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Abstract

Existing LLM-based agents have achieved
strong performance on held-in tasks, but their
generalizability to unseen tasks remains poor.
Hence, some recent work focus on fine-tuning
the policy model with more diverse tasks to
improve the generalizability. In this work, we
find that finetuning a reward model to guide
the policy model is more robust than directly
finetuning the policy model. Based on this find-
ing, we propose AgentRM, a 8B generalizable
reward model, to guide the policy model for
effective test-time search. We comprehensively
investigate three approaches to construct the
reward model, including explicit reward mod-
eling, implicit reward modeling and LLM-as-a-
judge. We then use AgentRM to guide the an-
swer generation with Best-of-N sampling and
beam search. We show that AgentRM is robust
to paraphrasings of task instructions and can
generalize to unseen tasks that require novel
optimal behavior. Through extensive evalua-
tion across nine tasks spanning four categories,
AgentRM enhances the non-finetuned 8B pol-
icy model by 8.8 points on average, surpass-
ing the top general agent by 4.0. Moreover,
it demonstrates weak-to-strong generalization,
yielding greater improvement on more pow-
erful policy models. As for the specializabil-
ity, AgentRM can also boost a finetuned pol-
icy model and outperform the top specialized
agent by 11.4 on three held-in tasks. Fur-
ther analysis verifies its effectiveness in test-
time scaling. We release the code and data at
https://github.com/thunlp/AgentRM.

1 Introduction

Large language model (LLM)-based agents (Mi-
alon et al., 2023; Sumers et al., 2023) have be-
come a promising solution to complex interactive
tasks (Xi et al., 2024) in recent years. While spe-
cialized agents (Wang et al., 2024b; Qin et al.,
2023) achieve strong performance on held-in tasks,
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Figure 1: Finetuning the reward model is more robust
than finetuning the policy model for agent tasks. (a)
Finetuning the policy model leads to severe degradation
on held-out tasks. (b)(c) show the performance of Best-
of-5 with a reward model. Finetuning the policy model
on one task degrades on others while finetuning the
reward model mostly generalized to others.

their generalizability to unseen tasks is poor. To
address this challenge, existing works focus on inte-
grating more diverse agent tasks including human-
crafted (Zeng et al., 2023; Chen et al., 2024a;
Xi et al., 2024; Zhang et al., 2024b; Acikgoz
et al., 2025; Zhuang et al., 2025) and LLM synthe-
sized (Hu et al., 2024; Fu et al., 2025), to perform
multi-task fine-tuning on the base LLM.

However, we find simply finetuning the base
LLM improves held-in task performance but de-
grades held-out task performance (Figure 1(a)).
This suggests that finetuning—which directly
adapts the policy model responsible for token-by-
token action generation—may overfit to seen action
sequences, while suppressing unseen but poten-
tially valid action sequences. To mitigate this dis-
tribution shift and improve robustness for unseen
tasks, we hypothesize that finetuning a separate
reward model to guide the policy model is more
effective. This approach leverages the inherent ad-
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vantage of reward modeling: its regression-based
training objective focuses on learning task-level
value functions, making it less sensitive to shifts
in the specific distribution of generated action to-
kens compared to direct policy optimization. To
test this hypothesis in our preliminary experiment,
we perform Best-of-5, i.e. generating 5 candidate
trajectories with the policy model and selecting one
using the reward model. Figure 1(b)/(c) shows the
improvement after fine-tuning the policy/reward
model respectively on individual tasks. In Fig-
ure 1(b), only the diagonal values, i.e. performance
of the held-in task which is seen during training, are
positive. Contrastly, Figure 1(c) reveals predom-
inantly positive values, indicating that finetuning
the reward model on a single task can enhance the
performance on unseen tasks.

Inspired by this, we introduce AgentRM, a gen-
eralizable reward model, to guide the policy model
for effective test-time search. Since the effective
construction of the reward model for agent tasks re-
mains an open question due to environment dynam-
ics and long-horizon decision-making challenges,
we investigate three representative reward model-
ing approaches including (1) explicit reward model-
ing (Zhang et al., 2024a) which learns the step-level
rewards annotated by tree search, (2) implicit re-
ward modeling (Yuan et al., 2024) which derives
the inherent step-level rewards by training on out-
come rewards, and (3) LLM-as-a-judge (Zheng
et al., 2023) which directly prompts an LLM to as-
sess the agent trajectory. These methods represent a
progressive reduction in workload for both reward
model training data construction and model train-
ing. We then use AgentRM to guide the answer
generation in the Best-of-N sampling and step-level
beam search.

Extensive experiments demonstrate that explicit
modeling consistently achieves the most significant
improvements across nine agent tasks, including
web navigation, embodied planning, text games,
and tool usage. Concretely, it enhances the base
policy model by 8.8 points, surpassing the top gen-
eral agent by 4 points. Moreover, our reward model
trained on states sampled by LLaMA-3-8B can be
directly applied to other policy models in a plug-
and-play manner, yielding greater improvement
of 12.6 points on LLaMA-3-70B. As for the spe-
cializability, it can also boost a finetuned policy
model, surpassing the top task-specific agent by
11.4 points. Further analysis including the scaling
trend of training data, ablation on state representa-

tion and test-time scaling highlights the scalability
of AgentRM.

2 Task Formulation

The agent task with environment feedback can be
formalized as a partially observable Markov deci-
sion process (U ,S,A,O, T ,R) with instruction
space U , state space S , action space A, observation
space O, state transition function T : S ×A → S ,
and reward function R : S × A → [0, 1]. The
initial state s1 = (u, o0) ∈ S consists of task in-
struction u and the initial observation o0. At step
t, conditioned on the current state st, the agent
generates the next action at ∼ π(·|st) based on
its policy π. Then, the agent receives the environ-
ment observation ot ∈ O and the state transforms
to st+1 = (st, at, ot) = (u, o0, a<t+1, o<t+1) ac-
cording to transition function T . The agent contin-
ues to interact with the environment until the task
is finished or the maximum step is reached. The
environment only provides the outcome reward at
the final step rT (sT , aT ) ∈ R, where T denotes
the total step number. As illustrated in Section 3.2,
we train a process reward model that produces re-
wards for intermediate steps rt(st, at), t < T . We
discuss the training details in Section 3.2.

3 Methodology

The overview is depicted in Figure 2. Section 3.1
describes the behavior cloning through which we
derive a policy model with basic task ability on
held-in tasks. Section 3.2 elaborates on how we use
the derived policy model to build our generalizable
reward model. Section 3.3 explains how we use
our reward model to enhance the policy model’s
decision-making ability through test-time search.

3.1 Behavior Cloning

Behavior cloning serves as an optional preliminary
step in our framework. While it is permissible
to employ a non-supervised fine-tuned (non-SFT)
agent for trajectory sampling in the subsequent
stage, this approach requires the agent to possess
sufficient performance capabilities to ensure effec-
tive exploration. In this work, we use a SFT 8B
alternative to a more costly and performant 70B
model 1. To obtain an initial policy πinit with ba-
sic task ability, crucial for collecting high-quality

1The SFT LLaMA-3-8B achieves 61.4, 71.6, 66.6 on Web-
shop, Alfworld, Sciworld respectively. The LLaMA-3-70B
achieves slightly higher performance of 63.4, 73.3, 77.1.
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Figure 2: Overview. ❶ Deriving a supervised fine-tuned (SFT) agent on expert trajectories. ❷ Constructing search
trees by exploring the environment using the SFT agent. ❸ Training a generalizable reward model, on state-reward
pairs extracted from search trees. ❹ Enhancing the policy model, regardless of its initial strength, through test-time
search guided by our reward model for unseen tasks such as embodied planning, text game, tool using etc.

states, we split a portion of task instructions from
the training set, annotate them by an expert agent
and conduct supervised fine-tuning (SFT) on the ex-
pert trajectories Dexpert = {(ui, oi0, ait, oit)Ti

t=1}Ni=1

as follows:

L(θ) = −
N∑

i=1

Ti∑

t=1

log πθ(a
i
t | ui, oi0, ai<t, o

i
<t)

(1)
where θ denotes the parameters of the policy model,
N denotes the number of trajectories in Dexpert,
Ti denotes the total step of the i-th trajectory.

3.2 Reward Modeling
Since the effective construction of reward mod-
els in agent tasks remains underexplored, we in-
vestigate three methods with different emphases.
Explicit reward modeling (Section 3.2.1) employs
tree search for automatic process reward annota-
tion, distributing the sparse outcome rewards to
each step in an interpretable way. Implicit reward
modeling (Section 3.2.1) eliminates the annotation
of step-level reward and learns it implicitly. LLM-
as-a-judge (Section 3.2.3) is a training-free method
relying on the general judging ability of the LLM.

3.2.1 Explicit Reward Modeling
Explicit reward modeling typically defines process
reward as Q-value (Watkins and Dayan, 1992), i.e.
expected accumulated rewards starting from a state,
and calculates it by Monte Carlo estimation on
random rollouts. Given that agent tasks typically
involve long-chain reasoning and vast search space,
we organize the agent’s search trajectories into tree
structures and employ a Monte Carlo Tree Search
(MCTS)-inspired algorithm to avoid redundant ex-
ploration while encouraging sampling diversity.

The search tree consists of nodes representing
states st and edges representing actions at. We

consider the initial state s1, which includes the
task instruction u and the initial observation o0, as
the root node. A search trajectory starting from
s1 is formalized as a branch extending from the
root node. Each node records information such
as the state content (action at and corresponding
observation ot), the number of visit N(st), and the
expected future reward V (st) starting from state st.
For each task instruction, we construct a search tree
starting from the root node and expanding through
repeating the following four stages for ω iterations:

Selection aims to identify the most promising
node to be expanded in the next iteration. Starting
from the root node, it traverses the tree by selecting
child nodes according to the Upper Confidence
Bound (UCB) value until a leaf is reached:

st = argmax
sj∈Children(st−1)

(
V (sj) + c ·

√
logN(st−1)

1 +N(sj)

)
,

Expansion will be operated on the selected node
st if it is not a terminal state exceeding the maxi-
mum step or finishing reasoning. The agent sam-
ples the next action at ∼ π(· | st) for k times
with temperature τ based on its policy. Actions
with identical action tokens are merged to lower
the cost of repetitive search, resulting in k̂ next
states {sit+1} = {(st, at, ot)i}, i = 1 . . . k̂.

Simulation is used to estimate the initial value
of the above expanded node st+1 by generating n
complete trajectories from it to get the outcome
reward returned by the environment and averaging
their outcome rewards.

To speed up the tree sear, we cache the rollout
nodes for future expansion.

Backpropagation is conducted once the values
of the expanded nodes are determined. The value
V (sit+1) is propagated back up the tree, updating
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each node’s visit count N and state value V :

V (st)←
V (st) ·N(st) +

∑k̂
i=1 V (sit+1)

N(st) + k̂
,

N(st)← N(st) + k̂

Reward Model Training For each task instruc-
tion in the held-in tasks i.e. Webshop, Alfworld,
Sciworld, we construct a search tree and extract
state values V (st) to form the process reward
model training dataset. To ensure the quality of the
estimated value, we filter states whose visit count
is smaller than threshold λ. We train a language
model with a value head by minimizing the Mean
Squared Error (MSE) loss between the predicted
value V̂ (st) and the provided value V (st):

L(θ) = 1

N

N∑

t=1

(V̂ (st)− V (st))
2 (2)

3.2.2 Implicit Reward Modeling
Implicit reward modeling typically defines process
reward as advantage (Schulman et al., 2017), i.e.
relative benefits of an action at a given state com-
pared to alternatives. It derives inherent process
rewards from the model trained on outcome re-
wards, eliminating the overhead of process reward
collection (Rafailov et al., 2024; Yuan et al., 2024).
Specifically, the outcome reward is parameterized
as the log-likelihood ratios of the policy and refer-
ence models, i.e. rθ(sT , aT ) := β log πθ(sT ,aT )

πref (sT ,aT ) .
It is proved that the Q value qtθ(st, at) can be im-
plicitly learned by θ (mathematical induction can
be found in (Yuan et al., 2024)). The process re-
ward rtθ can be derived as follows:

rtθ := qtθ − qt−1
θ = β log

πθ(at | st)
πref(at | st)

(3)

where πθ, πref represent the policy and reference
model parameter respectively.

Reward Model Training For each task instruc-
tion in the held-in tasks, we sample 16 complete tra-
jectories (sT , aT ) with temperature τ to construct
the process reward model training dataset. We train
a language model θ with the MSE loss to integrate
the scalar reward (progress rate) provided by the
environment, unlike (Yuan et al., 2024) using the
cross-entropy loss for binary reward.

3.2.3 LLM-as-a-judge
In order to answer the question that can an LLM
be used as the reward model to perform guidance

without reward learning, we implement a training-
free reward model following the paradigm of LLM-
as-a-judge (Gu et al., 2025). We prompt the LLM to
act as a selector with instructions in Appendix D.1.

3.3 Reward-Guided Search

We boost the policy model at test time via search
methods guided by our general reward model.
Best-of-N samples N complete trajectories from
the policy model and selects the final answer ac-
cording to the output of the reward model.
Beam Search searches over the policy model’s
per-step generation in the following steps:
• Initial Sampling: Sample W1×W2 initial actions

for the first step.
• Scoring: Evaluate the new states using the re-

ward model.
• Filtering: Retain only the top W1 highest-

scoring states.
• Action Expansion: For each of the remaining

states, sample W2 actions for the next step, gen-
erating a total of W1 ×W2 new states.

• Iteration: Repeat steps 2–4 until all maintained
states terminate.

4 Experiments

4.1 Baselines

Apart from greedy search, we compare our method
with task-specific agents and general agents. Task-
specific agents include SPIN (Chen et al., 2024b),
NAT (Wang et al., 2024b), ETO (Song et al.,
2024), StepAgent (Deng et al., 2024b), QLASS
(Lin et al., 2025), Agent-R (Yuan et al., 2025),
MPO (Xiong et al., 2025), and GLIDER (Hu et al.,
2025). General agents include Agent-FLAN (Chen
et al., 2024a), AgentGym (Xi et al., 2024), Agent-
Gen (Hu et al., 2024), AgentRefine (Fu et al., 2025),
ATLAS (Chen et al., 2025b). We also compare our
method with close-sourced agent based on gpt-4o
for reference. More details can be found in Ap-
pendix C.

4.2 Experimental Settings

Datasets We adopt the three agent tasks from
ETO (Song et al., 2024) as our held-in tasks, which
refers to the environments that are seen during train-
ing: Webshop for web navigation, Alfworld for em-
bodied house holding, and Sciworld for embodied
science experiments. We adopt agent tasks from
AgentBoard (Ma et al., 2024) and AgentGym (Xi
et al., 2024) as held-out tasks, which refers to the
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Method Web Embodied Text Game Tool Overall
Webshop Alfworld Sciworld Babyai Jericho Pddl Maze ToolQuery ToolOperation

gpt-4o 57.7 79.9 76.9 64.1 34.0 69.8 76.0 61.8 37.6 65.9
Agent-FLAN 61.3* 79.7* 10.9 35.3 10.1 25.5 44.0 45.7 26.8 47.1
AgentGym 68.5* 76.9* 47.3* 61.4* 12.9 16.6 56.0* 69.7* 40.2* 59.3*

AgentGen 53.9 47.6 13.9 39.4 10.8 36.4 44.0 57.6 25.1 42.0
AgentRefine - 63.8 42.6 50.4 32.3 37.8 - - - -
ATLAS 71.5* 84.5* 42.0* 81.0* 18.2 15.8 48.0* 73.3* 69.7* 64.9*

Greedy Search 57.8 51.1 48.5 52.1 22.5 37.7 52.0 76.1 41.6 52.7

Best-of-5

Explicit RM 62.4 67.7 50.1 70.6 30.0 33.3 80.0 82.1 43.9 61.5
Implicit RM 60.5 61.8 35.4 58.2 23.3 26.0 68.0 81.2 38.8 54.7
LLM-as-a-judge 55.6 59.0 29.3 58.3 20.3 22.9 72.0 83.1 41.9 52.1

Beam Search (W1 = 5,W2 = 5)

Explicit RM 64.4 72.4 51.7 71.2 29.1 41.4 72.0 79.3 40.6 63.3

Table 1: Performance comparison with general agents.* indicates the task is seen during policy training and treated
as held-in evaluation. Overall performance is averaged across tasks, weighted by test set sizes. LLaMA3-8B-Instruct
is used for all methods.

environments unseen during training: Babyai for
embodied planning, Jericho and Pddl and Maze for
text-based game, ToolQuery (including Weather,
Movie, Academia) and ToolOperation (including
TODO and Sheet) for tool using. Note that there
are two sources of Alfworld and Sciworld. In order
to align with the setting of previous works, we use
the former to train the RM and evaluate in Sec-
tion 4.3.2, while the latter is used for evaluation in
Section 4.3.1. Details can be found in Appendix D.

Metrics Maze and Alfworld(ETO) provide Suc-
cess Rate indicating whether a task is successfully
completed. Others provide Progress Rate, a scalar
measuring the completion percentage. We use the
average reward as the metric for each task.

Implementation Details We adopt the LLaMA3-
8B-Instruct series model as our policy model and
reward model. More details can be found in Ap-
pendix B. We split 1/4 of the expert trajectories for
SFT, i.e. 1938, 830, 370 for Webshop, Alfworld,
Sciworld. The remaining 3/4 instructions are used
to train reward model without expert annotation.

4.3 Results

4.3.1 Comparison with General Agents
In this setting, we compare our method with meth-
ods that aim to train a single unified agent for vari-
ous tasks. To make a fair comparison, we use the
original non-finetuned model as the policy model
since fine-tuning leads to performance degradation
on held-out tasks, and guide its generation with our

Method Webshop Alfworld† Sciworld†

gpt-4o 57.7 66.4 66.6
SPIN 65.4 71.9 60.3
NAT 63.2 68.3 55.6
ETO 65.7 73.4 62.5
StepAgent 67.6 76.1 64.1
QLASS 70.3 82.8 66.4
Agent-R 63.9 - 70.2
MPO - 79.1 80.8
GLIDER - 75.4 68.3
Greedy Search 61.4 71.6 66.6

Best-of-5

Explicit RM 71.0 94.8 76.1
Implicit RM 66.4 94.8 70.6
LLM-as-a-judge 60.5 64.9 62.3

Beam Search (W1 = 5,W2 = 5)

Explicit RM 75.3 96.3 82.6

Table 2: Comparison with task-specific agents. †means
the sources of Alfworld and Sciworld differ from those
in Table 6 thus incomparable, detailed in Appendix D.
LLaMA3-8B-Instruct is used for all methods.

AgentRM. From Table 1 we can observe that: (1)
Existing general agents exhibit severe overfitting
in held-in tasks, as their overall performance fail
to substantially surpass those of the greedy search
baseline. While AgentGym and ATLAS achieves
a high score, it is primarily because most of the
task environments are seen during training. This
advantage, however, is offset by its notably weak
performance on held-out tasks i.e. Jericho and
Pddl. (2) Three types of AgentRM bring varying
degrees of improvement over the baseline. Among
them, Explicit RM proves to be the most effec-
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Method Original Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Average(↑) Std(↓)
Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog. Succ. Prog.

AgentGym 61.9* 76.9* 29.1 59.2 49.2 65.3 32.8 53.9 38.8 48.2 5.9 28.7 36.3 55.4 20.0 16.7
Agent-FLAN 67.2* 79.7* 21.6 58.8 51.4 71.3 27.6 53.5 52.2 67.9 1.5 19.7 36.9 58.5 22.0 22.5
AgentRefine 44.8 63.8 50.0 66.5 51.5 66.7 54.5 70.0 45.5 60.6 44.8 63.8 48.5 65.2 4.1 3.2
Ours 54.5 67.7 54.5 68.6 53.0 70.2 48.5 63.6 49.3 63.9 54.5 67.7 52.4 66.9 2.7 2.6

Table 3: Performance of Alfworld under different perturbation rules. Succ./Prog. denote Success/Progress Rate
respectively. ∗ indicates the task is seen during training and treated as held-in evaluation.

tive, enhancing the greedy search baseline by 8.8
on average. (3) On the Babyai task, which shares
similarities with the held-in tasks Alfworld and
Sciworld, the explicit RM exhibits significant posi-
tive transfer. Conversely, we observe that a policy
model trained on Sciworld but not on Babyai tends
to overfit to the action space of Sciworld, leading
to negative transfer. (4) Best-of-5 with LLM-as-a-
judge shows a 0.6 decline on overall performance
compared to greedy search, suggesting that LLM
of 8B cannot be used to guide the inference effec-
tively without reward learning. Among all tasks,
it performs relatively better on tool-related tasks,
suggesting that LLM-as-a-judge is more effective
on tasks with less complexity and smaller search
space, while being less effective on complex tasks.

4.3.2 Comparison with Task-specific Agents

In this setting, we compare our method with meth-
ods that aim to train a specialized agent for each
task. Instead of training task-specific policy mod-
els, we find a single policy model simultaneously
trained on three tasks capable of mastering each
task without compromising performance on any.
Out of the same reason, we use the general RM
same as Section 4.3.1 without task-specific fine-
tuning. From the results in Table 2, Best-of-5 with
Explicit RM enhances the policy model by 9.6, 23.2
and 9.5 on three held-in tasks respectively. It out-
performs top specialized agents including Agent-
R and QLASS across all tasks, showing potential
in more practical scenarios where an agent is re-
quired to be proficient in more than one task (Acik-
goz et al., 2025). Further improvements can be
achieved through beam search.

5 Analysis

In the following analysis, unless otherwise stated,
we report the results of explicit RM with Best-of-5
inference, as it outperforms the other two reward
models notably.

5.1 Robustness against Perturbation

To test the extent of overfitting on the held-in tasks,
we perform 5 types of perturbations on the held-in
task. Specifically, we perturb available actions in
the task instruction of Alfworld, which belongs to
the held-in tasks for AgentGym and Agent-FLAN.
See Appendix A for details of perturbation rules.

From Table 3 we can see that, simple data
perturbation leads to a significant performance
drop on the held-in task. In terms of the average
score, AgentGym’s success rate decreases by 25.6,
whereas Agent-FLAN shows a more significant
performance drop of 30.3. This suggests that they
might simply be memorizing the correlations be-
tween instructions/observations and corresponding
actions from the training data, rather than learning
to respond to the given instructions and observa-
tions. Our method achieves the highest average
score with the lowest standard deviation, indicat-
ing that it develops the ability to make informed
decisions, rather than memorizing patterns.

5.2 Scaling Trend of Training Data

We analyze the relationship between the training
data size of the reward model and overall perfor-
mance, with the results shown in Figure 3. The
results demonstrate that even a relatively small
dataset of 4k states is able to elicit significant re-
ward modeling capabilities (57.6) for agent tasks,
compared to the prompt-based training-free LLM-
as-a-judge (52.1). This underscores the effective-
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Figure 3: Scaling trend of training data.
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ness of our approach in data-constrained scenarios.
As the volume of training data increases, the per-
formance exhibits a persistent log-linear growth
without showing signs of saturation. The observed
trend leaves room for continued performance opti-
mization with expanded datasets.

Besides, we compare standalone policy model
training with standalone reward model training us-
ing equivalent amounts of training data. Since
the volume of trajectory-level policy model data is
much smaller than state-level reward model data,
we try two ways to align their scales: (1) Down-
sampling the amount of the reward model training
data to ∼4k. (2) Upsampling the SFT training data
to ∼48k by collecting successful trajectories from
the constructed MCTS trees. Results in Figure 3
demonstrate that standalone reward model training
consistently outperforms standalone policy model
training when trained on equivalent amounts of
data, and is more scalable.

5.3 Generalization of Task-specific RM

We examine the generalization of task-specific RM
trained on each held-in task (Figure 4). The re-
sults reveal that, for most tasks, the general RM
(dashed line) outperforms task-specific RMs, veri-
fying the importance of task diversity in enhancing
RM generalization. Besides, the task-specific RM
trained on Alfworld exhibits comparatively weaker
performance, which may be attributed to the use of
success rate rather than the progress rate, which is
a denser signal, as the outcome supervision when
constructing RM training data.

5.4 Plug-and-play for Other Policy Models

It is commonly thought that broad training data cov-
erage is a requirement to ensure adaptability to dif-
ferent policy distribution. Surprisingly, we find that
our RM, which is trained only on states sampled by
the LLaMA-3-8B policy model, can be effectively
applied to states sampled by other LLM agents.
Specifically, we directly utilize our RM to super-
vise different policy models including LLaMA-
3.2-1B, LLaMA-3.2-3B, AgentGen (LLaMA-3-
8B finetuned on synthetic data), Qwen2.5-14B-
Instruct, and LLaMA-3-70B. From Table 4 we can
see that our RM adapts well to different policy
models and consistently improves the overall per-
formance. Specifically, it improves the LLaMA-
3-70B-based agent by 12.6 and AgentGen by 5.9,
demonstrating more pronounced advantages for
models with greater scale and potential. These en-
couraging results indicate that the trial-and-error
task experience derived from a weaker yet more
efficient agent can enhance the performance of
stronger and more costly agents, facilitating weak-
to-strong generalization (Yang et al., 2024).

5.5 State Representation of Reward Modeling

As stated in Section 3.2, the input of our RM con-
sists of thought tokens, action tokens, and observa-
tion tokens (except those of the last action). This
section examines their respective contributions to
the overall performance. Results are shown in
Table 5. Explicit RM w/ last_observation means
adding the observation of the last action to the state
representation during both training and inference.
It can be seen that the determination of state re-
wards for different tasks has varying degrees of
reliance on the outcomes of actions. Overall, aug-
menting the action with its outcome does not bring
significant improvement, suggesting that the RM
might possess the ability to infer the consequence
autonomously. Results w/o observation and w/o
thought show that the individual removal of thought
and observation has a negligible impact on the mod-
eling. Results w/o thought & observation show that
removing them simultaneously results in a drop
of 3.2 points, indicating that thought and observa-
tion tokens provide complementary information to
each other. In conclusion, the modeling primarily
relies on action tokens. Utilizing only action to-
kens for modeling does not significantly impact the
effectiveness and can accelerate the training and in-
ference of the reward model, promoting scalability.
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Method Webshop Alfworld Sciworld Babyai Jericho Pddl Maze Toolquery Tooloperation Overall

LLaMA-3-70B

Greedy Search (w/o RM) 63.4 63.4 51.1 62.6 31.7 64.1 76.0 81.9 44.9 62.4
BestofN@5 (w/ RM) 69.5 86.9 78.8 72.0 43.0 67.9 96.0 84.6 45.9 74.9
∆ 6.1 23.5 27.7 9.4 11.3 3.9 20.0 2.7 1.0 12.6

Qwen2.5-14B-Instruct

Greedy Search (w/o RM) 64.3 29.7 49.1 49.0 29.3 56.6 60.0 80.0 25.1 52.1
BestofN@5 (w/ RM) 68.2 45.3 61.6 67.9 35.9 66.1 72.0 48.3 25.3 59.3
∆ 3.9 15.6 12.5 18.9 6.6 9.5 12 -31.7 0.2 7.2

AgentGen (LLaMA-3-8B fine-tuned on synthetic data)

Greedy Search (w/o RM) 53.9 29.1 13.9 39.4 10.8 36.4 44.0 57.6 25.1 38.6
BestofN@5 (w/ RM) 58.7 45.0 10.6 44.6 14.7 42.9 44.0 62.8 30.2 44.4
∆ 4.7 15.9 -3.3 5.1 4.0 6.5 0.0 5.2 5.1 5.9

LLaMA-3.2-3B

Greedy Search (w/o RM) 46.8 33.4 28.1 49.9 18.6 12.3 20.0 53.6 8.2 36.7
BestofN@5 (w/ RM) 57.7 34.4 28.1 59.8 20.9 12.1 24 66.4 11.6 43.5
∆ 10.9 1.0 0.0 9.9 2.3 -0.2 4.0 12.8 3.4 6.8

LLaMA-3.2-1B

Greedy Search (w/o RM) 22.1 20.8 4.0 26.1 2.0 3.8 4.0 15.2 0.0 16.3
BestofN@5 (w/ RM) 33.2 18.3 0.2 30.4 2.8 2.8 16 12.3 0.0 19.2
∆ 11.1 -2.5 -3.8 4.3 0.8 -1.0 12.0 -2.9 0.0 2.9

Table 4: Enhancement of our AgentRM to other policy models. Generally, the models with greater scale and
potential achieve more pronounced improvement.

Method Webshop Alfworld Sciworld Babyai Jericho Pddl Maze Toolquery Tooloperation Overall

Explicit RM 62.4 67.7 50.1 70.6 30.0 33.3 80.0 82.1 43.9 61.5
w/ last_observation 62.4 66.7 52.2 73.3 30.6 32.2 80.0 82.2 43.9 62.0
w/o observation 63.7 68.0 43.4 71.3 23.4 31.0 88.0 83.0 43.9 61.2
w/o thought 62.0 66.5 48.7 71.1 32.1 30.2 84.0 82.9 44.9 61.1
w/o thought & observation 62.4 66.0 45.7 69.1 22.1 25.4 44.0 83.2 39.4 58.3

Table 5: Ablation on state representation of Explicit RM.

5.6 Scaling Trend of Test-time Search

We select Pddl task to explore the potential gains
from further increasing the number of candidates
in the Best-of-N sampling using different reward
modelings. The oracle result is obtained by select-
ing the best candidate based on the ground-truth
label, which is not feasible in practice. We report
it as an upper bound of performance. As shown
in Figure 5, explicit RM yields consistent perfor-
mance gains as the test-time compute increases.
When the number of candidates increases to a cer-
tain extent, the implicit RM may become confused
by the excessive number of candidates, leading to
a degradation in performance. The effectiveness of
using LLM-as-a-judge for scaling is limited. One
reason is that as N increases, a growing number
of tokens exceeding the maximum token limit of
the model will be truncated. The findings indicate
that additional research is necessary to establish
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Figure 5: Scaling trend of Best-of-N.

robust test-time scaling laws with Implicit RM and
LLM-as-a-judge, which we leave for future work.

5.7 Preservation of General Reasoning
Capabilities

The relationship between agent tasks and general
reasoning tasks remains unclear. In this section,
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Method GSM8k MATH500 Codecontests

Greedy Search 81.1 48.4 13.3
BestofN@5 79.1 49.2 13.9

Table 6: Performance on general reasoning tasks.

we explore the impact of our RM, merely trained
on agent tasks, on the general reasoning tasks. We
directly apply our RM on several general reasoning
benchmarks including GSM8k (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021) and codecontests
(Li et al., 2022). We prompt the policy model to
solve mathematical problems using a Python inter-
preter. Table 6 shows that, our RM trained on agent
tasks has a negligible impact on general reasoning
tasks, indicating the RM has acquired reasoning
abilities common to general reasoning tasks, rather
than merely fitting the patterns of agent tasks.

6 Related Work

6.1 LLM-based Agent

Language agents have shown initial success in han-
dling complex interactive tasks. Early works fo-
cus on building frameworks around prompt-based
learning (Yao et al., 2022; Shinn et al., 2024). Re-
cently, great efforts have been made to enhance the
agent capability of open-sourced LLMs via finetun-
ing (Chen et al., 2023; Yin et al., 2024). Qin et al.
(2023); Deng et al. (2024a) imitate trajectories from
expert agents (e.g., GPT-4 (Achiam et al., 2023))
for specialized ability such as tool-using or web
navigation. Beyond imitation, self-improvement
emerges as a promising solution to enhance perfor-
mance without extensive expert annotation (Huang
et al., 2023). Most works finetune models on self-
generated trajectories following the self-training
paradigm (Wang et al., 2024b; Chen et al., 2024b;
Song et al., 2024; Xiong et al., 2024; Ye et al.,
2024). Lately, increasing attention has been de-
voted to self-improvement via test-time computa-
tion, e.g., generating multiple candidates and select-
ing the optimal one using techniques like reward
models (Wang et al., 2024a; Zhai et al., 2024; Lin
et al., 2025; Chen et al., 2025a). We provide a com-
parison between their approaches and our method
in Section 6.2.

While effective for tasks seen during training, the
above methods inherently compromise the agent’s
generalization capabilities for unseen tasks. To
enhance agent generalizability, existing works inte-
grate more diverse agent tasks for multi-task train-

ing either by human-crafted (Zeng et al., 2023;
Chen et al., 2024a; Xi et al., 2024; Zhang et al.,
2024b) or by LLM-sythesized (Hu et al., 2024; Fu
et al., 2025). Although they alleviate overfitting to
some extent, it can be observed in Table 1 that their
performance on respective held-out tasks is either
similar or inferior to that of the original backbone
model. We are the first to propose a generalizable
reward model and enhance the agent generalizabil-
ity from the aspect of test-time search. Also, our
method is orthogonal to theirs and can be applied
to enhance their performance seamlessly, as shown
in Section 5.4.

6.2 Reward Modeling for LLM

Recent advancements in reward modeling for
LLMs mainly focus on general reasoning tasks
such as maths and code (Uesato et al., 2022; Light-
man et al., 2023; Wang et al., 2023; Zhang et al.,
2024a). Different from those tasks, agent tasks
typically possess a larger search space due to long-
chain reasoning and environment dynamics. Data
scarcity is also a challenge pronounced in agent
tasks (Ma et al., 2024), making it impractical to de-
velop task-specific reward models. Relevant works
on agent tasks (Wang et al., 2024a; Zhai et al., 2024;
Putta et al., 2024; Lin et al., 2025) focus on training
task-specific process reward models by Tree Search
based methods. We are the first to investigate the
feasibility of a generalizable reward model, pro-
moting the usage of reward models in agent tasks.
Besides, we investigate two additional reward mod-
elings and validate them on six additional complex
agent tasks with larger search space.

7 Conclusion

We introduce AgentRM, a generalizable reward
model, which enhances the performance of lan-
guage agents via test-time search. We compre-
hensively investigate three reward modelings, i.e.
explicit reward modeling, implicit reward model-
ing and LLM-as-a-judge. Among them, explicit
reward modeling achieves the best performance.
Extensive experiments on nine agent tasks show the
effectiveness of our method in both specializabil-
ity and generalizability. Moreover, it demonstrates
weak-to-strong generalization, yielding greater im-
provement on more powerful policy models. We
hope this work shed light on generalization and
test-time self-improvement of agents.
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Limitations

We conclude the limitations of this work as follows:

• Due to the manual effort required to im-
plement additional agent interactive environ-
ments, we only include three agent tasks as
held-in tasks. According to the scaling trend
of training data in Section 5.2, incorporating
more tasks could further enhance the perfor-
mance.

• We do not explore the potential of equipping
our policy model with prompt engineering
designed for agent such as Reflexion (Shinn
et al., 2024).

• In this study, we focus on applying outcome
and process supervision to the reward model.
While fine-tuning the policy model using re-
inforcement learning (RL) would be a natu-
ral extension, we defer this to future work.
Instead, we concentrate on the contributed
dataset and demonstrate that process supervi-
sion alone achieves performance comparable
to RL-based methods (Feng et al., 2025).
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A Perturbation Details

We modify the available actions in Alfworld to
ensure that the changes consist of different tokens
(or token order) while conveying the same semantic
information. We revise the environment and the
examples in the prompt accordingly.

• Perturbation 1: change clean {obj} with
{recep}, cool {obj} with {recep}, heat
{obj} with {recep} to clean {obj} using
{recep}, cool {obj} using {recep}, heat
{obj} using {recep} in the instruction

• Perturbation 2: change go to {recep} to move
to {recep} in the instruction

• Perturbation 3: change take {obj} from
{recep} to from {recep} take {obj} in the
instruction

• Perturbation 4: delete all space between item
name and item number in the instruction

• Perturbation 5: remove all alfworld data in the
training set and retrain the model

B Implementation Details

Hyperparameters are listed in Table 7. The SFT
data is obtained by randomly selecting 1/4 expert
trajectories from the training set. Note that the
data is formatted in ReAct-style (Yao et al., 2022),
and a in Section 3.1 denotes the complete ReAct-
style response (containing both thought and action
tokens) generated by π. The remaining 3/4 of the
data is reserved for constructing RM training data.
In the explicit reward data construction stage, we
set the iteration number ω as 40, the exploration
constant c in UCB as 0.5, the filtering threshold λ
as 3, the number of the rollout in simulation n as
1, the rollout policy as greedy, the expansion width
k as 5. We leverage the AdamW optimizer. All
experiments are carried out on 8 NVIDIA A100
80G GPUs. We use vLLM (Kwon et al., 2023) to
implement both the policy model and reward model
during inference.
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Stage SFT Explicit RM
Training

Implicit RM
Training

Learning Rate 2e-5 1e-5 5e-7

Cosine Scheduler
Warm Up 0.1 0.03 5e-7

Batch Size 64 96 64
Weight Decay 0.0 0.0 0.0

Epoch 3 2 1
β - - 0.05

Table 7: Training hyper-parameters of different stages.

C Baselines

C.0.1 General Agents
Agent-FLAN (Chen et al., 2024a) is an im-
provement of AgentTunning focusing on training
"thought" in ReAct. AgentGym (Xi et al., 2024)
enables the model to continuously learn new tasks
and treating all tasks as held-in via SFT and DPO.
AgentGen (Hu et al., 2024) uses LIMA to syn-
thesize diversified agent-tuning data. AgentRe-
fine (Fu et al., 2025) proposes an environment
synthesis method and distills the self-refinement
ability from advanced proprietary models such as
deepseek and gpt-4o via SFT. For a fair comparison,
all general agents receive the task instruction and
one successful trajectory as input and respond in
ReAct-style. For a fair comparison, we reproduce
Agent-FLAN, AgentGym and AgentGen based on
LLaMA-3-8B-Instruct. Agent-FLAN includes Alf-
world in its training set. AgentGym includes Alf-
world, BabyAI, and SciWorld in its training set.
These datasets will be seen as held-in test tasks
for the corresponding method. Since AgentRefine
has not open sourced, we only report the results on
five tasks in (Fu et al., 2025) with LLaMA-3-8B-
Instruct backbone.

C.0.2 Task-specific Agents
SPIN (Chen et al., 2024b) augments the expert
trajectory dataset with the agent’s successful tra-
jectories. NAT (Wang et al., 2024b) and ETO
(Song et al., 2024) incorporate failed trajectories
into the training process, allowing the agent to learn
from its failure experiences. StepAgent (Deng
et al., 2024b) utilizes step-wise reward to opti-
mize the agent’s reinforcement learning process.
QLASS (Lin et al., 2025) guides stepwise search
with trained task-specific Q-value models. Agent-
R (Yuan et al., 2025) leverages MCTS to construct
training samples that recover correct trajectories
from erroneous ones. Results of SPIN, NAT, ETO,

StepAgent are taken from (Deng et al., 2024b) with
LLaMA-3-8B-Instruct backbone. Since QLASS
has not open sourced, we report the results in (Lin
et al., 2025) with LLaMA-2-chat backbone.

D Task Statistics

Table 8 presents the statistics of both held-in and
held-out tasks. We adopt the three agent tasks
from ETO (Song et al., 2024) as our held-in tasks:
Webshop for web navigation, Alfworld for em-
bodied house holding, and Sciworld for embod-
ied science experiments. We adopt agent tasks
from AgentBoard (Ma et al., 2024) and Agent-
Gym (Xi et al., 2024) as held-out tasks: Alfworld,
Sciworld, Babyai for embodied house holding,
Jericho and Pddl and Maze for text game, Tool-
Query and ToolOperation for tool using. Note
that there are two sources of Alfworld and Sci-
world, i.e. ETO (Song et al., 2024) and AgentBoard
(Ma et al., 2024). The reward model training data
is collected through interactions with the ETO en-
vironment since it provides training set along with
expert trajectories. Evaluation in Section 4.3.1 /
Section 4.3.2 are conducted on Alfworld and Sci-
world implemented by AgentBoard / ETO respec-
tively to align with previous works. They have
slight differences in action space, test set number
and metric.

D.1 LLM-as-a-judge prompt
We do not prompt the LLM to output a discrete
score for each trajectory since the score might be
identical thus insufficient to select the best answer
from a set of candidates (e.g., Best-of-N). Instead,
we prompt the LLM as follows:

1 You are trajectory reward model , an
expert in defining which trajectory
is better and closer to solving the
task. Here is the task description:

2 *******************************
3 task description: {task_description}
4 task goal: {task_goal}
5 *******************************
6 Here are several candidates. They are

all trying to solve the task. Their
trajectories are as follows.

7 *******************************
8 CANDIDATE1:
9 {candidate_1}

10 *******************************
11 CANDIDATE2:
12 {candidate_2}
13 *******************************
14 CANIDATE3:
15 {candidate_3}
16 *******************************
17 CANIDATE4:
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task Webshop Alfworld Sciworld Babyai Jericho PDDL Maze Toolquery Tooloperation

# Train 10426 3321 1483 - - - - - -
# SFT 1938 830 370 - - - - - -

# RM Training 8488 2491 1113 - - - - - -
# Test 200 134/134 211/90 112 20 60 25 60 40

Reward Type Prog. Succ./Prog. Prog./Prog. Prog. Prog. Prog. Prog. Prog. Prog.
Avg. Turn 3 6 15 10 20 20 4.3 5 6
Max. Turn 10 20/30 [15, 120]/30 30 30 30 30 30 30

Action Space 2 10/13 19/21 8 150 8 4 15 16

Table 8: Statistics of held-in and held-out tasks. Prog./Succ. denotes Progress/Success Rate. For the test set of
Alfworld and Sciworld, we report the size of ETO (left) and AgentBoard (right).

Method Babyai Jericho Pddl Maze Toolquery Tooloperation

LLM-as-a-judge 65.7 46.0 70.7 65.8 81.4 42.1
Explicit RM 77.0 64.9 65.4 94.7 72.9 57.9

Table 9: The accuracy of judging relative step reward.

18 {candidate_4}
19 *******************************
20 CANIDATE5:
21 {candidate_5}
22 *******************************

We force the LLM to call the following function to
give the answer:

1 [{
2 "type": "function",
3 "function": {
4 "name": "choose_preferred_answer",
5 "description": "Choose␣the␣preferred␣

answer␣for␣the␣task␣within␣all␣given
␣answers.",

6 "parameters": {
7 "type": "object",
8 "properties": {
9 "preference": {

10 "type": "number",
11 "enum": [1, 2, 3, 4, 5],
12 "description": "The␣index␣of␣the␣

preferred␣answer␣in␣all␣given␣
answers␣(ranging␣from␣1␣to␣5)."

13 },
14 },
15 }
16 }
17 }]

D.2 Preference Accuracy of RM
We evaluate the quality of our RM estimated step
reward by assessing its ability to determine prefer-
ences between state pairs. AgentBoard (Ma et al.,
2024) offers a method to compute the progress rate
for each state by annotating subgoals for every task.
We create state pairs with a progress rate difference
exceeding a threshold of 0.3. Then, we calculate
the accuracy of our RM in predicting preferences
(Table 9). Despite predicting reward for each state

independently, Explicit RM still demonstrates bet-
ter preference judgment accuracy on most tasks
compared to LLM-as-a-judge which sees pairwise
states during inference.
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