 6 7 1 Output: One feasible solution (e.g., 6/(1− (4/7)) = 24).
Example 2: Input: 4 2 2 1 Output: "No feasible solution exists."
Input-Output Format:
Input: Four integers separated by space (e.g., "3 3 8 8").
Output: If a feasible solution exists, output a string indicating one possible solution (e.g., "One
feasible solution (e.g., 8÷ (3−8÷3) = 24)."). If no solution exists, output the string "No feasible
solution exists."

Figure 6: Pfinal Case study for Game of 24

19455

B.1.2 Instantiation Case Study for Game of
24 Using Pfinal

Instantiation Case Study for Game of 24 Using Pfinal

Input: 4 9 10 13

Steps: Let me compute possible expressions for this input that result in 24 using provided logic
pseudocode.
1. Generate all permutations of the numbers (4,9,10,13): This gives 24 possible arrangements.
2. Apply operations: For each permutation, test all combinations of the operations (+, -, *, /)
between the numbers.
3. Check if the result equals 24: Evaluate the expression and check if it equals 24.
4. Output the result: If a valid expression is found, print it. If not, output that no feasible solution
exists.
import itertools
inputs = [4,9,10,13]
operations = ['+', '-', '*', '/']
def evaluate_expression(expr):

try:
return eval(expr)

except ZeroDivisionError:
return None

permutations = itertools.permutations(inputs)
op_combinations = itertools.product(operations, repeat=3)
solutions = []
for perm in permutations:

for ops in op_combinations:
exprs = [
f"({perm[0]} {ops[0]} {perm[1]}) {ops[1]} ({perm[2]} {ops[2]} {perm[3]})",
f"({perm[0]} {ops[0]} ({perm[1]} {ops[1]} {perm[2]})) {ops[2]} {perm[3]}",
f"{perm[0]} {ops[0]} ({perm[1]} {ops[1]} ({perm[2]} {ops[2]} {perm[3]}))",
f"({perm[0]} {ops[0]} {perm[1]}) {ops[1]} ({perm[2]} {ops[2]} {perm[3]})",

...
]
for expr in exprs:

if evaluate_expression(expr) == 24:
solutions.append(expr)

print(solutions)

Output: 4 * (9 + (10 - 13))=24

Figure 7: Instantiation Case Study for Game of 24 Using Pfinal

19456

B.2 Case Study for Unknown Task (MGSM)
B.2.1 Pfinal Case study for MGSM

Pfinal Case study for unknown task after CPM

Task Defination
The task is to solve a math problem text with a description of a situation. Your task is to calculate
the answer and provide it in the format specified.
Logical Pseudocode

Input u from the user in natural language.

Parse u for numbers and contextual information.

Extract numbers α, β, γ, etc.
Identify contextual clues and operations, such as addition (+), subtraction (-), multiplication (*),
division (/), and other implicit operations (e.g., percentages, halves, totals).

For each identified operation:

If operation is related to percentages, interpret × or division as needed.
If operation is additive (+), perform Add(α, β).
If operation is subtractive (-), perform Subtract(α, β).
If operation is multiplicative (*), perform Multiply(α, β).
If operation is divisive (/), perform Divide(α, β).
If implicit operations (e.g., "half that much"), interpret accordingly.

Handle complex structures, such as total amounts or remainders:

Use context to evaluate remaining quantities (e.g., after consumption, sales).
Apply operations in sequential order based on context.

Calculate the final result based on all interpreted operations and numbers.

Return the final result as a natural number or in currency (if applicable).
Case Examples:
Example 1:
Input: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?
Output: 3
Input-Output Format:
Input: A natural language string describing a scenario that involves certain arithmetic operations.
Output: A single integer or float number that is the result of the operations described in the
scenario.

Figure 8: Pfinal Case study for MGSM

19457

B.2.2 Instantiation Case Study for MGSM Using
Pfinal

Instantiation Case Study for MGSM Using Pfinal

Input: Paul is at a train station and is waiting for his train. He isn’t sure how long he needs to
wait, but he knows that the fourth train scheduled to arrive at the station is the one he needs to
get on. The first train is scheduled to arrive in 10 minutes, and this train will stay in the station
for 20 minutes. The second train is to arrive half an hour after the first train leaves the station,
and this second train will stay in the station for a quarter of the amount of time that the first train
stayed in the station. The third train is to arrive an hour after the second train leaves the station,
and this third train is to leave the station immediately after it arrives. The fourth train will arrive 20
minutes after the third train leaves, and this is the train Paul will board. In total, how long, in
minutes, will Paul wait for his train?

Steps:
Step 1: Symbol Information
1. α (first train arrival) = 10 minutes
2. β (first train stay) = 20 minutes
3. γ (second train stay as a quarter of the first train’s stay) = β

4
4. δ (time between second train departure and third train arrival) = 60 minutes
5. ε (fourth train arrival after third train leaves) = 20 minutes
Step 2: Identify Contextual Clues and Operations
1. First train departure time = α+ β
2. Second train arrival time = First train departure time + 30 minutes
3. Second train stay time = γ
4. Third train arrival time = Second train departure time + δ
5. Fourth train arrival time = Third train departure time + ε
Step 3: Perform Calculations Based on Identified Operations
1. First train departure time = Add(α, β) = 10 + 20 = 30 minutes
2. Second train arrival time = Add(First train departure time,30) = 30 + 30 = 60 minutes
3. Second train stay time = Divide(β, 4) = 20

4 = 5 minutes
4. Second train departure time = Add(Second train arrival time ,Second train stay time) = 60+5 =
65 minutes
5. Third train arrival time = Add(Second train departure time,δ) = 65 + 60 = 125 minutes
6. Third train departure time = Third train arrival time (since it leaves immediately) = 125 minutes
7. Fourth train arrival time = Add(Third train departure time, ε) = 125 + 20 = 145 minutes
Step 4: Calculate the Final Result
Final Result: Fourth train arrival time = 145 minutes

Output: 145 minutes

Figure 9: Instantiation Case Study for MGSM Using Pfinal

19458

C Instructions for Human Evaluation

To evaluate the cognitive preference consistency
Concog between LLMs-taste prompt for task cog-
nitions across different tasks, three professional
annotators adhere to the following guidelines:

Criteria. (1) Style Consistency: How well re-
sponses maintain a consistent stylistic tone for
thinking across different tasks. (2) Coherence:
Internal logic and smooth flow of the response.

Scoring. Responses are evaluated on a scale from
0 to 5. A score of 4-5 signifies exemplary style
consistency, while 3-4 indicates strong consistency
with minor variations. Scores of 2-3 represent ad-
equate style but with noticeable inconsistencies,
and 1-2 denote inconsistent style across tasks. A
score of 0-1 reflects complete inconsistency. Prior
to the formal evaluation, several pre-scored sam-
ple responses covering every score band will be
provided. These examples serve to calibrate anno-
tators’ judgments and to align their understanding
of the rubric.

19459

