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Abstract

Sequential recommender systems, which lever-
age historical interactions to deliver targeted
recommendations, have been significantly ad-
vanced by large language models (LLMs).
However, LLM-based generative sequential
recommendation often faces two key chal-
lenges: the lack of collaborative knowledge
and the limited controllability over the gener-
ated content. In this paper, we propose a simple
Bi-Tuning framework with collaborative infor-
mation for controllable Large Language Model-
based Sequential Recommendation (Laser).
Specifically, Bi-Tuning works through incor-
porating learnable virtual tokens at both the
prefix and suffix of the input text, where the
prefix tokens enable the adaptation of LLMs
with collaborative information, while the suffix
token transforms the LLM output into item/user
embeddings for similarity comparison, thereby
facilitating controllable recommendations. Fur-
thermore, we introduce an MoE-based query-
ing transformer that selectively activates ex-
perts to extract relevant information from vary-
ing collaborative signals of frozen ID-based
recommenders into the prefix, coupled with a
multi-task loss function incorporating the MoE
load-balancing objective. Finally, a two-phase
training strategy is employed to progressively
obtain high-quality item and user embeddings
through the learnable suffix. Experiments on
real-world datasets show that Laser effectively
adapts LLMs for sequential recommendation,
outperforming state-of-the-art baselines.

1 Introduction

Sequential recommender systems have become es-
sential across various applications, aiming to pre-
dict users’ future preferences based on their past
behaviors. While early works primarily relied on
item ID sequences to capture the dynamic nature of
user preferences (He and McAuley, 2016; Hidasi
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et al., 2016; Li et al., 2017; Tang and Wang, 2018),
recent studies have incorporated item textual in-
formation (e.g., item titles, categories, and brands)
based on pre-trained language models (PLMs) to
enrich item sequence representations and enhance
recommendation performance (Hou et al., 2022; Li
et al., 2023).

Recently, the emergence of large language mod-
els (LLMs) has triggered a significant revolu-
tion in the research community (Lin et al., 2024;
Wang et al., 2024a; Naing and Udomwong, 2024;
Hua et al., 2024). With the powerful instruction-
following capability, LLMs can effectively gener-
ate personalized recommendations based on rec-
ommendation instructions containing user interac-
tion history and candidate item information (Bao
et al., 2023; Hou et al., 2024). However, despite
their potential, LLM-based recommendation sys-
tems primarily rely on text semantics, inherently
overlooking collaborative signals. As a result, for
the same user, items with similar textual descrip-
tions may be recommended in a similar manner,
even if their user interaction patterns differ sig-
nificantly (Chen et al., 2023; Zhang et al., 2024).
While some efforts, such as using multilayer per-
ceptrons (MLPs) to map collaborative embeddings
encoded by traditional ID-based collaborative mod-
els into the LLM semantic space (Yang et al., 2023;
Zhang et al., 2023b), have been explored, the inte-
gration of collaborative knowledge with LLM:s still
remains an open challenge.

Furthermore, generative sequential recom-
mender systems based on LLMs may suffer from
the limited controllability over the generated con-
tent (Lu et al., 2024). These models, typically
trained to generate recommended items through the
next-token prediction loss (Qiu et al., 2023; Kim
et al., 2024), may introduce domain-specific for-
matting errors, such as irrelevant or repeated items.
To address these issues, additional alignment strate-
gies, such as auxiliary supervised learning tasks
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(Zhang et al., 2023a; Zheng et al., 2024) or rein-
forcement learning tasks (Lu et al., 2024), are of-
ten required, which, however, introduce increased
method complexity and computational overhead.

In this paper, we propose a simple Bi-Tuning
framework with collaborative information for con-
trollable Large Language Model-based Sequential
Recommendation (Laser). In Bi-Tuning, we adapt
LLMs for sequential recommendation by optimiz-
ing learnable virtual tokens inserted at both the
prefix and suffix of the input text in a parameter-
efficient manner. Specifically, the prefix tokens are
responsible for adapting LLLMs with collaborative
information, while the suffix token transforms the
LLM output from the language space to the recom-
mendation space, generating item/user embeddings
used for similarity comparison, thereby facilitating
controllable next-item recommendation. Further-
more, to integrate collaborative knowledge into
the prefix, we propose M-Former, a lightweight
Mixture-of-Experts (MoE)-based querying trans-
former that selectively activates different experts to
extract relevant information from varying collab-
orative signals of frozen ID-based recommenders
into the prefix. Additionally, to ensure balanced ex-
pert utilization in M-Former, we introduce a multi-
task loss that simultaneously optimizes both the
recommendation and load-balancing objectives. Fi-
nally, we adopt a two-phase training strategy to
progressively obtaining high-quality item and user
embeddings through the learnable suffix. Experi-
mental results on real-world datasets across various
domains show that our method significantly outper-
forms state-of-the-art baselines. In summary, our
main contributions are as follows:

1) We propose Laser, a simple but effective Bi-
Tuning (through learnable prefix and suffix) frame-
work with collaborative information for control-
lable LLM-based sequential recommendation.

2) We introduce M-Former that selectively acti-
vates different experts to extract relevant informa-
tion from varying collaborative signals of frozen
ID-based recommenders into the prefix, paired with
a multi-task loss considering the load-balancing ob-
jective. Additionally, a two-phase training strategy
is employed to progressively obtain high-quality
item and user embeddings through the learnable
suffix.

3) Extensive experiments on real-world datasets
show that Laser effectively adapts LL.Ms for se-
quential recommendation, significantly outperform-
ing state-of-the-art baselines.

2 Related Work

2.1 Sequential Recommendation

Sequential recommendation infers users’ prefer-
ences from past interactions ordered by times-
tamps, with traditional methods typically repre-
senting items using unique IDs. To effectively cap-
ture user preferences based on the IDs, a variety
of methods have been employed. For instance,
GRU4Rec (Chung et al., 2014) models sequen-
tial patterns with GRUs, while Caser (Tang and
Wang, 2018) embeds the sequence of recent items
into an “image” and learn sequential patterns us-
ing convolutional filters. Methods like SR-GNN
(Wu et al., 2019), GCE-GNN (Wang et al., 2020),
and SURGE (Chang et al., 2021) capture long-
term user preferences through multi-layer message
passing, and self-attention models have also been
widely adopted (Kang and McAuley, 2018; Sun
et al., 2019; Li et al., 2020). Although these ID-
based methods show promise, they fail to incorpo-
rate semantic information from item descriptions,
resulting in suboptimal performance. Recently, re-
searchers have explored using PLMs to encode item
textual information, enriching item sequence repre-
sentations and improving recommendation perfor-
mance (Hou et al., 2022; Li et al., 2023), though
most efforts have focused on smaller language mod-
els.

2.2 LLMs in Recommender Systems

Due to the powerful instruction-following capa-
bility of LLMs, an increasing number of works
have attempted to express users’ past interactions
along with candidate item information as natural
language instructions, enabling LLMs to generate
tailored recommendations (Bao et al., 2023; Zhang
et al., 2023a; Hou et al., 2024). However, LLM-
based generative sequential recommender systems
often face two challenges. First, they primarily rely
on text semantics, representing users and items as
textual tokens rather than leveraging explicit inter-
action patterns. As a result, they inherently over-
look collaborative signals embedded in user-item
co-occurrences, leading to suboptimal performance
(Chen et al., 2023; Zhang et al., 2024). While
efforts have been made to address this, such as
mapping collaborative embeddings through MLPs
(Chen et al., 2023; Zhang et al., 2024) or incor-
porating collaborative information into the LLM
attention weight calculation (Wang et al., 2024b),
integrating collaborative knowledge with LLMs
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Figure 1: The overview of our proposed Laser.

remains an open challenge. Second, generative
recommendation systems often suffer from lim-
ited controllability over the generated content (Lu
et al., 2024). Previous works have introduced ad-
ditional training tasks to regularize the LLM out-
put, such as auxiliary supervised learning tasks
(Zhang et al., 2023a; Zheng et al., 2024) or rein-
forcement learning tasks (Lu et al., 2024). While
these methods show promising results, they largely
increase the model complexity and computational
overhead. In this paper, we propose Laser, a simple
Bi-Tuning framework with collaborative informa-
tion for controllable large language model-based
sequential recommendation, which adapts LLMs
for sequential recommendation by optimizing learn-
able virtual tokens at both the prefix and suffix in a
parameter-efficient manner.

3 Preliminaries

In sequential recommendation, ¢/ denotes the set
of users and Z represents the set of items. Each
user u € U has a temporally ordered sequence
of interacted items S,, = {i1,2,...,in}, where
N is the sequence length and ¢ € Z. The goal
is to predict the next item ¢x1. In this work,
we transform each user’s interaction history .S,
and the information of each item ¢ into a natural
language instruction using a pre-defined template
(detailed in Section 4.1). The instruction repre-
sented as T' = {ty,to,...,tw}, where W is the
text length, prompts LLMs to generate user/item
embeddings for similarity comparison and control-
lable next-item recommendation.

4 Method

In this section, we present our proposed Laser.
First, we explain how the Bi-Tuning frame-
work adapts LLM for sequential recommendation
through the learnable prefix and suffix. Next, we
describe how the M-Former activates different ex-
perts to extract relevant information from different
collaborative signals into the prefix. Then, we in-
troduce the multi-task loss function that balances
the recommendation and load-balancing objectives.
Finally, a two-phase training strategy is designed
to progressively obtain high-quality item/user em-
beddings.

4.1 Bi-Tuning for LLM-based Sequential
Recommendation

Inspired by previous works (Li and Liang, 2021;
Lester et al., 2021), we propose an innovative way
to adapt LLMs to the sequential recommendation
task by adding learnable virtual tokens to both the
prefix and suffix of the input text. Specifically,
given the input instruction 7' = {¢1, to, ..., ty }, it
is expanded with learnable prefix and suffix tokens:

T:{p17p27"‘7pL7t17t27”'7tW7 (1)

prefix

s}
suffix

instruction

where P = {p1,p2,...,pr} represents the prefix
containing L prepended virtual tokens, and s de-
notes the suffix, consisting of a single appended
virtual token. The virtual tokens serve as place-
holders for LLM fine-tuning, while the LLM’s pa-
rameters remain frozen. Specifically, the prefix is
responsible for adapting LL.Ms with collaborative
knowledge, which we will detail in Section 4.2
using the proposed M-Former. The suffix token
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is designed to capture the interaction history of a
user u or the description of a single item ¢ in the
instruction 7" based on the following template:

You are an intelligent recommendation assis-
tant. Please summarize the user’s characteris-
tics into a single token based on the interaction
history. In chronological order, the user has
interacted with the following items:

>> 1. Kaytee Aspen Bedding Bag (brand:
Kaytee, category: Kaytee)

>> 2.

Specifically, we treat a single item as a special case
of user interaction history that contains only the
item itself. In this way, a unified template can pro-
cess both user and item information, minimizing its
impact on the performance of LLMs (Lester et al.,
2021; Liu et al., 2022).

Then, the output embedding of the suffix token,
based on the designed template, is used as the user
embedding h,, € R? or item embedding h; € R?
for similarity comparison and next-item prediction,
where d represents the LLM hidden size:

, h'h;
s(u,i) = cos(hy, h;) = m, ()
U 1
i = argmax;ez (s(u, 1)) 3)

Through this way, we mitigate the uncontrollability
issue in generative recommendation.

4.2 M-Former for Collaborative Information
Integration

To effectively integrate collaborative information
into LLMs for more accurate recommendations,
we propose M-Former, a lightweight MoE-based
querying transformer. As shown in Figure 1, M-
Former selectively activates different query experts
to extract relevant collaborative information from
frozen ID-based recommenders. The experts car-
rying collaborative knowledge are then aggregated
to form the prefix, which better adapts the LLMs
with such collaborative information.

Specifically, to provide LLMs with collabora-
tive knowledge, following previous works (Yang
et al., 2023; Zhang et al., 2023b), we employ a
frozen ID-based sequential recommender to gen-
erate collaborative embeddings C € R™V*% based
on the input item ID sequence, where N denotes
the sequence length and d.. is the hidden size of the
recommender. The input to the ID-based recom-
mender aligns with the input to the LLM. When

encoding user embeddings, the recommender pro-
cesses the user’s historical interaction sequence
(N > 1), and when encoding item embeddings, it
processes only the item’s ID (N = 1).

Given the collaborative embeddings C €
RA*de ' M-Former selectively activates query ex-
perts via a router to extract collaborative infor-
mation through multiple transformer layers. M-
Former consists of K experts, each comprising
L learnable vectors of size d,,, represented as
Q € RE%4m The router is a gating function with a
learnable weight matrix W, € R¥*9e_ responsible
for computing the probability distribution of expert
weights. Specifically, the weight for the j-th expert
is computed as:

", softmax (CW,)) i "
N ’ )

Following standard MoE architectures, only the
top-k experts with the highest weights are activated.
This enables M-Former to dynamically leverage
different experts based on varying collaborative sig-
nals. The activated experts are then passed through
Z layers of transformer blocks, where they extract
the collaborative information contained in C using
cross-attention:

w; =

T
Q' = softmax (3%) c, (®)]

where Q € RI*?m represents a selected query
expert, and C' € RV*%m is obtained by linearly
mapping C € RV*4_ Finally, the experts are
aggregated using their respective weights computed
in Equation 4, and the aggregated result is then
linearly mapped to the LLM’s hidden size d to
form the prefix, which is used to adapt the LLM
with collaborative knowledge.

4.3 Model Learning
4.3.1 Loss Function

To ensure the balanced utilization of all experts in
M-Former, we adopt a multi-task loss that incorpo-
rates both the recommendation and load-balancing
objectives.

Specifically, the recommendation task is mod-
eled using the item-item contrastive (IIC) loss (Li
etal., 2023), which encourages the user and ground-
truth item embeddings to be closer while pushing
other irrelevant item embeddings further apart. The
IIC loss is defined as:
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ecos(hu ,hj )/ T

Z T ecos(hy h;) /T’
i

ﬁuc = — log (6)

where h,, and h; represent the embeddings of user
u and item ¢, hj is the embedding of the ground-
truth item, Z represents the item set, and 7 is a
temperature hyperparameter.

To ensure efficient usage of all experts in M-
Former, we also incorporate a load-balancing loss.
This loss, following previous works (Lepikhin et al.,
2021; Fedus et al., 2022), is computed as:

K
L1 = KZ fiwj, (N
j=1
where K is the number of experts, w; is the weight
for the j-th expert calculated in Equation 4, and f;
is the fraction of items dispatched to the j-th expert
by the router, calculated by:

p = softmax (CWI) , (8)
1 N
fi=w > 1{argmax p; = j}, )
i=1

where C € RN > represents the collaborative em-
beddings of the input item ID sequence of length IV,
W, € RE*de is the weight matrix of the router, and
p € RVXK i the calculated score matrix, which
represents the degree of correlation between the N
items and the K query experts.

Finally, the overall loss function is a weighted
sum of the item-item contrastive loss and the load-
balancing loss:

L = Lric + ML, (10)

where A is a hyper-parameter that balances the
weight of different tasks.

4.3.2 Two-Phase Training

As shown in Equation 6, calculating the IIC loss
requires the embeddings of all items in the item
set Z, which are determined by the current model
parameters at each training step. However, updat-
ing all item embeddings at each training step is
computationally expensive and can lead to unstable
supervision. Therefore, we introduce a two-phase
training strategy. Specifically, in the first phase,
item embeddings are updated only at the beginning
of each epoch. The phase ends when optimal per-
formance is achieved on the validation set. Then,
the item embeddings from the epoch with the best

Datasets #Users #Items #Inters. Avg. n Density

Scientific 11,041 5,327 76,896 6.96 1.3e-3
Arts 56,210 22,855 492,492 8.776 3.8e-4
Pet 47,569 37,970 420,662 8.84 2.3e-4
Games 11,036 15,402 100,255 9.08 5.9e-4

Table 1: Statistics of all datasets. Avg. n denotes the
average number of items in the user interaction history.

validation performance are used throughout the
second phase of training. During this phase, the
model parameters are optimized to make the user
embeddings closer to the fixed ground-truth item
embeddings via the contrastive loss Lyjc. Through
this way, we reduce the computational cost and pro-
gressively optimize the item and user embeddings
across two phases.

5 Experiments

In this section, we conduct detailed experiments
to demonstrate the effectiveness of our proposed
Laser.

5.1 Experimental Settings

Datesets. We conduct experiments on four Ama-
zon review datasets: “Industrial and Scientific”,
“Arts, Crafts and Sewing”, “Pet Supplies”, and
“Video Games”. Following previous works (Li
et al., 2023; Hou et al., 2022), we use the five-
core version and exclude items without titles. We
collect user interactions and sort the items by times-
tamp. The statistics of the preprocessed datasets
are shown in Table 1.

Baselines. We compare our Laser to a number of
state-of-the-art baselines, including six traditional
methods: SASRec (Kang and McAuley, 2018),
BERT4Rec (Sun et al., 2019), RecGURU (Li et al.,
2022), FDSA (Zhang et al., 2019), ZESRec (Ding
et al., 2021), RECFORMER (Li et al., 2023), and
three LLM-based methods: LLM4REC (Wang
et al., 2024b), KAR (Xi et al., 2023), and Lla-
maRec (Yue et al., 2023). We list the details of
these baselines in Appendix A.

Implementation Details. In this paper, we use
BERT4Rec (Sun et al., 2019) to provide collabora-
tive knowledge for LLMs and employ GPT2-Large
(Radford et al., 2019), ChatGLM2-6B (GLM et al.,
2024), and Llama2-7B (Touvron et al., 2023) as
LLM backbones, which are also used in the three
LLM-based baselines. The corresponding Laser
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Models Scientific Pet Arts Games

R@10 N@10 MRR R@10 N@10 MRR R@10 N@10 MRR R@10 N@10 MRR
Traditional Methods

SASRec 13.11 803 7.12 881 569 507 1342 848 742 953 547 5.05

BERT4Rec 1061 790 7.59 765 6.02 585 1236 942 899 1048 6.54 6.07

RecGURU 781 575 566 415 366 371 742 525 488 479 386 3.96

ZESRec 1260 843 7.45 1024 7.64 725 1349 970 870 844 530 5.05

RECFORMER 11.14 722 650 9.05 793 7.74 1298 1024 9.80 861 572 522

FDSA 9.67 7.16 692 949 6.73 650 1209 994 941 931 6.00 546

LLM-based Methods

Methods based on GPT2

LLM4REC 1257 764 683 9.18 7.69 6.81 1266 927 880 857 546 5.13

Laser-G 1291 842 7.68 983 797 745 1342 1031 972 9.12 583 534

Methods based on ChatGLM?2

KAR 12.65 894 8.13 942 724 6.77 13,57 9.17 8.18 944 582 526

Laser-C 14.06* 9.83 9.16 11.21 9.08* 8.61 14.92* 11.40* 11.14* 10.75 7.13 6.46

Methods based on Llama2

LlamaRec 1275 857 793 961 7.54 7.1 13.68 860 794 958 579 541

Laser-LL 13.87 9.84* 9.23* 11.67* 9.05 8.63* 14.53 10.96 10.81 10.91* 7.25* 6.58*

Improv. (%) 724 917 13.51 1396 14.53 11.53 9.13 11.37 13.74 410 10.86 8.40

Table 2: Performance comparison of different methods (all results are scaled by a factor of 100). The best results for
Laser are marked in bold, and the best results for the baselines are underlined. Improv. indicates the improvements
between Laser’s and the baselines’ best results, while * denotes statistically significant improvements (t-test with

p-value < 0.05).

models based on these backbones are denoted as
Laser-G, Laser-C, and Laser-L, respectively. Im-
plementation details are provided in Appendix B.

Evaluation Settings. Following previous works
(Li et al., 2023; Yue et al., 2023; Wang et al.,
2024b), we evaluate using three common metrics:
Recall@N, NDCG@N, and MRR. For data split-
ting, we apply the leave-one-out strategy (Kang
and McAuley, 2018), where the most recent item
in the interaction history is used for testing, the
second for validation, and the rest for training. We
report the average results on the test data.

5.2 Overall Performance

As shown in Table 2, Laser achieves substantial
improvements across all metrics and datasets com-
pared to all baselines. For instance, on the Pet
and Arts datasets, Laser surpasses the best base-
line in Recall@10 by 13.96% and 9.13%, respec-
tively. Notably, Laser consistently outperforms
LLM-based baselines using the same LLM back-
bones, demonstrating the effectiveness of our pro-
posed Bi-Tuning framework with M-Former in
seamlessly integrating collaborative information
into LLMs and adapting them for controllable se-
quential recommendation.

Additionally, we note that Laser’s performance
improves as the LLM backbone scales. For ex-

BERT4Rec Laser-C

0.04
0.04

0.03
0.03

0.02 0.02

0.01 0.01

0 Recall@10 Recall@20
(2) Games Dataset

0 Recall@10 Recall@20
(1) Pet Dataset

Figure 2: Performance comparison under the cold-start
settings on the Pet and Games datasets.

ample, on the Pet dataset, Laser-C (based on
ChatGLM2-6B) and Laser-L. (based on Llama2-
7B) surpass Laser-G (based on GPT2-Large) in Re-
call@10 by 14.0% and 18.7%, respectively. This
suggests that our model can be further improved
with larger-scale LLM backbones.

5.3 Cold-Start Performance

To evaluate Laser’s performance in cold-start sce-
narios, we compare Laser-C with BERT4Rec on
the Pet and Games datasets. Following previous
work (Kim et al., 2024), an item is categorized
as “cold” if it falls within the bottom 35% of in-
teractions. As shown in Figure 2, there is a clear
performance gap between the two methods in both
datasets, with Laser-C significantly outperforming
BERT4Rec. This demonstrates that Laser effec-
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Figure 3: Performance comparison under the zero-shot
and low-resource settings on the Scientific dataset.

tively leverages the language modeling and com-
prehension capability of LLMs to assist in recom-
mending cold items.

5.4 Zero-Shot and Low-Resource
Performance

To further demonstrate Laser’s effectiveness, we
conduct experiments in zero-shot and low-resource
scenarios.  Specifically, Laser-C, which com-
bines semantic information with collaborative
knowledge, is compared against two baselines:
BERT4Rec (using only ID-based collaborative in-
formation) and RECFORMER (using only seman-
tic information). These models, except for ID-
based BERT4Rec, are trained on the Pet dataset
and tested on the Scientific dataset with limited or
no training data.

Figure 3 shows the results. We observe that: (1)
Laser outperforms all baselines in the zero-shot sce-
nario, achieving significantly better performance,
despite seeing no data from the Scientific dataset.
This performance is attributed to the Bi-Tuning
framework, which fully leverages the generaliza-
tion capabilities of LLMs for sequential recommen-
dation. (2) Laser requires only 5% of the train-
ing data to outperform both baselines using 100%
of the data. As training data increases, Laser’s
performance improves rapidly, demonstrating that
minimal training data is sufficient for transferring
Laser to an out-of-domain dataset, achieving better
results than baselines requiring more data. This
demonstrates the effectiveness of our framework in
integrating collaborative knowledge into LLMs and
adapting them for controllable and generalizable
sequential recommender systems.

5.5 Ablation Study

To demonstrate the effectiveness of each module in
Laser, we conduct comprehensive ablation studies
on the Scientific dataset (Table 3) and Pet dataset

Recall@10 NDCG@10 MRR

Laser-C 0.1406 0.0983  0.0916
Bi-Tuning
w/o prefix 0.1142 0.0716  0.0652
w/o suffix
w/ average pooling 0.0579 0.0425 0.0481
w/ [EOS] 0.1004 0.0725 0.0683
M-Former
w/o M-Former 0.1245 0.0844  0.0739
w/ one expert 0.1261 0.0889 0.0795
Model Learning
w/o load-balancing loss ~ 0.1377 0.0893 0.0832
w/o training phase 1 0.0793 0.0571 0.0571
w/o training phase 2 0.1320 0.0891 0.0774

Table 3: Ablation study on the Scientific dataset. The
best results are in bold and the second are underlined.

(Appendix C). The results show that removing any
module leads to a significant decrease in Laser’s
performance.

First, both the learnable prefix and suffix are cru-
cial for adapting LLMs to sequential recommenda-
tion. Without the prefix, Recall@10, NDCG@ 10,
and MRR drop significantly by 18.77%, 27.16%,
and 28.82%, respectively, highlighting the prefix’s
role in adapting LLLMs with collaborative infor-
mation. Besides, we compare the suffix with two
alternative strategies for generating item/user em-
beddings: (1) average pooling of all token embed-
dings from the LLM output and (2) replacing the
learnable virtual suffix with a hard [EOS] token.
Both variations result in noticeable performance
degradation, with Recall@10, NDCG@10, and
MRR decreasing by at least 28.6%, 26.2%, and
25.4%, respectively, demonstrating that the learn-
able suffix better converts the LLM output from
language space to recommendation space to obtain
high-quality item/user embeddings.

Second, the M-Former effectively integrates col-
laborative information into LLMs, significantly im-
proving recommendation accuracy. Without the
M-Former (where the prefix is randomly initial-
ized), Recall@10, NDCG @10, and MRR drop by
11.45%, 14.14%, and 19.32%, respectively. Fur-
thermore, with only one query expert, Recall@10,
NDCG@10, and MRR decrease by 10.31%, 9.56%,
and 13.21%, underscoring the importance of M-
Former’s adaptive expert utilization based on vary-
ing collaborative signals.

Finally, removing the load-balancing loss or ei-
ther training phase reduces Laser’s effectiveness,
highlighting the importance of efficient expert uti-
lization in M-Former and the necessity of two-
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dataset based on Laser-C.
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Figure 5: Performance comparison with different ID-
based sequential recommender systems.

phase training, where the first phase learns high-
quality item embeddings and the second optimizes
user embeddings for accurate recommendations.

5.6 Further Discussion

We further discuss Laser focusing on the impact of
different ID-based sequential recommenders and
hyper-parameter settings. We also analyze the ef-
fects of various templates, with detailed results
provided in Appendix D.

5.6.1 ID-based Sequential Recommender

We conduct additional experiments to study how
the ID-based sequential recommender system in-
fluences Laser’s performance. As shown in Figure
5, Laser-C’s performance increases almost linearly
with the performance of the employed ID-based
recommender. For example, on the Pet dataset,
Laser-C based on BERT4Rec surpasses Laser-C
based on SASRec by 16.08%, while BERT4Rec
outperforms SASRec by 15.38%. This indicates
that Laser can be further improved by leveraging
more powerful ID-based sequential recommender
systems.

5.6.2 Parameter Analysis

We conduct a detailed parameter analysis, evaluat-
ing the number of query experts (K), the number of

expert virtual tokens (L), the loss balance factor (\),
and the suffix token number. As shown in Figure
4, smaller values of K and L limit the M-Former’s
ability to extract collaborative information, while
larger values increase the training complexity and
reduce the model’s effectiveness. Besides, Laser
performs best with A = 0.1, which balances the
IIC and load-balancing losses. Additionally, a sin-
gle suffix token performs best, as multiple tokens
(whose output embeddings are averaged to form
item/user embeddings) add complexity and reduce
effectiveness. Finally, the optimal configuration is
achieved with K = 8, L = 32, A = 0.1, and a
single suffix token.

6 Conclusion

In this paper, we propose Laser, a simple yet effec-
tive Bi-Tuning framework with collaborative infor-
mation for controllable large language model-based
sequential recommendation. Paritcularly, we intro-
duce Bi-Tuning, an efficient fine-tuning method
that adapts LLMs to sequential recommendation
via a learnable prefix and suffix. The prefix effec-
tively incorporates collaborative information, while
the suffix transforms LLM output into item/user
embeddings for similarity comparison, enabling
controllable recommendations. To better integrate
ID-based collaborative information, we introduce a
lightweight MoE-based querying transformer that
activates different experts to extract relevant infor-
mation from varying collaborative signals of frozen
ID-based recommenders, paired with a multi-task
loss for load-balancing. Finally, a two-phase train-
ing strategy is used to progressively obtain high-
quality item and user embeddings through the learn-
able suffix. Extensive experiments on real-world
datasets show that Laser effectively adapts LLMs
to sequential recommendation tasks, substantially
outperforming state-of-the-art methods.
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7 Limitations

In this work, we validate the effectiveness of Laser
on current mainstream decoder-only LLMs, such
as GPT2-Large, ChatGLM?2-6B, and Llama2-7B.
However, a limitation remains in that we do not ex-
plore how Laser can be adapted to other LLM archi-
tectures, such as encoder-decoder models, which
may offer different benefits for sequential recom-
mendation tasks. In future work, we plan to in-
vestigate how Laser can be integrated with these
alternative architectures to further enhance its per-
formance and applicability.
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A Baselines

To comprehensively evaluate the performance of
our proposed Laser, we compare it to state-of-the-
art baselines, including six traditional methods and
three LLM-based methods.

(1) Traditional Baselines:

* SASRec (Kang and McAuley, 2018) employs
a self-attention mechanism to capture the se-
mantic relevance between the user interaction
sequence and the candidate items.

« BERT4Rec (Sun et al., 2019) is a bidirec-
tional self-attentive model, employing the
cloze objective to model users’ dynamic pref-
erences from their historical behaviors.

* RecGURU (Li et al., 2022) introduces an ad-
versarial learning method to incorporate user
information across domains and obtain gen-
eralized user representations for sequential
recommendation.

* FDSA (Zhang et al., 2019) proposes a feature-
level self-attention network that integrates
different heterogeneous features of items
into feature sequences with different weights
through a vanilla attention mechanism.

ZESRec (Ding et al., 2021) utilizes a pre-
trained language model to convert item de-
scriptions into feature representations.

* RECFORMER (Li et al., 2023) formulates
items as key-value attribute pairs and utilizes
pre-trained language models to encode them
for ID-free sequential recommendation.

(2) LLM-based Baselines:

* LLM4REC (Wang et al., 2024b) incorporates
collaborative information into the LLM’s at-
tention weight calculation. Besides, it adds
user and item IDs to the LLM’s vocabulary
for recommendation and defines a series of
pre-training and supervised fine-tuning tasks
to help the LLM learn the meanings of these
IDs in the context of recommendations. GPT2
(Radford et al., 2019) is used as the backbone.

* KAR (Xi et al., 2023) proposes a hybrid-
expert adapter that condenses LLM-generated
world knowledge to enhance the performance
of recommendation models. Following the
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original paper, we use ChatGLM2-6B (GLM
et al., 2024) to provide the dense vector out-
puts containing world knowledge.

* LlamaRec (Yue et al., 2023) leverages a two-
stage framework, where a traditional sequen-
tial recommender model is first used for re-
trieval, followed by ranking a small set of
candidate items using Llama2-7B (Touvron
et al., 2023).

B Implementation Details

In this work, we use a pre-trained BERT4Rec (Sun
et al., 2019) to provide collaborative knowledge for
the LLM, with the number of transformer blocks,
attention heads, and the dimension of each attention
headset to 2, 2, and 32, respectively. We employ
GPT2-Large (Radford et al., 2019), ChatGLM?2-6B
(GLM et al., 2024), and Llama2-7B (Touvron et al.,
2023) as LLM backbones, which are also used in
the three LL.M-based baselines. The M-Former
consists of 12 transformer blocks, with alternate
blocks performing cross-attention. The hidden size
and number of attention heads are set to 768 and
12, respectively. The expert number K is set to
8, with only the top 3 experts activated, and the
query token number L is set to 32. Additionally,
the router is implemented as a fully connected layer,
with input and output dimensions set to 64 and 8,
respectively.

During training, the BERT4Rec and LLM back-
bones are frozen, while the other learnable modules
are randomly initialized and trained in two phases
(as described in Section 4.3.2). We set the batch
size to 4, the learning rate to le-4, the loss weight
hyperparameter A to 0.01, and the temperature hy-
perparameter 7 to 0.05. The Adam optimizer is
used, and the Laser is trained for 15 epochs in the
first phase and 5 epochs in the second phase.

C Ablation Study on the Pet Dataset

As shown in Table 4, the ablation results on the
Pet dataset indicate that removing any module sig-
nificantly decreases Laser’s performance, which is
consistent with the results on the Scientific dataset.

D Influence of the Template

In this work, we utilize a unified template to or-
ganize both the user interaction history and the
single item information, which is shown in Section
4.1. The template instructs LLMs to summarize

Recall@10 NDCG@10 MRR

Laser-C 0.1406 0.0983  0.0916
Bi-Tuning
w/o prefix 0.0875 0.0701 0.0653
w/o suffix
w/ average pooling 0.0470 0.0453 0.0477
w/ [EOS] 0.0758 0.0637 0.0645
M-Former
w/o M-Former 0.1049 0.0775 0.0721
w/ one expert 0.1056 0.0818 0.0763
Model Learning
w/o load-balancing loss ~ 0.1088 0.0887 0.0809
w/o training phase 1 0.0531 0.0492  0.0418
w/o training phase 2 0.1091 0.0853 0.0812

Table 4: Ablation study on Pet dataset. The best results
are in bold and the second best results are underlined.

Templates Recall@10 NDCG@10 MRR
Laser-C 0.1406 0.0983  0.0916
w/o specified phrase ~ 0.1081 0.0830  0.0795
w/o instruction 0.0993 0.0767 0.0654
w/ two instructions 0.0968 0.0640 0.0571

Table 5: Performance comparison under different hard
prompt templates on the Scientific dataset.

the semantic information into the suffix, which is
further used for recommendation. To ensure the
template’s plausibility, we compare it with three
other variants, including: (1) deleting the specified
phrase “into a single token”, (2) deleting the en-
tire instruction “You are an intelligent ... the user
has browsed the following items:”, (3) using a dif-
ferent instruction for item embedding generation,
“You are an intelligent recommendation assistant.
Please summarize the item characteristics into a
single token:”. As shown in Table 5, compared to
the other three variants, our prompt template can
significantly improve Recall@10, NDCG@ 10, and
MRR by more than 30.06%, 18.43%, and 15.22%,
respectively. This demonstrates the effectiveness
of our prompt template in harnessing the powerful
capabilities of LLMs with clear, consistent, and
appropriate instruction.
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