
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 19323–19339
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Cramming 1568 Tokens into a Single Vector and Back Again:
Exploring the Limits of Embedding Space Capacity

Yuri Kuratov1,2 Mikhail Arkhipov3 Aydar Bulatov1,2 Mikhail Burtsev4

1AIRI, Moscow, Russia
2Neural Networks and Deep Learning Lab, MIPT, Dolgoprudny, Russia

3Independent Researcher, Amsterdam, Netherlands
4London Institute for Mathematical Sciences, London, UK

Correspondence: yurii.kuratov@phystech.edu

Abstract

A range of recent works addresses the problem
of compression of sequence of tokens into a
shorter sequence of real-valued vectors to be
used as inputs instead of token embeddings
or key-value cache. These approaches are fo-
cused on reduction of the amount of compute
in existing language models rather than min-
imization of number of bits needed to store
text. Despite relying on powerful models as en-
coders, the maximum attainable lossless com-
pression ratio is typically not higher than x10.
This fact is highly intriguing because, in the-
ory, the maximum information capacity of large
real-valued vectors is far beyond the presented
rates even for 16-bit precision and a modest
vector size. In this work, we explore the lim-
its of compression by replacing the encoder
with a per-sample optimization procedure. We
show that vectors with compression ratios up
to x1500 exist, which highlights two orders
of magnitude gap between existing and prac-
tically attainable solutions. Furthermore, we
empirically show that the compression limits
are determined not by the length of the input
but by the amount of uncertainty to be reduced,
namely, the cross-entropy loss on this sequence
without any conditioning. The obtained lim-
its highlight the substantial gap between the
theoretical capacity of input embeddings and
their practical utilization, suggesting significant
room for optimization in model design.

1 Introduction

Most large language models (LLMs) are built on
the Transformer architecture (Vaswani et al., 2017)
and have demonstrated remarkable performance as
their parameters scale (Radford et al., 2019; Brown
et al., 2020; Kaplan et al., 2020; Hoffmann et al.,
2022). As model sizes increase, so does the di-
mensionality of their input embeddings. However,
despite this growth, each embedding still repre-
sents only a single token, e.g., for a series of Llama
models embeddings size is growing from 2,048

py
thi

a-1
60

m

py
thi

a-4
10

m

py
thi

a-1
.4b

py
thi

a-2
.8b

op
t-1

.3b

OLM
o-1

B-07
24

Sh
ea

red
-LL

aM
A-1

.3B

Lla
ma-3

.2-
1B

Lla
ma-3

.2-
3B

Lla
ma-3

.1-
8B

250

500

750

1000

1250

1500

Te
xt

 le
ng

th
, t

ok
en

s
80 96 160 128 128

384
512 512

1024

1568

Figure 1: How many tokens fit into a single input
vector? We estimate maximum number of tokens that
can be decoded from a single input vector across various
language models.

in 1B-parameter models to 16,384 float numbers
in 405B-parameter models (Dubey et al., 2024).
Remarkably, even a 2,048-dimensional vector of
16-bit floats has a theoretical capacity of 32,768
bits, which is sufficient to encode roughly 1,931
tokens from a vocabulary of size 128,256. This
observation motivates us to explore whether lan-
guage models can utilize the latent capacity of in-
put vectors more effectively, potentially encoding
and processing multiple tokens with a single vector.

Encoding multiple tokens or even entire texts
into a compact latent representation has been a
longstanding challenge in natural language process-
ing. It includes approaches, such as sentence em-
beddings (Le and Mikolov, 2014; Kiros et al., 2015;
Cer et al., 2018; Wang et al., 2024) for semantic
search and retrieval, and text autoencoders (Bow-
man et al., 2016; Miao et al., 2016; Montero et al.,
2021), aimed to capture the essential meaning of
texts in a dense representations.

19323

mailto:yurii.kuratov@phystech.edu

In the context of LLMs, the challenge of en-
coding prompts and long contexts is particularly
important because of the quadratic computational
cost of the self-attention mechanism in Transform-
ers. Several works have explored the possibility
of replacing token-based prompts with a smaller
set of dense vectors (Lester et al., 2021; Li and
Liang, 2021; Gao, 2024; Li et al., 2024b), thereby
shortening the input sequence and reducing the
computational budget. These methods have demon-
strated token-to-vector lossy compression ratios
on the order of x500 with 8B-parameter models,
indicating that it is possible to retain the critical
information in a significantly reduced number of
vectors. However, lossless compression is still lim-
ited by approximately factor of 10.

In memory-augmented architectures (Weston
et al., 2015; Sukhbaatar et al., 2015; Burtsev et al.,
2021), these embeddings act as additional storage
or as a recurrent state for passing information be-
tween time steps (Dai et al., 2019; Bulatov et al.,
2022; Chevalier et al., 2023; Behrouz et al., 2024),
essentially serving as an episodic memory. More-
over, recent approaches have explored the power
of latent space reasoning (Hao et al., 2024) where
high-capacity embeddings enable models to per-
form complex multi-step tasks directly in latent
space. Consequently, the capacity of these vectors
is crucial not only for efficient input representation,
but also for increasing the overall expressiveness
and computational power of models (Merrill and
Sabharwal, 2023; Strobl et al., 2024; Sanford et al.,
2024). Better understanding of the latent capacity
of input vectors, could significantly help to improve
encoding and retrieving of contextual information,
episodic memory, as well as complex reasoning
within large language models.

In this work, we investigate the limits of such
input representations, exploring their capacity to
encode and reconstruct long text sequences. By
systematically quantifying how much additional
information these vectors can capture, we provide
insights into the efficiency and potential of latent
representations in LLMs. Our main contributions:

1. We empirically study capacity limits of
LLM’s input representations by compressing texts
into trainable [mem] vectors.

2. We establish a direct connection between
the latent capacity of input vectors and text cross-
entropy, providing a quantitative measure of the
information each vector can encode.

3. We show that the capacity limits remain con-

sistent across different text lengths and domains,
including natural text and random word sequences.

4. We introduce a set of metrics that decouple
the capacity of trainable input vectors from the lan-
guage model’s inherent prediction abilities. Using
these metrics, we demonstrate a nearly linear scal-
ing of compression capacity with the number of
trainable vectors (e.g., Llama-3.2-1B compresses
7,168 tokens into just 16 vectors).

Our code is available at this URL.

2 Related Work

Approaches to compressing LLM context into a
shorter sequence of input or KV-cache vectors are
explored for various purposes, yet no standardized
terminology or unified methodology has emerged.

Context compression. One application for input
compression is connected with efficient process-
ing of long contexts with LLMs. RMT (Bulatov
et al., 2022) and AutoCompressors (Chevalier et al.,
2023) train the whole language model in a recurrent
manner to compress the information from input seg-
ments to summary vectors and later reuse them to
solve long-context tasks. ICAE Ge et al. (2024)
uses an autoencoder architecture with a frozen
LLM as a decoder and adapt the same LLM for the
encoder using LoRA (Hu et al., 2022). The result-
ing pipeline is pretrained using autoencoding and
language modeling objectives, and then finetuned
for language tasks, achieving the effective com-
pression rate of x4. SelfCP (Gao, 2024) uses the
base LLM itself as a compressor using a trainable
adapter to aggregate compressed states across mul-
tiple segments. 500xCompressor (Li et al., 2024b)
extends the autoencoding approach with layer-wise
connections and additional language pretraining
tasks, exploring compression ratios up to x480,
though at the cost of substantial quality degrada-
tion. Alternative approaches aim to compress KV
activations instead of input tokens. Some meth-
ods achieve this by estimating token relevance, ei-
ther through training-free (Zhang et al., 2023; Li
et al., 2024a) or training-based approaches (Qin
and Van Durme, 2023; Qin et al., 2024), to prune ir-
relevant tokens and focus computation on the most
informative ones. These strategies can yield high-
quality but lossy compression with ratios up to x20.
This result can be improved by finetuning mod-
els to leverage the resulting cache representations
more effectively. This way, KV-Distill (Chari et al.,
2025) can reduce cache size up to 100 times with

19324

https://github.com/yurakuratov/hidden_capacity

negligible loss in QA performance. In contrast, our
method, applied to models of comparable size (up
to 8 billion parameters), demonstrates that a com-
pression rate of x1568 can be achieved without any
loss in reconstruction quality.

Prompt compression. Another line of work tar-
gets prompts compression to reduce inference costs.
Gist tokens (Mu et al., 2023) are prompt representa-
tions compressed by the LLM itself, finetuned with
a special mask. Gisting allows to achieve prompt
compression rate up to x26 with only minor loss
in model performance. LLMLingua (Jiang et al.,
2023) decouples the compression operation from
the LLM and introduces a coarse-to-fine prompt
compression strategy with a budget controller and
token-level iterative compression, achieving up
to x20 compression with negligible performance
loss. Jiang et al. (2024); Pan et al. (2024) extend
this framework to long contexts, improving infor-
mation retention through data distillation. Addi-
tionally, Morris et al. (2023, 2024) show that the
original text can be reconstructed not only from its
embeddings but even from the LM’s predictions. In
the current work we apply a per-sample optimiza-
tion process instead to explore the fundamental
limits of compression and establish upper bounds
on compression rates that far exceed prior work.

LLM-based lossless compression pipelines.
Language models have also been investigated for
lossless text compression.1 LLMZip (Valmeekam
et al., 2023) improves standard compression by
ranking candidates using next-token probabilities,
while FineZip (Mittu et al., 2024) accelerates com-
pression through fine-tuning and dynamic context
management for better efficiency. The capabilities
of LLMs in compression pipelines can be measured
in bits-per-token over a representative textual cor-
pus. Huang et al. (2024); Guo et al. (2024) provide
such measurements for public LLMs and estab-
lish the connection between compression rate and
model performance, measured by diverse bench-
mark scores. Unlike these methods, we do not rely
on external compression algorithms. Instead, we
achieve lossless compression using only the LLM
itself, providing both theoretical insights and prac-
tical demonstrations of compression limits.

1Delétang et al. (2024) explore data compression (texts to
sequences of bits) using Arithmetic Coding and LLMs. This
line of research is orthogonal to ours, as the sequence of bits
cannot be passed as an input to an LLM. We analyze our ap-
proach from the data compression perspective in Appendix F.

Trainable tokens. Some works use the trainable
input tokens in other ways. Burtsev et al. (2021)
uses memory tokens as additional representation
storage, Beltagy et al. (2020); Zaheer et al. (2020)
use similar global tokens to enhance long-range
information flow. Li and Liang (2021); Lester et al.
(2021); Gao (2024); Liu et al. (2022) explore train-
able soft prompts as an alternative to finetuning
model weights. Our findings about the representa-
tion capacity can represent the potential efficiency
limits of such methods, based on how far the model
behavior can be changed using trainable tokens.

3 Method

We propose a simple approach for compressing a
sequence of tokens into a small set of "memory"
vectors. Then with this method we analyze how
many tokens can be stored and decoded from a
small set of resulting vectors. Fig. 2 provides an
overview of our setup.

Figure 2: Compressing text into a [mem] vector. The
pre-trained LLM is frozen, and we only finetune one
or multiple [mem] vectors to decode the sequence of
tokens [t1, t2, . . . , tN]. [mem] vectors are trained for
each text separately.

Trainable [mem] vectors are inspired by Mem-
ory Transformers (Burtsev et al., 2021), but here
these vectors are designed to encode an entire text
sequence. The training method is similar to Prompt
Tuning (Lester et al., 2021), with only a set of
special input embeddings optimized while all pa-
rameters of the language model are frozen.

Formally, given a token sequence
[t1, t2, . . . , tN], we introduce a set of train-
able vectors [mem] = [m1, . . . ,mK] that are
prepended to the text. These [mem] vectors are
optimized to encode [t1, t2, . . . , tN]. During
training, the frozen language model processes
[m1, . . . ,mK , t1, t2, . . . , ti] as the input context
for predicting next token ti+1. The [mem] vectors
are optimized by minimizing the standard next-
token prediction cross-entropy loss. As a result,
each text sequence is associated with a unique

19325

set of [mem] vectors. At inference time, we start
generation with the learned [mem] tokens and let
LM to decode the text.

Let’s estimate an upper bound on the number of
tokens that can be generated from a single input
vector by a language model. The input vector has a
dimension dmodel, with each element represented
by b bits, so that the total information content is
approximately dmodel × b bits. Given a vocabu-
lary of size |V|, where each token carries at most
log2 |V| bits of information, the maximum number
of tokens L that can be generated is bounded by:

L ≤ dmodel × b

log2 |V|
. (1)

Our goal is to quantify the capacity of trainable
input vectors (denoted as [mem]) in terms of the
amount of information they can encode and later
decode. From an information-theoretic standpoint,
we interpret this capacity as the ability to reduce
uncertainty in the generated text. To this end, we
define the following metrics.

Decoding Capacity (in Tokens): From an
information-theoretic perspective, this metric rep-
resents the maximum number of tokens that can be
reliably reconstructed from the compressed repre-
sentation in the [mem] vectors. It is defined as the
longest text sequence length L for which the token-
level accuracy exceeds a predefined threshold:

Lmax = max
{
L |

Acc
(
LM(t[1:L] | [mem])

)
> thr

}
, (2)

here, Acc is computed via teacher-forcing when
decoding text both with and without the [mem]
vectors. This measure reflects the effective storage
limit (in tokens) imposed by the fixed capacity of
the memory vector.

Token Gain: This metric estimates the addi-
tional number of tokens that can be correctly de-
coded due to the presence of the [mem] vector, rel-
ative to the baseline performance of the language
model (LM) without it. Formally, if CLM+[mem]

tokens is
the count of tokens correctly predicted when using
the memory vector and CLM

tokens is the count without
it, then the gain is given by

Ctokens = CLM+[mem]
tokens − CLM

tokens

=
N∑

i=1

1

(
ti = LM(t[1:i−1] | [mem])

)

−
N∑

i=1

1

(
ti = LM(t[1:i−1])

)
. (3)

Viewed through an information-theoretic lens, this
difference quantifies the number of tokens’ worth
of information (i.e., discrete units) that the memory
vector adds to the decoding process.

Information Gain: Cross-entropy measures
the uncertainty or the average number of bits
required to encode a sequence under a given
model. The Information Gain quantifies how much
the [mem] vector reduces this uncertainty. Let
HLM = H

(
Pθ(t[1:N])

)
be the cross-entropy (in

bits) when decoding without the memory vector,
and HLM+[mem] = H

(
Pθ(t[1:N] | [mem])

)
be the

cross-entropy with the memory vector. Then, the
reduction is given by

CE-reduction = CH = HLM −HLM+[mem]. (4)

This measures how many fewer bits are needed
to represent the text, thus reflecting the additional
information provided by the memory vector.

Collectively, these metrics enable us to charac-
terize the capacity of the trainable input vectors
both in terms of discrete tokens (Ctokens) and en-
tropy (CH), while Lmax provides an upper bound
on the length of text that can be accurately recon-
structed. In our experiments, these measures are
computed over a curated set of texts and averaged
to obtain robust estimates. We note that the ab-
solute values of Information Gain depend on the
underlying vocabulary, and therefore should not
be directly compared across models with different
vocabularies.

4 Experiments and Results

We evaluate capacity of trainable input vectors of
the same size as dimension of input embeddings for
different language models on texts from different
sources.

Models We use models from Pythia suite (160M,
410M, 1.4B, 2.8B) (Biderman et al., 2023), OPT-
1.3B (Zhang et al., 2022), OLMo-1B (Groeneveld
et al., 2024), Sheared-LLaMA-1.3B (Xia et al.,
2024), Llama-3 models (1B, 3B, 8B) (Dubey
et al., 2024), and Mamba (130M, 370M, 790M,
1.4B) (Gu and Dao, 2024). List of all used models
with links to HuggingFace Hub are in Appendix A.

Data As a source of texts for compression, we
use texts from the PG-19 dataset (Rae et al., 2020),
which consists of books extracted from the Project
Gutenberg library. Given that PG-19 is publicly
available and contains books, it is highly plausible

19326

Pythia-160M Pythia-410M Pythia-1.4B Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B

PG-19
Max, tokens 80 96 160 512 1024 1568
Gain, tokens 70.9±11.0 81.3±12.0 158.0±29.1 426.2±79.2 720.3±80.2 1094.1±127.6

Information Gain 396.4±46.0 431.4±51.6 792.8±143.4 2119.9±364.8 3292.2±320.0 4865.7±546.6

Fanfics
Max, tokens 80 96 192 512 1024 1568
Gain, tokens 70.9±10.5 81.2±11.6 152.9±28.0 449.6±83.7 734.1±85.0 1071.8±168.6

Information Gain 378.1±45.9 429.8±46.2 776.9±132.5 2213.8±365.8 3354.5±344.9 4768.9±622.6

Random
Max, tokens 65 72 139 316 460 792
Gain, tokens 61.3±6.6 76.9±8.7 144.4±17.5 294.9±64.8 456.9±72.1 623.2±97.3

Information Gain 500.8±38.9 630.4±65.2 1108.2±136.2 2265.2±498.7 3382.6±585.2 4541.2±758.6

Table 1: Compression capacity across different text sources and models. We report Decoding Capacity (in
Tokens) ("Max, tokens" in the Table), Token Gain, and Information Gain for texts from PG-19, fanfics, random.
Notably, Information Gain remains similar across all text sources for each model (except random for Pythia). For
PG-19 and fanfics, LMs leverage their ability to predict natural language, so the Decoding Capacity (in Tokens)
generally exceeds the Token Gain. Furthermore, we find no evidence that the models benefit from potentially
having PG-19 in their pre-training data, as their performance on PG-19 is not significantly better than on fanfics
published after October 2024. In contrast, random text offers no predictable structure, making these two metrics
nearly identical. This allows us to distinguish how many tokens model can predict by itself compared to decoding
from trainable input vector. Larger models consistently show greater compression capacity across all metrics.

that these texts were included in the pre-training
data of LLMs. Notably, PG-19 is part of the Pile
dataset (Gao et al., 2020), which was used to train
Pythia models.

To assess the compression of texts that models
have not encountered during pre-training, we col-
lected fanfiction texts published online after Octo-
ber 2024 from the AO3 fanfics library2. Details of
this collection process are provided in Appendix B.

Both the PG-19 and fanfics consist of natural
language texts, where language models can predict
some tokens based on prior context and model pa-
rameters. To isolate the capacity of the trainable
input vectors without the influence of the knowl-
edge of natural language by language model itself,
we also employed random texts. Random texts
were generated by randomly sampling words from
the top 100,000 words from the GloVe vocabulary3.

We train only a set of M vectors that are
prepended to the model’s input. In most of the
experiments, we use only one trainable vector, if
not stated otherwise.

4.1 Decoding Capacity of a Single Vector

We find that a single trainable vector can enable
language models to produce surprisingly long, tar-
geted text sequences. We estimate Decoding Ca-
pacity (in Tokens) (Eq. (2)) on 50 texts from PG-19
for each length. We set a token-level accuracy

2https://archiveofourown.org/
3https://nlp.stanford.edu/data/glove.6B.zip

threshold of 0.99 and evaluate across the following
length grid: [64, 80, 96, 128, 160, 192, 256, 384,
512, 768, 1024, 1280, 1568, 2048, 2560, 3072].

Fig. 1 presents the results for the evaluated mod-
els. Notably, Llama-3.1-8B can accurately recon-
struct texts of up to 1568 tokens from just a single
input vector. Interestingly, among models with
around 1B parameters (Pythia-1.4B, OPT-1.3B,
OLMo-1B, Sheared-LLaMA-1.3B, and Llama-3.2-
1B) we observe compressive capacity that ranges
from 128 to 512 tokens. Pythia-2.8b, despite its
larger size, has poor compression of just 128 tokens
compared to smaller 1B models.

4.2 Memorization, Natural Language
Understanding and Episodic Memory

Generation from the [mem] vector involves combin-
ing information from both the pre-trained language
model parameters and memory about text specific
sequence. To analyze contributions of these differ-
ent types of memory, we use Token Gain (Eq. (3))
which measure the extra number of tokens pre-
dicted correctly, and Information Gain (Eq. (4))
showing the decrease in cross-entropy when decod-
ing from memory vector. In contrast to Decoding
Capacity, these two metrics more directly isolate
the capacity contributed by the [mem] vector itself.

In addition to texts from PG-19 that may have
been seen by LMs during pre-training, we consider:
(1) texts from fanfics to factor out memorization as
they were published after release of the models, and

19327

https://archiveofourown.org/
https://nlp.stanford.edu/data/glove.6B.zip

0 1000 2000

0

500

1000

1500

2000

pythia-160m
y = x + -396.4

0 2000 4000 6000
0

1000

2000

3000

4000

5000

6000
pythia-410m

y = x + -431.4

0 2000 4000
0

1000

2000

3000

4000

5000
pythia-1.4b

y = x + -792.8

0 2500 5000 7500 10000
0

2000

4000

6000

8000

Llama-3.2-1B
y = x + -2119.9

0 2500 5000 7500 10000
0

1000

2000

3000

4000

5000

6000

Llama-3.2-3B
y = x + -3292.2

0 2000 4000 6000 8000
0

1000

2000

3000

4000

Meta-Llama-3.1-8B
y = x + -4865.7

500

1000

1500

2000

2500

3000

Text Length, tokens
De

co
m

pr
es

se
d

te
xt

, C
ro

ss
-E

nt
ro

py

Text, Cross-Entropy

Texts from PG-19 Random text (sampled words) All texts below the line are losselessly compressed

Figure 3: Information gain of text compression to [mem] vector doesn’t depend on language understanding
capabilities of models. Compression results for various language models show the relationship between the cross-
entropy (CE) of the original and decompressed texts. If the text CE falls below a model-specific threshold (red line),
the text is losslessly compressed. This value is a input vector capacity in terms of entropy (Information Gain, CH).
For texts that are not perfectly compressed, the compression process reduces their CE to a consistent, model-specific
value (bias of the black dashed line). Larger models (e.g., Llama-3.1-8B) can handle longer texts before reaching
the compression threshold, due to their greater capacity compared to smaller models (e.g., Pythia-160M). This
behavior holds for both natural texts (PG-19) and unnatural random texts consisting of random word sequences.

(2) random sequenses of words to exclude learned
natural language understanding capabilities.

Decoding Capacity (in Tokens) for texts from
PG-19 and fanfics was evaluated on the following
length grid: [64, 80, 96, 128, 160, 192, 256, 384,
512, 768, 1024, 1280, 1568, 2048, 2560, 3072].

Table 1 summarizes the results for each model
and text source. We have two main observations.
The metrics for both PG-19 and fanfics are remark-
ably similar across all models tested. This sim-
ilarity implies that the presence of PG-19 in the
pre-training data does not provide much of an ad-
vantage. Thus, compression performance does not
appear to be driven by direct memorization of the
dataset. Notably, even for random texts, larger
models such as Llama-3.1-8B still exhibit substan-
tial compressing power, reliably reconstructing se-
quences of up to 792 tokens. This result demon-
strates the impressive capacity of learnable input
embeddings to control LLM generation. In partic-
ular, a single learned vector is sufficient to guide
generation of nearly 800 random tokens.

A key takeaway from these results is that the

model’s compression ability does not depend on
familiarity with specific texts or knowledge of nat-
ural language gained during pre-training. Instead,
the single trainable vector itself provides language
agnostic substantial capacity, allowing to store com-
pletely novel texts or random sequences of words.

4.3 Sensitivity of Compression to Text
Complexity

Decoding capacity might depend on the complex-
ity of the input text for a language model. In this
section, we study how compression changes uncer-
tainty of the model about the text.

For 50 text samples from the PG-19 at each tar-
get length (ranging from 8 up to 1568 tokens, and to
3072 for larger models) we measured cross-entropy
both before (HLM) and after (HLM+[mem]) compres-
sion (see Eq. (4)). Figure 3 compares results across
Pythia and LLama models, and full results for all
models are provided in Appendix D.

In Fig. 3, the models demonstrate linear rela-
tionship between cross-entropy before and after
compression for not perfectly compressible texts

19328

0 4 8 12 16 20 24 28 32
0

1000
2000
3000
4000
5000
6000
7000
8000

De
co

di
ng

 C
ap

ac
ity

 (i
n

To
ke

ns
)

2 4 6 8 10 12 14 16
Number of Trainable Input Vectors (N)

0

1000

2000

3000

4000

5000

6000

7000

To
ke

n
Ga

in

pythia-160m
Llama-3.2-1B

2 4 6 8 10 12 14 16
0

5000

10000

15000

20000

25000

30000

35000

In
fo

rm
at

io
n

Ga
in

Figure 4: Compression scales linearly with the number of trainable [mem] vectors. Dashed lines represent
ideal linear scaling, and shaded regions indicate ±1 std. Pythia-160m reaches its maximum input context length of
2048 tokens and can successfully encode texts of up to 2016 tokens into 32 [mem] input vectors. Llama-3.2-1B can
perfectly decode texts of 7168 tokens from just 16 input vectors.

(i.e., lying above the red dotted line), indicating
constant value of information gain (or, reduction
in cross-entropy). Texts with cross-entropy lower
than a model’s information gain are perfectly re-
constructed.

To verify that this also holds for arbitrary texts,
we used random word sequences and observed a
similar pattern: as long as cross-entropy of a sam-
ple remains below the model-specific cutoff, it can
be perfectly reconstructed. Notably, these random
texts (black dots in Fig. 3) lie very close to the
same linear trend as the PG-19 texts, showing that
similar compression laws apply regardless of the
nature of the sequence. Thus, [mem] works as an
episodic memory storing sequence specific infor-
mation independent of natural language knowledge
the model has.

4.4 Scaling Compression with More Trainable
Vectors

To explore how compression scales with the num-
ber of input vectors [mem] = [m1, . . . ,mK] we
use the same training process as before but for dif-
ferent numbers of trainable vectors, from 1 to 16
for the Llama-3.2-1B model and from 1 to 32 for
Pythia-160M.

The results of this series of experiments are pre-
sented in Fig. 4, demonstrating that input vector
capacity scales almost linearly with the number
of trainable [mem] vectors. This trend holds con-
sistently across all measures of capacity, whether
expressed in terms of tokens or text entropy. In
particular, Pythia-160M successfully decodes texts
up to 2016 tokens in length using 32 [mem] vectors,
effectively reaching its maximum context length.
Similarly, LlaMA-3.2-1B achieves perfect recon-
struction for sequences as long as 7168 tokens with

just 16 input vectors. However, scaling behavior
for LlaMA-3.2-1B deviates from the linear trend,
suggesting potential inefficiencies in the compres-
sion process or inherent model limitations in ex-
ploiting an increasing number of input vectors for
information storage and extraction.

Extrapolating from these trends, we estimate that
an entire text such as "The Hobbit, or There and
Back Again" (approximately 120,000 tokens) could
be compressed into only 128 input vectors using
Llama-3.1-8B and into 256 vectors using Llama-
3.2-1B.

These results demonstrate that increasing the
number of trainable [mem] vectors significantly en-
hances compression capacity, with linear scaling
observed across the evaluated models. Notably, us-
ing a small number of additional vectors introduces
minimal computational overhead while enabling
the reconstruction of substantially longer texts.

4.5 Embedding Capacity Utilization
To measure how effectively each model uses its in-
put embedding space, we compare the empirically
measured capacity in tokens (Token Gain) to a theo-
retical maximum derived from embedding size and
vocabulary size (see Eq. (1)). We define capacity
utilization as the ratio of these two quantities.

In Fig. 5 (top), when comparing all models with
roughly 1B parameters, there are two groups: (1)
older models (e.g., OPT and Pythia) show lower
capacity utilization, whereas (2) newer models
(e.g., Llama, ShearedLlama, Mamba, and OLMo)
demonstrate higher utilization despite having the
same theoretical capacity. This disparity indicates
that the quality of pre-training (data, compute bud-
get, improvements in architecture) influences the
extent to which a model can exploit its input vectors

19329

200 400 600 800 1000
Gain in Correctly Decoded Tokens, PG-19

1000

1500

2000

2500

3000

3500

4000

M
ax

 T
he

or
. C

ap
ac

ity
, t

ok
en

s
Pythia-160M
Pythia-410M
Pythia-1.4B
Pythia-2.8B
OPT-1.3B

OLMo-1B
Sh.Llama-1.3B
Llama-3.2-1B
Llama-3.2-3B
Llama-3.1-8B

Mamba-130M
Mamba-370M
Mamba-790M
Mamba-1.4B

Pyt
hia

-16
0M

Pyt
hia

-41
0M

Pyt
hia

-1.
4B

Pyt
hia

-2.
8B

OPT-
1.3

B

OLM
o-1

B

Sh
.Lla

ma-1
.3B

Lla
ma-3

.2-
1B

Lla
ma-3

.2-
3B

Lla
ma-3

.1-
8B

Mam
ba

-13
0M

Mam
ba

-37
0M

Mam
ba

-79
0M

Mam
ba

-1.
4B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ca
pa

cit
y

Ut
iliz

at
io

n

PG-19
Random

Figure 5: Only fraction of learned input embedding
information capacity can be utilized. Top. Maximum
token capacity (see Eq. (1)) against gain in correctly de-
coded tokens shows differences in utilization of learned
memory embedding for studied models. Bottom. Capac-
ity utilization for natural and random texts.

capacity.
In Fig. 5 (bottom) we can see three groups: (1)

and (2) same as on top plot with older and newer
models, and (3) group of Mamba models. The
Pythia models show an interesting trend: as model
size increases, capacity utilization decreases. This
pattern suggests that the larger Pythia models may
be under-trained relative to their theoretical poten-
tial. In contrast, Llama and OLMo models show
higher capacity utilization. Based on these obser-
vations, we hypothesize that capacity utilization
could serve as an indicator of the pre-training sta-
tus and guide further training.

For models within the Llama family, we observe
that empirical capacity utilization rises steadily
with model size (1B, 3B, 8B), most noticeable on
natural texts from PG-19. This might be fully at-
tributed to better language understanding, gained

by the larger models during pre-training, but even
on random texts we observe a modest upward trend.
This result suggests that the overall number of pa-
rameters plays an important role in determining
effective capacity not only via LM capabilities but
also due to better utilization of embedding space
for episodic information storage.

4.6 Non-Transformer Models: Mamba

Notably, the findings from the previous sections are
not limited to Transformer-based language models.
State-space Mamba models can also encode an
entire text into a single [mem] vector and perfectly
reconstruct the text when its cross-entropy falls
below the model’s capacity threshold, e.g., Mamba-
1.4B can encode texts of 512 tokens into a single
[mem] vector, similar to other 1B models (Llama-
3.2-1B, Sheared-LLaMa-1.3B). This demonstrates
that obtained results are architecture-agnostic.

On capacity utilization (Fig. 5), the Mamba mod-
els exhibit a consistent pattern across both panels
that depends on model size. In the top plot, the in-
crease in correctly decoded tokens is nearly linear
with respect to each model’s theoretical capacity.
This implies that each additional parameter in the
embedding space translates into greater decoding
accuracy at a nearly constant rate. In the bottom
plot, capacity utilization rises monotonically from
the 130M to the 1.4B model. This is the opposite
of the downward trend seen in Pythia, but aligns
with Llama, and shows that larger Mambas pro-
gressively make better use of their learned input
space. We give more details on Mamba results
in Appendix C, Fig. 6, and Table 3).

5 Discussion and Conclusions

In this work, we introduced a simple yet effective
way to compress entire text sequences into a small
set of trainable [mem] vectors without any informa-
tion loss. We used this method to analyze how far
we can push the latent capacity of large language
models compared to its theoretical limits.

By systematically evaluating different models,
we find that a surprising amount of text can be
compressed to a single token, and this capacity
scales linearly with the number of tokens. This
highlights significant potential in practical com-
pression pipelines and long-context processing. We
demonstrate that our compression outperforms neu-
ral models as a compression method, suggesting
a more efficient approach to representing infor-

19330

mation. However, significantly more compute is
needed due to optimization nature of the proposed
method.

We establish a direct link between representa-
tion capacity and cross-entropy, showing that it
remains independent of text length, domain, or fa-
miliarity. However, the exact model characteristics
that determine capacity remain an open question.
The hidden state dimension and model size play
an important role along with general performance,
however further analysis is required to determine
the exact scaling laws for capacity.

Compression ability serves as a strong indicator
of an LLM’s potential. Since transformers oper-
ate entirely within their representation space, its
capacity fundamentally constrains reasoning, inter-
mediate computations, and large-scale information
processing. All textual and soft prompts ultimately
reside in this space, meaning its limits define how
effectively models can be steered and conditioned.
By mapping these boundaries, we gain deeper in-
sight into the fundamental constraints of current
architectures and the possibilities for more power-
ful future models.

Moreover, our findings hold significant promise
for memory-augmented architectures. The ability
to compress long sequences into a compact set of
memory vectors shows the way for integrating effi-
cient external memory modules that can store and
retrieve detailed episodic information, potentially
enhancing reasoning, long-term dependency han-
dling, and overall model performance. We believe
that incorporating such optimized memory repre-
sentations could lead to novel architectures that are
both computationally efficient and more capable of
complex information processing.

We believe our findings present an important
stepping stone to understanding the limits of mod-
ern LLMs and building more powerful models in
the future.

Limitations

While our experiments push the boundaries of com-
pression with LLMs and offer insights into their
upper capacity limits, the nature of the obtained
representations remains largely unclear. We have
analyzed the structure of the space of trained [mem]
vectors in Appendix E, but more in-depth analysis
is needed to determine the semantic properties of
the vectors and their potential value in downstream
tasks. Our findings are limited to Transformer-

based and Mamba models with up to 8 billion pa-
rameters due to computational constraints. Inves-
tigating the representation space of larger models,
as well as exploring alternative architectures such
as recurrent and memory-augmented models, re-
mains an important avenue for future research. In
our study with different text sources, we generate
random text by sampling words from a dictionary.
While this approach simplifies the analysis, it may
slightly overestimate model capacity compared to
sampling directly from a tokenizer’s vocabulary, as
dictionary words can be split on multiple tokens by
model.

Broader Impact

We train a set of [mem] vectors so that arbitrary
texts can be accurately reconstructed from them.
This process not only allows us to analyze the ca-
pacity of these vectors, but also demonstrates that
any kind of text can be compressed into compact
latent representations and later decoded. Such a
capability may have far-reaching implications: it
could lead to more efficient methods for storing
and transmitting text, while also raising important
considerations regarding the potential misuse of
compressed information and issues related to data
security, intellectual property, and altering the be-
havior of aligned models.

Acknowledgments

We are thankful to SberDevices for granting us
access to additional computational resources. This
work was partially supported by the Ministry of
Economic Development of the Russian Federation
(code 25-139-66879-1-0003).

References
Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. 2024.

Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

19331

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew Dai, Rafal Jozefowicz, and Samy Bengio. 2016.
Generating sentences from a continuous space. In
Proceedings of the 20th SIGNLL Conference on Com-
putational Natural Language Learning, pages 10–21,
Berlin, Germany. Association for Computational Lin-
guistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Aydar Bulatov, Yury Kuratov, and Mikhail Burtsev.
2022. Recurrent memory transformer. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 11079–11091. Curran Associates,
Inc.

Mikhail S. Burtsev, Yuri Kuratov, Anton Peganov, and
Grigory V. Sapunov. 2021. Memory transformer.
Preprint, arXiv:2006.11527.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 conference on empiri-
cal methods in natural language processing: system
demonstrations, pages 169–174.

Vivek Chari, Guanghui Qin, and Benjamin Van Durme.
2025. Kv-distill: Nearly lossless learnable
context compression for llms. arXiv preprint
arXiv:2503.10337.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and
Danqi Chen. 2023. Adapting language models to
compress contexts. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3829–3846, Singapore. Associa-
tion for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise
Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang,
Matthew Aitchison, Laurent Orseau, Marcus Hut-
ter, and Joel Veness. 2024. Language modeling is
compression. In ICLR.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Amy Yang, An-
gela Fan, et al. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Jun Gao. 2024. Selfcp: Compressing long prompt to
1/12 using the frozen large language model itself.
arXiv preprint arXiv:2405.17052.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. 2024. In-context autoencoder for con-
text compression in a large language model. In The
Twelfth International Conference on Learning Repre-
sentations.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur,
Khyathi Chandu, Arman Cohan, Jennifer Dumas,
Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,
William Merrill, Jacob Morrison, Niklas Muen-
nighoff, Aakanksha Naik, Crystal Nam, Matthew
Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, William Smith,
Emma Strubell, Nishant Subramani, Mitchell Worts-
man, Pradeep Dasigi, Nathan Lambert, Kyle Richard-
son, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca
Soldaini, Noah Smith, and Hannaneh Hajishirzi.
2024. OLMo: Accelerating the science of language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15789–15809, Bangkok,
Thailand. Association for Computational Linguistics.

Albert Gu and Tri Dao. 2024. Mamba: Linear-time
sequence modeling with selective state spaces. In
First Conference on Language Modeling.

Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi-
ciently modeling long sequences with structured state
spaces. In The International Conference on Learning
Representations (ICLR).

Peijia Guo, Ziguang Li, Haibo Hu, Chao Huang, Ming
Li, and Rui Zhang. 2024. Ranking llms by compres-
sion. arXiv preprint arXiv:2406.14171.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li,
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024.
Training large language models to reason in a contin-
uous latent space. Preprint, arXiv:2412.06769.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, Thomas Hennigan, Eric

19332

https://doi.org/10.18653/v1/K16-1002
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper_files/paper/2022/file/47e288629a6996a17ce50b90a056a0e1-Paper-Conference.pdf
https://arxiv.org/abs/2006.11527
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/2023.emnlp-main.232
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=uREj4ZuGJE
https://openreview.net/forum?id=uREj4ZuGJE
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://openreview.net/forum?id=tEYskw1VY2
https://openreview.net/forum?id=tEYskw1VY2
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769

Noland, Katherine Millican, George van den Driess-
che, Bogdan Damoc, Aurelia Guy, Simon Osindero,
Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack
Rae, and Laurent Sifre. 2022. An empirical analysis
of compute-optimal large language model training.
In Advances in Neural Information Processing Sys-
tems, volume 35, pages 30016–30030. Curran Asso-
ciates, Inc.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
Ji, and Lu Wang. 2021. Efficient attentions for long
document summarization. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1419–1436, Online.
Association for Computational Linguistics.

Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junx-
ian He. 2024. Compression represents intelligence
linearly. In First Conference on Language Modeling.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023. LLMLingua: Compressing
prompts for accelerated inference of large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 13358–13376, Singapore. Association for
Computational Linguistics.

Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dong-
sheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu.
2024. LongLLMLingua: Accelerating and enhanc-
ing LLMs in long context scenarios via prompt com-
pression. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1658–1677, Bangkok,
Thailand. Association for Computational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Skip-thought vectors. In Advances in
Neural Information Processing Systems, volume 28.
Curran Associates, Inc.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31st International Conference on Ma-
chine Learning, volume 32 of Proceedings of Ma-
chine Learning Research, pages 1188–1196, Bejing,
China. PMLR.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on

Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024a. Snapkv:
Llm knows what you are looking for before gener-
ation. Advances in Neural Information Processing
Systems, 37:22947–22970.

Zongqian Li, Yixuan Su, and Nigel Collier. 2024b.
500xcompressor: Generalized prompt compres-
sion for large language models. arXiv preprint
arXiv:2408.03094.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. 2022. P-tuning:
Prompt tuning can be comparable to fine-tuning
across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 61–68,
Dublin, Ireland. Association for Computational Lin-
guistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

William Merrill and Ashish Sabharwal. 2023. The par-
allelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Compu-
tational Linguistics, 11:531–545.

Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neu-
ral variational inference for text processing. In Pro-
ceedings of The 33rd International Conference on
Machine Learning, volume 48 of Proceedings of Ma-
chine Learning Research, pages 1727–1736, New
York, New York, USA. PMLR.

Fazal Mittu, Yihuan Bu, Akshat Gupta, Ashok De-
vireddy, Alp Eren Ozdarendeli, Anant Singh, and
Gopala Anumanchipalli. 2024. Finezip: Pushing the
limits of large language models for practical lossless
text compression. arXiv preprint arXiv:2409.17141.

Ivan Montero, Nikolaos Pappas, and Noah A. Smith.
2021. Sentence bottleneck autoencoders from trans-
former language models. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1822–1831, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

19333

https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://openreview.net/forum?id=SHMj84U5SH
https://openreview.net/forum?id=SHMj84U5SH
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://doi.org/10.18653/v1/2024.acl-long.91
https://proceedings.neurips.cc/paper_files/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf
https://proceedings.mlr.press/v32/le14.html
https://proceedings.mlr.press/v32/le14.html
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v48/miao16.html
https://proceedings.mlr.press/v48/miao16.html
https://doi.org/10.18653/v1/2021.emnlp-main.137
https://doi.org/10.18653/v1/2021.emnlp-main.137

John Morris, Volodymyr Kuleshov, Vitaly Shmatikov,
and Alexander Rush. 2023. Text embeddings reveal
(almost) as much as text. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 12448–12460, Singapore.
Association for Computational Linguistics.

John Xavier Morris, Wenting Zhao, Justin T Chiu, Vi-
taly Shmatikov, and Alexander M Rush. 2024. Lan-
guage model inversion. In The Twelfth International
Conference on Learning Representations.

Jesse Mu, Xiang Li, and Noah Goodman. 2023. Learn-
ing to compress prompts with gist tokens. Advances
in Neural Information Processing Systems, 36:19327–
19352.

Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia,
Xufang Luo, Jue Zhang, Qingwei Lin, Victor Rühle,
Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,
and Dongmei Zhang. 2024. LLMLingua-2: Data dis-
tillation for efficient and faithful task-agnostic prompt
compression. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 963–981,
Bangkok, Thailand. Association for Computational
Linguistics.

Guanghui Qin, Corby Rosset, Ethan Chau, Nikhil Rao,
and Benjamin Van Durme. 2024. Dodo: Dynamic
contextual compression for decoder-only lms. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9961–9975.

Guanghui Qin and Benjamin Van Durme. 2023. Nugget:
Neural agglomerative embeddings of text. In Inter-
national Conference on Machine Learning, pages
28337–28350. PMLR.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky.
2024. Representational strengths and limitations of
transformers. Advances in Neural Information Pro-
cessing Systems, 36.

Lena Strobl, William Merrill, Gail Weiss, David Chiang,
and Dana Angluin. 2024. What formal languages can
transformers express? a survey. Transactions of the
Association for Computational Linguistics, 12:543–
561.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and
Rob Fergus. 2015. End-to-end memory networks. In
Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Chandra Shekhara Kaushik Valmeekam, Krishna
Narayanan, Dileep Kalathil, Jean-Francois Chamber-
land, and Srinivas Shakkottai. 2023. Llmzip: Loss-
less text compression using large language models.
arXiv preprint arXiv:2306.04050.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilin-
gual e5 text embeddings: A technical report. arXiv
preprint arXiv:2402.05672.

Jason Weston, Sumit Chopra, and Antoine Bordes. 2015.
Memory networks. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared LLaMA: Accelerating lan-
guage model pre-training via structured pruning. In
The Twelfth International Conference on Learning
Representations.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in neural information
processing systems, 33:17283–17297.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. Preprint,
arXiv:2205.01068.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.
H2o: Heavy-hitter oracle for efficient generative
inference of large language models. Advances in
Neural Information Processing Systems, 36:34661–
34710.

19334

https://doi.org/10.18653/v1/2023.emnlp-main.765
https://doi.org/10.18653/v1/2023.emnlp-main.765
https://openreview.net/forum?id=t9dWHpGkPj
https://openreview.net/forum?id=t9dWHpGkPj
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://proceedings.neurips.cc/paper_files/paper/2015/file/8fb21ee7a2207526da55a679f0332de2-Paper.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://arxiv.org/abs/1410.3916
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

A Models and Training Details

We provide list of all models that we used in our
experiments in Table 2.

Trainable vectors are initialized randomly. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate of 0.01, β1, and β2 both
set to 0.9, and a weight decay of 0.01. Training
proceeds for a maximum of 5,000 steps, with early
stopping if the text is compressed losslessly, i.e.,
achieving a token-level accuracy of 1.0. All models
are loaded from the HuggingFace Transformers
library with the PyTorch framework.

Each compression experiment was run on a sin-
gle A100 80GB GPU. The time required to com-
press text using 5,000 optimization steps ranged
from a dozen of seconds for small models and short
contexts to 10–20 minutes for larger models and
longer contexts. We used up to 4 GPUs to run
several experiments in parallel.

B Collecting Texts from the Fanfics
Library

We used the AO3 fanfiction library https://
archiveofourown.org/ as a source of texts that
were not present in the language models’ pre-
training data. To ensure novelty, we manually
downloaded 21 fanfics from various fandoms (in-
cluding Harry Potter, Star Wars, Transformers,
Lord of the Rings, and others) that contained more
than 20,000 words and were published after Octo-
ber 2024.

We preprocessed the HTML pages to extract
only the main text content, removing any irrelevant
elements. We then sampled passages from these
texts to evaluate the capacity of trainable input
vectors. Throughout our experiments, we refer to
this dataset as fanfics.

From each of the PG-19 and fanfics, we sampled
texts and set their lengths to match the desired
token counts. We ensured that each text began with
complete sentences to maintain coherence. As a
result, to estimate the capacity of the input vectors,
we used 50 texts for each length.

C Non-Transformer Language Models:
Mamba

Mamba (Gu and Dao, 2024) is a state space lan-
guage model (SSM) (Gu et al., 2022), in contrast
to attention-based Transformers. We applied the
same compression procedure used for the Trans-
former models and evaluated the official Mamba

checkpoints from the Hugging Face Hub (Table 2).
We found that Mamba can also encode texts into
a single [mem] vector and successfully reconstruct
them whenever the text’s cross-entropy falls below
model’s capacity threshold, indicating the effect
is not unique to only Transformer models (Fig. 6
and Table 3).

D Results of Evaluating Text
Compression for All Models

Here we provide results for all evaluated models
in Fig. 6 and Table 3. Results are discussed in Sec-
tion 4.3.

E Understanding the Structure of
Compressed Vectors

To better understand the structure of the space
formed by the learned embeddings, we collect a
dataset of embeddings for 64-token sequences from
the GovReport dataset (Huang et al., 2021). The
optimization is performed until a reconstruction
accuracy of 1.0 is achieved. Additionally, for each
sequence, we compute multiple embeddings us-
ing different random initializations of the [mem]
vectors.

First, we observe that the optimization process
can yield different solutions; the resulting vectors
for the same text may lie in completely different
parts of the space. To visualize this phenomenon,
we plot histograms of cosine similarity between
embeddings of the same text (intra-sample) and be-
tween embeddings of different texts (inter-sample)
in Fig. 7. Notably, almost no high cosine similar-
ities (above 0.8) are observed in the intra-sample
case. Moreover, the intra-sample similarities signif-
icantly overlap with the inter-sample ones, imply-
ing that the embeddings are considerably scattered
throughout the space.

Although the embeddings appear to be spread
out, one might hope they form a basin in which all
linear interpolations between vectors would yield
perfect reconstruction. To test this, we computed
the reconstruction accuracy along linear interpola-
tion trajectories between embeddings of the same
sequence. However, in all cases we examined, er-
rors were present along the interpolation trajectory
(see Fig. 8). Thus, the embeddings obtained by
the proposed procedure do not form a continuous
basin.

These observations have several implications:

19335

https://archiveofourown.org/
https://archiveofourown.org/

Model Name Link to HuggingFace Params (B) Input Hidden Size Vocabulary Size

Pythia-160M EleutherAI/pythia-160m 0.16 768 50304
Pythia-410M EleutherAI/pythia-410m 0.41 1024 50304
Pythia-1.4B EleutherAI/pythia-1.4b 1.4 2048 50304
Pythia-2.8B EleutherAI/pythia-2.8b 2.8 2560 50304
OPT-1.3B facebook/opt-1.3b 1.3 2048 50272
OLMo-1B allenai/OLMo-1B-0724-hf 1.0 2048 50304
Sheared-LLaMA-1.3B princeton-nlp/Sheared-LLaMA-1.3B 1.3 2048 32000
Llama-3.2-1B meta-llama/Llama-3.2-1B 1.0 2048 128256
Llama-3.2-3B meta-llama/Llama-3.2-3B 3.0 3072 128256
Llama-3.1-8B meta-llama/Llama-3.1-8B 8.0 4096 128256
Mamba-130M state-spaces/mamba-130m-hf 0.13 768 50280
Mamba-370M state-spaces/mamba-370m-hf 0.38 1024 50280
Mamba-790M state-spaces/mamba-790m-hf 0.79 1536 50280
Mamba-1.4B state-spaces/mamba-1.4b-hf 1.4 2048 50280

Table 2: List of used language models and their parameters.

Model
PG-19 Fanfics Random

Max, tok. Gain, tok. Information Gain Max, tok. Gain, tok. Information Gain Max, tok. Gain, tok. Information Gain

Pythia-160M 80 70.9±11.0 396.4±46.0 80 70.9±10.5 378.1±45.9 65 61.3±6.6 500.8±38.9

Pythia-410M 96 81.3±12.0 431.4±51.6 96 81.2±11.6 429.8±46.2 72 76.9±8.7 630.4±65.2

Pythia-1.4B 160 158.0±29.1 792.8±143.4 192 152.9±28.0 776.9±132.5 139 144.4±17.5 1108.2±136.2

Pythia-2.8B 128 150.1±50.7 740.3±234.9 - - - 141 134.5±24.7 1026.3±211.4

OPT-1.3B 128 132.2±23.8 712.8±143.3 - - - 116 129.3±16.4 1068.0±181.3

OLMo-1B 384 406.3±61.7 1901.0±254.5 - - - 249 257.3±55.0 1852.2±395.0

Sh.LLaMa-1.3B 512 383.6±38.4 1835.1±162.9 - - - 382 315.1±35.1 1893.0±210.0

Llama-3.2-1B 512 426.2±79.2 2119.9±364.8 512 449.6±83.7 2213.8±365.8 316 294.9±64.8 2265.2±498.7

Llama-3.2-3B 1024 720.3±80.2 3292.2±320.0 1024 734.1±85.0 3354.5±344.9 460 456.9±72.1 3382.6±585.2

Llama-3.1-8B 1568 1094.1±127.6 4865.7±546.6 1568 1071.8±168.6 4768.9±622.6 792 623.2±97.3 4541.2±758.6

Mamba-130M 32 65.5±18.1 371.4±94.6 - - - 84 62.6±17.1 535.7±121.8

Mamba-370M 128 113.0±27.6 585.3±131.1 - - - 106 94.5±25.5 743.2±186.9

Mamba-790M 256 204.2±33.0 1011.6±138.8 - - - 198 187.0±26.3 1421.3±179.1

Mamba-1.4B 512 348.9±42.9 1599.5±164.5 - - - 288 282.7±36.5 2062.3±257.3

Table 3: Compression capacity across different text sources and for all evaluated models. We report Decoding
Capacity (in Tokens) ("Max, tokens" in the Table), Token Gain, and Information Gain for texts from PG-19, fanfics,
random.

1. A lossless compression algorithm ideally as-
signs a unique decoding to each vector; multi-
ple valid embeddings for the same object limit
the achievable compression rate.

2. The spread and entangled structure of the em-
beddings may render them less useful as rep-
resentations.

3. This non-unique, scattered structure could
make it more challenging to extract important
information when these compressed represen-
tations are used as context in an LM.

F Data Compression Analysis

In the present work, we focus on exploring phe-
nomena that could be potentially helpful in build-
ing more efficient LLMs. Despite our method can

serve as a general-purpose compression approach,
we currently treat lossless compression as a tool to
better understand LLMs hidden state capacity in
contrast to achieving the highest possible compres-
sion rate.

We ran experiments on three datasets (PG-19,
fanfics, and randomly sampled sequences of words)
using zlib, bz2, lzma, pure Huffman coding, and
Arithmetic Coding(AC) with LM. We report their
mean compression ratios (original text size in bits /
compressed size) in Table 4.

We see that conventional entropy coders can
compress texts by about a factor of two, and com-
bining Arithmetic Coding with pythia-160m can
lead to much higher ratios: 6-7x. With our ap-
proach we can encode up to 1568 tokens into a
single 4096-dimensional bfloat16 vector (using

19336

https://huggingface.co/EleutherAI/pythia-160m
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/EleutherAI/pythia-2.8b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/allenai/OLMo-1B-0724-hf
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/state-spaces/mamba-130m-hf
https://huggingface.co/state-spaces/mamba-370m-hf
https://huggingface.co/state-spaces/mamba-790m-hf
https://huggingface.co/state-spaces/mamba-1.4b-hf

Method PG19 Fanfics Random
zlib 2.28 ± 0.16 2.34 ± 0.07 1.80 ± 0.06
bz2 2.46 ± 0.16 2.56 ± 0.09 1.94 ± 0.11
lzma 2.28 ± 0.16 2.33 ± 0.07 1.86 ± 0.13
Huffman 1.81 ± 0.07 1.86 ± 0.04 1.77 ± 0.01
AC, pythia-160m 6.77 ± 0.75 6.73 ± 0.41 2.83 ± 0.08

Table 4: Compression ratios (in bits) comparison for
classic compression algorithms and arithmetic coding
(AC) using pythia-160m for a range of corpora.

LLaMA-3.1-8B) and reconstruct them losslessly.
If we treat a single 4096-dimensional vector as a
"compressed file" and compute (original text size
as string) / (size of vector), the ratio actually ap-
pears to be about 0.8x, so it does not take less bits
on disk than a raw text.

Importantly, unlike conventional compression
algorithms that output arbitrary bitstreams, our ap-
proach must encode the text into a single vector,
which LLMs interpret as an embedding. This con-
straint is stricter than simply minimizing file size,
since the output must lie within the input space of
the model. Our focus, therefore, is on analyzing
representational capacity within the input space of
large language models. For instance, a single 4096-
dimensional vector in LLaMA-3.1-8B can guide
the model to generate up to 1568 tokens exactly.
Reconstructing 1568 tokens from just one vector
results in a 1568x reduction in the number of em-
beddings that would otherwise be used to represent
the text.

Our goal is not to outperform standard compres-
sors in bits-per-byte efficiency, but rather to show
that LLMs can store significant amounts of text
with only a single embedding.

19337

0 1000 2000
0

1000

2000

pythia-160m
y = x + -396.4

0 2000 4000 6000
0

2000

4000

6000
pythia-410m

y = x + -431.4

0 2000 4000
0

2000

4000

pythia-1.4b
y = x + -792.8

0 2000 4000
0

1000

2000

3000

4000
pythia-2.8b

y = x + -740.3

0 2000 4000 6000
0

2000

4000

opt-1.3b
y = x + -712.8

0 5000 10000
0

2000

4000

6000

8000
OLMo-1B-0724

y = x + -1901.0

0 2000 4000 6000
0

2000

4000

Sheared-LLaMA-1.3B
y = x + -1835.1

0 5000 10000
0

2000

4000

6000

8000
Llama-3.2-1B

y = x + -2119.9

0 5000 10000
0

2000

4000

6000
Llama-3.2-3B

y = x + -3292.2

0 2500 5000 7500
0

1000

2000

3000

4000
Meta-Llama-3.1-8B

y = x + -4865.7

0 1000 2000

0

500

1000

1500

mamba-130m
y = x + -371.4

0 1000 2000

0

500

1000

1500

mamba-370m
y = x + -585.3

0 1000 2000 3000

0

500

1000

1500

2000
mamba-790m

y = x + -1011.6

0 2000 4000
0

1000

2000

3000
mamba-1.4b

y = x + -1599.5
500

1000

1500

2000

2500

3000

Text Length, tokens
De

co
m

pr
es

se
d

te
xt

, C
ro

ss
-E

nt
ro

py

Text, Cross-Entropy

Texts from PG-19 Random text (sampled words) All texts below the line are losselessly compressed

Figure 6: Information gain of text compression to [mem] vector doesn’t depend on language understanding
capabilities of models. Compression results for various language models show the relationship between the cross-
entropy (CE) of the original and decompressed texts. If the text CE falls below a model-specific threshold (red line),
the text is losslessly compressed. This value is a input vector capacity in terms of entropy (Information Gain, CH).
For texts that are not perfectly compressed, the compression process reduces their CE to a consistent, model-specific
value (bias of the black dashed line). Larger models (e.g., Llama-3.1-8B) can handle longer texts before reaching the
compression threshold, due to their greater capacity compared to smaller models (e.g., Pythia-160M). This behavior
holds for both natural texts (PG-19) and unnatural random texts consisting of random word sequences. The result is
not limited to transformer-based architectures: non-transformer models, such as Mamba, exhibit the same pattern.

19338

0.0 0.2 0.4 0.6 0.8
Cosine similarity

0

1

2

3

4

5

6

De
ns

ity

Intra-sample
Inter-sample

Figure 7: Intra/inter-sample embeddings cosine simi-
larity. Empirical probability densities of cosine similar-
ity between intra-sample and inter-sample embeddings.
Intra-sample similarities are measured between of the
same sequence of tokens, while inter-sample between
different ones. Measured on GovReport (Huang et al.,
2021) and Sheared-Llama-1.3B (Xia et al., 2024).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 8: Intra-sample Interpolation Accuracies. In-
terpolation lines are provided for all pairs between 32
embeddings of the same input sequence. All interpo-
lation lines are printed with high transparency to show
denser regions. Grey lines depict minimums and maxi-
mums of the accuracy for a given interpolation parame-
ter θ.

19339

