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Abstract

Synthetic data has driven recent state-of-the-
art advancements, but reliance on a single
oracle teacher model can lead to model col-
lapse and bias propagation. These issues
are particularly severe in multilingual set-
tings, where no single model excels across
all languages. In this study, we propose mul-
tilingual arbitration, which exploits perfor-
mance variations among multiple models for
each language. By strategically routing sam-
ples through a diverse set of models, each
with unique strengths, we mitigate these chal-
lenges and enhance multilingual performance.
Extensive experiments with state-of-the-art
models demonstrate that our approach signif-
icantly surpasses single-teacher distillation,
achieving up to 80% win rates over propri-
etary and open-weight models like Gemma 2,
Llama 3.1, and Mistral v0.3, with the largest
improvements in low-resource languages.

1 Introduction

Throughout life, we learn from multiple teach-
ers, each offering unique expertise. Similarly,
specialized fields rely on diverse mentors, yet
synthetic data generation often depends on a
single teacher model. This approach passively
transfers both strengths and limitations, assum-
ing one model can effectively teach all relevant
skills (Shumailov et al., 2023; Magister et al.,
2023; Shimabucoro et al., 2024; Gerstgrasser
et al., 2024).

The limitations of the single oracle approach
become particularly pronounced in multilingual
settings, where high-performing large language
models (LLMs) are often trained predominantly
on a few data-rich languages (Singh et al., 2024;
Joshi et al., 2020; Fan et al., 2021). This diverse
landscape of multilingual model development has

* First authors.

resulted in a variety of models: large-scale mod-
els that support multiple languages (Xue et al.,
2020; Scao et al., 2022; Shliazhko et al., 2022; Li
et al., 2023; Üstün et al., 2024), frontier models
with some multilingual capabilities that are not
specifically optimized (Armengol-Estapé et al.,
2021; Chowdhery et al., 2022; Zhang et al., 2022;
Team et al., 2024), and models focused on re-
gional language families (Adelani et al., 2021;
Mirzakhalov et al., 2021; Cahyawijaya et al.,
2022). As a result, it is often unclear how to
determine which model to use to maximize per-
formance for a given language. Relying on a
single model can also further amplify disparities
in treatments between languages, as models may
perform well on some language but not have cov-
erage for others. Performance tends to be critical
for the quality of synthetic data, which can enable
further progress in those languages by making
data more ubiquitous over time (Alaa et al., 2022;
Gao et al., 2023; Bukharin and Zhao, 2023; Li
et al., 2024; Zhang et al., 2024).

In this work, we take a wider view of syn-
thetic data generation. Rather than treating
model distillation as a single-teacher-to-student
transfer, we reframe the problem within this het-
erogeneous landscape as learning how to opti-
mize sampling for a desired part of the data dis-
tribution from an ensemble of teachers. Multi-
lingual settings serve as an ideal case study for
this approach due to the distinct boundaries be-
tween languages compared to tasks. We propose
multilingual arbitration, leveraging model perfor-
mance differences per language to strategically
route sampling. This raises the question: Can
sampling from multiple models outperform any
individual model?

We evaluate this approach across 15 languages
using 9 state-of-the-art multilingual models. Our
key findings and contributions are as follows:

Multilingual arbitration significantly out-
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"端午节为期三天 ..."
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Figure 1: Overview of Multilingual Arbitration. Instead of relying on a single “oracle” teacher, multilingual
arbitration re-frames the distillation as optimizing sampling for a desired part of the data distribution from an
ensemble of teachers.

performs single-teacher distillation. Our exper-
iments show that arbitration-based methods con-
sistently surpass single-teacher models. Specifi-
cally, reward-based routing improves generative
win rates by 56.5% and outperforms the best
single-teacher model by 28.1%. Additionally, stu-
dent models trained with this approach achieve
an average absolute win rate gain of 32.02%
(153.5% relative) over multiple state-of-the-art
models. Compared to the strongest individual
model, arbitration still delivers a 6.9% absolute
(15.9% relative) improvement, underscoring its
significant performance advantage.
Not all arbitration techniques are equal. We
evaluate the performance of various arbitration
techniques against a lower bound baseline of
random routing. Reward-based routing, fixed
routing with predefined set of expert teachers,
and learned routing improved absolute perfor-
mance by 30.6%, 22.9% and 13.4% (relative
performance by 119.5%, 76.8%, and 40.6%) re-
spectively. While reward-based routing, though
resource-intensive, was the most effective, our re-
sults show that the more efficient reward-guided
learned routing can achieve impressive perfor-
mance gains without needing to generate all com-
pletions from each model.
Arbitration improves or maintains textual
characteristics. We analyze the impact of in-
struction fine-tuning (IFT) with multilingual arbi-
tration on text verbosity, readability, and lexical
diversity. Reward-based routing increases token
count by 14.1%, while learned routing leads to a
68.4% increase compared to both single-teacher
and random routing baselines. Lexical diversity
also improves: reward-based routing achieves
a 6% gain, and learned routing 4.2%, relative

to single teachers, with 13.4% and 11.5% gains
over random routing, respectively. These results
highlight arbitration’s ability to enhance linguis-
tic richness while maintaining coherence.
Arbitration produces a model checkpoint that
outperforms state-of-the-art models. We scaled
our arbitration approach and evaluated it against
leading models, including Gemma 2 (Team et al.,
2024), Llama 3.1 (Dubey et al., 2024), and Mis-
tral v0.31. Specifically, we observed an average
absolute gain in win rates of 32.02% (a relative
gain of 153.5%) compared to various state-of-the-
art models, resulting in absolute win rates for our
arbitration methods ranging from 50.1% to 80%
against Gemma 2 and Mistral v0.3, respectively.

2 Methodology

Our primary goal is to train a high-performing
multilingual student model S. Given a set of input
prompts P = {pi}Ni=1, we generate a correspond-
ing set of completions C = {ci}Ni=1 using a pool
of potential teacher models T = {Tj}Mj=1. These
prompt-completion pairs (pi, ci) will then be used
to fine-tune S. For each prompt pi ∈ P , we aim
to identify the specific teacher model Tj ∈ T that
produces the highest quality completion ci.

We consider that each teacher model Tj may
not perform uniformly across all regions of inter-
est R in the data distribution. Therefore, we aim
to minimize the empirical error E[Pj(R)], where
Pj(R) represents the performance of teacher
model Tj in region R, over the broader distri-
bution D. This ensures robustness and gener-
alization beyond the i.i.d. training sample Diid.

1https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3
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Figure 2: Win rates (%) of student trained with arbitration data: Comparison of reward-based routing
trained students with state-of-the-art models. The largest gain is observed with a 65.4% win-loss difference
against Mistral-7B-instruct-v0.3. Values are aggregated across 23 languages.

This approach allows us to select the most suit-
able teacher model for each prompt, optimizing
the training of our student model S. We note that
this amounts to optimization in the data space and
allows for on-the-fly creation of dataset properties
to minimize sensitivity to distribution drift.

2.1 Routing Methods

The crux of the problem of multilingual arbitra-
tion is: how do you route prompts to the most
calibrated teacher model for each prompt? We
explore and benchmark several routing strate-
gies that aim to address this challenge. Table 1
presents a comparative overview of these strate-
gies, highlighting their respective strengths and
limitations, which we discuss in more detail be-
low.
Fixed Routing. In practice, one might choose
a fixed model, such as T2, to process all input
prompts in P . This can be reasonable if T2

demonstrates significantly better overall perfor-
mance for a majority of the prompts. In the mul-
tilingual case, this setting is one in which we can
pre-determine the best model for each language
based on their known strengths, enabling us to
use a fixed routing strategy for each prompt deter-
ministically by choosing the appropriate teacher
model according to the prompt’s language. How-
ever, in real-world settings it is not always possi-
ble to know what models are relatively strong at
different languages in advance.
Reward-based Routing. Next we consider the
more realistic setting which assumes that we can-
not pre-determine a fixed routing strategy. In-
stead, we rely on a reward model for routing. For
each pi we generate a completion from each of the

teacher models in T and then select ci to be the
completion with the highest score given by some
ranking method. In our case, we use a proprietary
reward model (Cohere May 2024) which is com-
petitive with top-scoring state-of-the-art reward
models on the RewardBench Leaderboard (Lam-
bert et al., 2024)2. We intentionally use a separate
reward model for routing from the model that we
use for our LLM-as-a-judge evaluation (GPT-4-
Turbo3) given the known biases incurred by using
the same model for both (Bansal et al., 2023;
Verga et al., 2024; Shimabucoro et al., 2024).
Learned-Routing. The disadvantage of reward-
based routing is that it requires generating a full
set of M completions for each prompt where
M = |T |. As a more efficient alternative, we ex-
plore the merits of a learned router which instead
trains a router model based on scores produced by
the reward model which is proposed by (Lu et al.,
2024). In this method, the router model learns to
predict the reward conditioned only on the prompt
pi, thereby determining the most suitable teacher
model Tj without the need to generate multiple
completions based upon historical routing trends.
The router R(pi) is defined to select the teacher
model Tj that maximizes the expected reward for
a given prompt pi. Formally, for each pi ∈ P , the
selected model Tj is given by:

Tj = argmax
T∈T

R(pi, T ).

This approach leverages the complementary
strengths of the models in T and ensures that

2https://huggingface.co/spaces/allenai/
reward-bench

3https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4
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Fixed Reward-Based Learned

Works with Unknown Teachers × ✓ ✓

All models are considered for each prompt × ✓ ✓

Efficient Routing ✓ × ✓

New models can be added on-the-fly × ✓ ×

Table 1: Comparison of Arbitration Techniques: Summary of key features for each routing method. While reward-based
routing is highly flexible, learned routing achieves a good balance between efficiency and adaptability.

each prompt is routed to the model most likely to
produce the highest quality completion. By inte-
grating reward model ranking with query routing,
reward-guided Learned-Routing enhances the ef-
ficiency of the LLM ensemble, reducing computa-
tional overhead while ensuring effective training
of the student model S.

To train our learned-routing model, we collect
a training dataset of diverse prompts and then
generate completions from each of the candidate
models in the teacher pool. Given a prompt from
our training set, we obtain a scalar reward for each
candidate model generation as in the following:

ri = {RM(pi, Tj(pi))}|T |
j=1 , i = 1, . . . , N

(1)
where ri ∈ R|T |. We then train our router R
on the training data with Kullback-Leibler (KL)
divergence as the loss function:

L(pi, ri) = KL(R(pi), softmax(ri)). (2)

This approach improves the quality of synthetic
data while maintaining computational efficiency
during inference, introducing only minimal over-
head compared to traditional reward model rank-
ing methods, which is training the router model.
However, this overhead is well compensated dur-
ing inference because learned routing only gener-
ates samples from the routed model, rather than
from each model in the pool. As a result, the
generation cost is reduced to 1/M , where M is
the number of models in the pool.

3 Experimental Setup

3.1 Baselines
To evaluate multilingual arbitration, we compare
against several baselines:

Single Teachers. This is the most widely
adopted approach for incorporating synthetic data
into training. In this paradigm a student model is
trained on the generations from a single teacher
model. We evaluate whether multilingual arbi-
tration outperforms a single “oracle” teacher.

We choose single teacher models based on their
architecture, size, base model type, and language
coverage. Our experiments are divided into two
scales. For the basic set, we use widely adopted
models with parameters ranging from 7B to 9B:
Aya 23 (Aryabumi et al., 2024), Llama 3 (Dubey
et al., 2024), and Gemma 2 (Team et al., 2024).
For larger-scale experiments with expanded lan-
guage coverage, we choose top-performing open-
weight models: CommandR+, Gemma2 27B
(Team et al., 2024), and Mistral Large 2. De-
tailed information about each model is provided
in Appendix B.

Random Routing. Next, we consider a router
that randomly assigns each prompt pi ∈ P to
teacher model Tj ∈ T , without accounting for
language or any prompt-specific characteristics.
This baseline allows us to explore: Is multilin-
gual arbitration more effective than selecting
models at random for a given data distribution?

Translation. This baseline evaluates whether
strategic sampling is superior to simply translat-
ing the outputs of a single English model into mul-
tiple languages. We investigate: Does generating
synthetic data directly in the target language out-
perform translating the best English-only data?
We generate completions for our English training
prompts using our most capable English teacher
model, Llama 3. We then translate each of the
prompts and completions to the seven languages
included in our router experiments.

3.2 Routing Teacher Pools

Fixed Router Model Pool. Our fixed router ex-
periments assume prior knowledge of the best-
performing models for specific languages. We
train several geo-cluster models specialized in 15
languages, grouped as follows: Germanic (Ger-
man, Dutch), Slavic (Czech, Russian, Ukrainian,
Polish), Romance (French, Portuguese, Spanish,
Italian, Romanian), and East-Asian (Turkish, Ko-
rean, Japanese, Chinese). This approach lever-
ages linguistic and geographic similarities (Kohli
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et al., 2023; Kew et al., 2023; Tejaswi et al.,
2024). Before student training, geo-cluster mod-
els outperform single-teacher models, achieving
a 5.95% absolute (14.9% relative) win rate gain.
Additional training and evaluation details are in
Appendix C.

Reward-based and Learned Routing. These
methods evaluate routing effectiveness in a
diverse model pool with unknown multilin-
gual performance. We include single-teacher
models (§3.1), geo-cluster models (§3.2), and
monolingual models for Chinese (Qwen2-7B-
instruct) (Yang et al., 2024) and Turkish (Turkish-
Llama-8b-Instruct-v0.1). Details on monolingual
models are in Appendix B. This variety-from mas-
sively multilingual to geo-cluster and monolin-
gual models – allows us to analyze model selec-
tion trends across different routing techniques.

Learned Routing. We train our learned router
by fine-tuning Gemma2-2B (Team et al., 2024),
selected for its compact size, strong performance,
and multilingual capabilities. To further im-
prove training efficiency, we also train an mT5-
base (Xue et al., 2020) with 580M parameters.
Comparative results for these models are pre-
sented in Appendix E. Our learned router mod-
els were trained using prompts from Dolly-15k
which were translated using NLLB-3.3B (Team
et al., 2022) into 7 languages covered by our rout-
ing experiments, and resulting in 60,419 prompts.

3.3 Student Model
We use Aya 23 8B (Aryabumi et al., 2024) as
our student model for its state-of-the-art multi-
lingual capabilities at its size. Experiments are
conducted at two scales: (1) Basic Set - synthetic
data is generated in 7 languages: Arabic, Chinese,
English, French, German, Turkish, Ukrainian and
(2) Larger Scale - synthetic data is generated in
23 languages, including the initial seven plus:
Dutch, Czech, Greek, Spanish, Persian, French,
Hebrew, Hindi, Indonesian, Italian, Japanese, Ko-
rean, Polish, Portuguese, Russian, Vietnamese.
These languages cover diverse language families
for comprehensive evaluation across various lin-
guistic contexts (see Table 7 in Appendix D).

Training Details. For the basic set, student
models are trained using 10,000 randomly sam-
pled prompts from the UltraFeedback Binarized
Dataset (UFB) (Tunstall et al., 2023), an En-
glish preference dataset with 61,135 pairs. These
prompts are translated into 7 target languages us-

ing the NLLB-3.3B model, resulting in 70,000
prompts. For larger-scale experiments, 10,000
UFB prompts, 13,000 from Dolly (Conover
et al., 2023), and 43,000 from ShareGPT 4 are
translated into 23 languages, totaling 1,358,000
prompts. Completions for each prompt are gener-
ated by the assigned teacher model. Each student
model is fine-tuned on these data points - 70,000
for the basic set and 1,358,000 for the larger scale
- selected through multilingual arbitration.

3.4 Evaluations
Open-ended Generation Win rates. Beyond
traditional NLP tasks, we aim to evaluate the
open-ended generation capabilities of the student
models, focusing on their ability to produce un-
structured and long-form responses. For this eval-
uation, we use GPT-4 as an LLM-judge to mea-
sure pairwise win rates between two model gener-
ations. We evaluate on the target language subset
of the Multilingual Dolly-200 Eval dataset (Singh
et al., 2024; Üstün et al., 2024). This 200 in-
stance evaluation dataset is a held-out curated
sample from the Dolly-15k dataset (Conover
et al., 2023). These prompts are open-ended
and capture general-purpose non-code use cases.
Hence, evaluation using this dataset is a valuable
proxy for how multilingual arbitration impacts
more fluid and often open-ended asks.

Discriminative Tasks. To evaluate our models
on completely unseen tasks, we follow Muen-
nighoff et al. (2023) and use XNLI (Conneau
et al., 2018), XCOPA (Ponti et al., 2020), and
XStoryCloze (Lin et al., 2021) datasets targeting
natural language inference, commonsense reason-
ing and sentence completion respectively. These
unseen tasks are crucial for evaluating the effec-
tiveness of IFT in improving a model’s reasoning
and comprehension capabilities as they test the
model’s ability to discriminate between different
possible interpretations or outcomes. For all un-
seen tasks, we report zero-shot performance.

4 Results and Discussion

4.1 Multilingual Arbitration Performance
Comparison against state-of-the-art models.
Figure 2 shows the win rates of our reward-
based routing strategy compared to several widely
adopted models, with parameters ranging from
7B to 9B, as well as the Aya 23 model with 35B

4https://sharegpt.com/
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Figure 3: Win rates (%) of students trained with different routing strategies: Comparison of router-trained
and random routing trained students. Reward-based routing shows the largest gains with a 30.6% win-loss
difference. Values are percentages aggregated across 7 languages.

parameters. Our student models, trained using
data derived from this strategy, demonstrated a
significant performance advantage over all these
state-of-the-art models. We observed an average
absolute increase in win rates of 32.02% (rel-
ative gain of 153.5%) across all models, with
improvements ranging from 6.9% (15.9% rela-
tive) for Gemma2 9B to 65.4% (447% relative)
for Mistral-7B-instruct, based on results averaged
across 23 languages.

Comparison against random routing. Our
random routing baseline serves as a crucial lower
bound that any proposed arbitration strategy
should outperform. This baseline helps us eval-
uate: Is our multilingual arbitration technique
better than a random guess? In Figure 3, we
compare the win rates of each of the different rout-
ing methods against the random routing baseline.
We observe that all the multilingual arbitration
methods consistently outperformed the random
baseline with average win rate of 51.8% and a
notable absolute win rate improvement of 22.3%
(78.9% relative) on average.

Comparison against single “oracle” teacher.
In Figure 4, we show win rates comparing our
routing strategies to single teacher models. Stu-
dent models trained with data from these strate-
gies significantly outperformed those using sin-
gle teacher generations. Specifically, fixed rout-
ing achieves an absolute average winrate im-
provement of 13.3% (34.7% relative), reward-
based routing shows a 19.5% absolute average
improvement (56.5% relative), and learned rout-
ing has a 9.0% absolute improvement in average
(25.6% relative) over all single teachers. Notably,
Gemma 2 was the best-performing single teacher,
yet learned routing still achieved an absolute aver-
age winrate improvement of 1.4% (3.2% relative

gain) over it.

Win-rate Gains are largest for Reward-
Based Routing. Reward-based routing achieves
the highest win-rate gains of 56.5% against single
teachers but is the least efficient, requiring in-
ference and generation from all models in the
pool for each prompt. In contrast, fixed and
learned routing, though slightly less effective,
are far more efficient, needing only one gener-
ation per prompt. In a 9-model pool, reward-
based routing generates and scores 9 completions
per prompt, while fixed and learned routing re-
quire just one. Learned routing adds a lightweight
router call, but this overhead is negligible com-
pared to full model inference. Notably, learned
routing is the most flexible, 9× more efficient
than reward-based routing, and unlike fixed rout-
ing, it does not require prior knowledge of model
strengths.

Discriminative tasks. Table 9 shows zero-shot
performance on unseen discriminative tasks, high-
lighting similar gaps between single teachers and
arbitration techniques. Single teachers improve
performance by 0.57 absolute (0.98% relative)
over the base student model (Aya 23), while arbi-
tration achieves a 1.14 absolute (1.95% relative)
gain. Among arbitration methods, Fixed Routing
performs best, with a 1.46 absolute (2.50% rel-
ative) improvement, followed by Reward-Based
Routing (1.12 absolute, 1.91% relative), demon-
strating their superior impact on cross-lingual
and commonsense reasoning. Interestingly, Fixed
Routing ranks highest in discriminative tasks but
second in win rates, reflecting a broader tension
between academic benchmarks and open-ended
generation performance. Recent studies sug-
gest that as LLMs improve in conversational and
instruction-following abilities, their performance
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Figure 4: Win rate (%) comparison of Fixed, Reward-Based and Learned Routing against Single Teacher
Models. The x-axis shows the single teacher model used for synthetic data generation. All multilingual
arbitration strategies outperform single teachers, with reward-based routing achieving the largest gains. Values
are aggregated across seven languages: Arabic, Chinese, English, French, German, Turkish, and Ukrainian.

XCOPA XNLI XStoryCloze Average

AYA23 (Base Model) 64.1 42.9 68.23 58.41

SINGLE TEACHERS 65.5 43.96 67.41 58.98 ↑ 0.98

RANDOM ROUTING 65.9 44.01 67.25 59.05 ↑ 1.09

FIXED ROUTING 67.4 43.89 68.33 59.87 ↑ 2.50

REWARD BASED ROUTING 66.2 44.21 68.20 59.53 ↑ 1.91

LEARNED ROUTER 65.8 43.62 68.36 59.25 ↑ 1.43

Table 2: Performance of Student Models on held-out Discriminative Tasks: Results are averaged over 7
languages, showing performance changes relative to the base model Aya23. Single teacher results are averaged
across Aya23, Llama 3, and Gemma 2. ‘Average’ column shows the percentage increase over the base model.

on traditional benchmarks may decline (Iyer et al.,
2023; Üstün et al., 2024; Aakanksha et al., 2024).
For full results, see Table 9 in Appendix G.

4.2 Language and Routing Analysis

Difference in per-language gains. Figure 5
compares performance gains in medium- vs.
high-resource languages using reward-based and
learned routing against single teachers - Aya 23,
Llama 3, Gemma 2. Medium-resource languages,
Turkish and Ukrainian, experience greater bene-
fits, with reward-based routing achieving an abso-
lute gain of 19.2% (56.1% relative) and learned
routing achieving a 18.1% (52.2% relative) over
single teachers. In contrast, high-resource lan-
guages (Joshi et al., 2020), English, German,
French, Chinese, and Arabic see an absolute gain
of 13.2% (35.7% relative) with reward-based rout-
ing and 6% (14.3% relative) with learned rout-
ing. These results suggest routing strategies ben-
efit medium-resource languages more than single
teachers. Detailed per-language gains are in Ta-
ble 8, Appendix F.

Routed Dataset Distribution Across Models.
Figure 6 shows the distribution of the training
dataset prompts routed to each model by the
reward-based router. We observed a balanced
routing strategy with different models favored
for each language, which highlights the benefits
of combining the strengths of a pool of models
with varying strengths. For instance, Llama 3, a
strong English model, receives 60% of English
prompts but is less frequently used for other lan-
guages. Meanwhile, 30.7% of Chinese prompts
are directed to the Chinese monolingual expert,
whereas the Turkish monolingual expert is rarely
selected, with only 0.6% of prompts routed to it.
Overall, Aya 23 emerges as the leading multilin-
gual model, predominantly chosen for Ukrainian,
Turkish, and Arabic, with 53% of Arabic prompts
routed to it. Geo-cluster models, included for
all languages except Arabic (as there is no Geo-
cluster model for it), handle an average of 18.7%
of the prompts.

Comparison of in-language generation vs
translation. We investigate whether generating
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Figure 7: Win rates (%) for Llama 3 translations vs. generations: Comparison of translation, in-language
generation by single teacher and router-trained students to those trained with random routing. The largest gains
are observed for in-language data generation with a win-loss diff of 18.3%.

synthetic data directly in the target language is
more effective than translating English-only data.
Using Llama 3, we generate English data, trans-
late it into 6 languages, and train a student model
on the translated dataset. We then compare its
performance to students trained on Llama 3’s in-
language generations and random routing. Fig-
ure 7 shows that random routing (54.4% win rate)
outperforms translation, while the Llama 3 single-
teacher model surpasses random routing with a
4.4% absolute (10.3% relative) gain. Notably,

Llama 3 translation performs worse than Llama
3 in-language generations, with a 18.3% absolute
(48.9% relative) win rate gap. These results con-
firm that translation is the least effective synthetic
data method, as even random routing performs
better. Generating data within the target language
provides substantial advantages, even when the
original model excels in English.

Textual Characteristics. To gain a holis-
tic view of how multilingual arbitration affects
model generation characteristics, we use the
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Student Models # Tokens Gunning-Fog Rix MLTD

AYA23 (Base) 76.74 15.83 4.7 43.98

SINGLE TEACHER STUDENTS

AYA23 151.83 17.67 5.92 46.51

LLAMA-3 141.71 17.33 5.87 49.5

GEMMA-2 140.59 15.67 ↓ 4.28 ↓ 52.48

TRANSLATION 197.05 16.62 5.22 53.01

MULTILINGUAL ARBITRATION

RANDOM ROUTING 144.16 17.16 5.81 45.81

FIXED ROUTING 160.75 17.71 5.94 50.79

REWARD BASED ROUTING 164.4 17.01 5.69 51.95

LEARNED ROUTING 242.56 19.11 7.74 51.08

Table 3: Textual characteristics of student models across four languages (ENGLISH, GERMAN, FRENCH,
AND UKRAINIAN). The results reflect how different routing strategies and model choices influence verbosity (#
Tokens), readability (Gunning-Fog and Rix indices), and lexical richness (MLTD). Notably, all student models
except GEMMA-2 exhibit increases across the evaluated metrics.

TextDescriptives framework from Hansen et al.
(2023) to calculate various textual features. Ta-
ble 3 presents the average statistics across stu-
dent models, including token count, readabil-
ity (Gunning-Fog (Gunning, 1968) and Rix (An-
derson, 1983) indices), and lexical diversity
(MLTD (Shen, 2022)) scores. For a more de-
tailed analysis of the textual characteristics of
generations, please refer to Appendix H.

5 Conclusion

We introduce multilingual arbitration, a strategy
that leverages model performance variations to
optimize sampling from a teacher model pool,
generating superior training data for student mod-
els. Our experiments across 23 languages show
that routing strategies significantly enhance per-
formance across all benchmarks, outperforming
traditional single-teacher methods in both open-
ended generation and discriminative tasks. Analy-
sis of textual characteristics and unseen tasks con-
firms that instruction fine-tuned students not only
retain their capabilities but also improve multilin-
gual generation. Our findings highlight the value
of strategic sampling, especially for handling out-
of-distribution challenges and underrepresented
data. We anticipate arbitration techniques will
drive substantial gains in these areas.

6 Limitations

While our approach covers a broad range of lan-
guages, most are still considered mid- or high-

resource by global standards. Extremely low-
resource languages, where minimal training data
or teacher models are available, remain challeng-
ing. The lack of suitable experts for routing and
the increased risk of generating poor-quality syn-
thetic data make such cases currently infeasible.
Additionally, as discussed in Section 2.1, our
reward-based routing method requires generat-
ing completions from all candidate models for
each prompt. While this approach enhances per-
formance, it also significantly increases inference
costs.
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A Related Work

LLM circularity. The issue of LLM circular-
ity, where models influence others through dis-
tilled data, has gained attention, focusing on
model degradation and self-preference (Dohma-
tob et al., 2024; Briesch et al., 2023; Shumailov
et al., 2023). Recursive training impairs perfor-
mance by neglecting long-tail knowledge (Bri-
esch et al., 2023; Bertrand et al., 2024; Shumailov
et al., 2024), leading to a loss of diversity (Guo
et al., 2024; Feng et al., 2024). (Shimabucoro
et al., 2024) explore how the transfer of char-
acteristics via passive inheritance occurs when
synthetic data generated by different LLMs is in-
volved. By considering the issues highlighted
in these studies, we aim to optimize synthetic
data generation by selecting the most calibrated
teacher model from a pool of LLMs in a multilin-
gual setting.

Instruction Fine-tuning (IFT) and Multilin-
gual Synthetic Data. IFT enhances LLM perfor-
mance and generalization (Sanh et al., 2021; Wei
et al., 2021; Mishra et al., 2021; Min et al., 2021;
Ouyang et al., 2022), relying on task diversity
(Longpre et al., 2023; Wang et al., 2023b; Chung
et al., 2022), complexity (Xu et al., 2023; Luo
et al., 2023), and quality (Zhou et al., 2023; Taori
et al., 2023). While validated mainly for English
tasks, there is a growing focus on multilingual
contexts (Üstün et al., 2024). Efforts address mul-
tilingual instruction dataset scarcity (Singh et al.,
2024). Research on English synthetic data gener-
ation is extensive (Gao et al., 2023; Anaby-Tavor
et al., 2019), but its multilingual impact is less un-
derstood (Kaddour and Liu, 2023). Recent stud-
ies explore multilingual data with a single teacher
model (Aryabumi et al., 2024) and for preference
training (Aakanksha et al., 2024). In this work,
we strategically sample from a diverse pool of
models, each with unique strengths across differ-
ent languages, to generate high-quality synthetic
instruction data. Our research diverges by con-
centrating on multilingual synthetic instruction
data generation from an ecosystem view rather
than a single teacher.

Large Language Model Ensemble. Ensem-
bling LLMs leverages individual strengths, but
limited research exists on these effective strate-
gies. Frameworks combine LLMs using pairwise
ranking and generative fusion (Jiang et al., 2023),
sequential inference (Chen et al., 2023), and su-
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pervised learning for output fusion (Wang et al.,
2023a). Routers select the best LLM candidate
based on benchmarks (Shnitzer et al., 2023). Rel-
evant work proposes reward model-guided rout-
ing for task strengths (Lu et al., 2024). Our work
explores various routing strategies beyond reward-
based routing, in multilingual contexts.

B Teacher Model Pool Details

Single Teacher Models. We include additional
details about each of the single teacher models
we benchmark below:
Aya-23-8B (Aryabumi et al., 2024) is an 8B pa-
rameter model and a part of the Aya-23 family
of multilingual instruction-tuned language mod-
els that supports 23 languages, and are based
on Cohere’s Command model5 and multilingual
instruction-style collection (Singh et al., 2024).
Llama-3-8B-instruct (Dubey et al., 2024) is
an open-source instruction-tuned version of the
Llama-3-8B pre-trained model. The model is
trained on over 15 trillion tokens of publicly avail-
able data, with a focus on optimizing the perfor-
mance across various real-world scenarios, in-
cluding reasoning and code generation.
Gemma-2-9B-it (Team et al., 2024) is a 9B pa-
rameter instruction fine-tuned model on 8T to-
kens of data from web documents, code, and sci-
ence articles. In particular, the 9B model was
trained with knowledge distillation (Hinton et al.,
2015) instead of next token prediction.
Gemma-2-27B-it (Team et al., 2024) is a 27B
parameter instruction fine-tuned model on 13T
tokens of data from web documents, code, math-
ematics.
Command-r-plus-08-2024 6 is a 104B parameter
multilingual model optimized for 10 languages:
English, French, Spanish, Italian, German, Brazil-
ian Portuguese, Japanese, Korean, Arabic, and
Simplified Chinese.
Mistral Large 27 is a 123B parameter instruc-
tion fine-tuned model, supports dozens of lan-
guages including French, German, Spanish, Ital-
ian, Portuguese, Arabic, Hindi, Russian, Chinese,
Japanese, and Korean.

Monolingual Teacher Models. These models
are specifically tailored for individual languages,

5https://cohere.com/command
6https://huggingface.co/CohereForAI/

c4ai-command-r-plus
7https://huggingface.co/mistralai/

Mistral-Large-Instruct-2407

specifically Chinese and Turkish: Qwen2-7B-
instruct (Yang et al., 2024) is an open-source 7B
parameter model pretrained on 7T tokens of data
from code, mathematics, and multilingual data.
Qwen2-7B-instruct is a multilingual model sup-
porting approximately 30 languages, and showing
strong performance on Chinese. Turkish-Llama-
8b-Instruct-v0.18 is a fully fine-tuned version
of the Llama-3-8B-instruct model with a 30GB
Turkish dataset. It currently tops the Turkish
leaderboard on HuggingFace9 for text generation
tasks.

C Geo-Cluster Training Details

To train highly performant Geo-clusters, we train
an 8B parameter Cohere command model on a
data mix of the 15 languages covered by the Geo-
Clusters as shown in Table 4.

For this data mix, we used both ShareGPT
dataset and the Dolly-15k dataset as described
by (Aryabumi et al., 2024). First these two
datasets’ prompts and completions were trans-
lated into these 15 languages, and translations
were done using the NLLB-3.3B model (Costa-
jussà et al., 2022). In addition, we also included
what we call the ShareGPT CommandR+ dataset
and the Dolly-15k CommandR+ dataset. For
these variants, we use the translated prompts gen-
erated completions for the translated prompts
using Command R+10. Our datasets cover 15
languages shown in Table 4. Table 5 shows the
training data distribution in terms of number of
samples used for each Geo-Cluster model train-
ing.

Before using the geo-clusters as teacher mod-
els, we validate performance of our trained Geo-
cluster models. We compute average win rates in
each language cluster using the held-out multilin-
gual Dolly-200 evaluation dataset (Üstün et al.,
2024).

D Language Families

As we present in Section 3.3, we generate
synthetic data in 23 diverse languages: Ara-
bic, Chinese, English, French, German, Turkish,

8https://huggingface.co/ytu-ce-cosmos/
Turkish-Llama-8b-Instruct-v0.1

9https://huggingface.co/spaces/malhajar/
OpenLLMTurkishLeaderboard_v0.2

10https://huggingface.co/CohereForAI/
c4ai-command-r-plus
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Language Cluster Languages

GERMANIC German, Dutch
SLAVIC Czech, Russian, Ukrainian, Polish
ROMANCE French, Portuguese, Spanish, Italian, Romanian
EAST-ASIAN Korean, Japanese, Chinese, Turkish

Table 4: Language composition of Geo-clusters: To evaluate fixed routing, we control apriori for the strength
of a model on each language in our pool by training Geo-cluster models which are specialized on different
groups of languages.

Number of Samples Per Dataset

Language Cluster Original ShareGPT ShareGPT CommandR+ Original Dolly15k Dolly15k CommandR+

GERMANIC 155,480 157,699 40,466 42,447

SLAVIC 259,217 263,488 67,721 71,121

ROMANCE 309,708 314,513 80,295 84,345

EAST ASIAN 230,848 235,369 58,864 61,743

Table 5: Number of Training Samples Per Language Cluster

Ukrainian, Dutch, Czech, Greek, Spanish, Per-
sian, French, Hebrew, Hindi, Indonesian, Italian,
Japanese, Korean, Polish, Portuguese, Russian,
Vietnamese. These languages, representing dif-
ferent language families, are selected to ensure a
comprehensive evaluation across various linguis-
tic contexts, detailed in Table 7.

E Router Model Details

Training Details. We chose Gemma2-
2B11 as our router model for its compact
size, performance, and multilingual capabili-
ties. We fine-tuned Gemma2-2B model using
the AdamW (Loshchilov and Hutter, 2019) op-
timizer with an initial learning rate of 5× 10−5.
We used a linear learning rate scheduler with a
200 warmup steps. We set weight decay to 0 and
fine-tuned for 2 epochs.

11https://huggingface.co/google/gemma-2-2b

To further improve training efficiency, we also
evaluate a smaller mT5-base12 variant with 580M
parameters. We finetuned the mT5-base using the
Adafactor optimizer with 1×10−3 as the learning
rate. We fine-tuned for 5 epochs with a train batch
size of 32.

Comparison of mT5 and Gemma 2 as
Router Model. We chose Gemma2-2B as the
final candidate for our learned router model. The
student model trained on the dataset routed by
Gemma2-2B demonstrated significant improve-
ments, particularly against the strong Gemma2-
9B single teacher model. Gemma2-2B was used
as the learned router in all our experiments.

Figure 9 shows Gemma2-2B and mT5-base
router performances compared to random rout-
ing and single teachers. Despite its smaller size,
mT5-base also achieved remarkable results, out-

12https://huggingface.co/google/mt5-base
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Figure 8: Geo-cluster win-rates against Aya 23 Single Teacher Model after training. All values are percentages,
and aggregated over number of languages in each language cluster. Geo-cluster are powerful teacher models
relative to the capabilities of the base Aya model.
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Language Model Pool

ARABIC Base Pool
CHINESE Base Pool, East Asian + Turkish Cluster, Qwen2-7B
ENGLISH Base Pool, Germanic Cluster
FRENCH Base Pool, Romance Cluster
GERMAN Base Pool, Germanic Cluster
TURKISH Base Pool, East Asian + Turkish Cluster, Turkish-Llama-8b
UKRAINIAN Base Pool, Slavic Cluster

Table 6: Teacher model pool available for each language. The Base Pool consists of those outlined in Section
3.1: Aya 23, Llama 3, Gemma 2.

ISO Code Language Script Family Subgrouping Resources

ara Arabic Arabic Afro-Asiatic Semitic High
zho Chinese Han Sino-Tibetan Sinitic High
eng English Latin Indo-European Germanic High
fra French Latin Indo-European Italic High
deu German Latin Indo-European Germanic High
tur Turkish Latin Turkic Common Turkic Mid
ukr Ukrainian Cyrillic Indo-European Balto-Slavic Mid
nld Dutch Latin Indo-European Germanic High
ces Czech Latin Indo-European Balto-Slavic High
ell Greek Greek Indo-European Graeco-Phrygian Mid
spa Spanish Latin Indo-European Italic High
pes Persian Arabic Indo-European Iranian High
fra French Latin Indo-European Italic High
heb Hebrew Hebrew Afro-Asiatic Semitic Mid
hin Hindi Devanagari Indo-European Indo-Aryan High
ind Indonesian Latin Austronesian Malayo-Polynesian Mid
ita Italian Latin Indo-European Italic High
jpn Japanese Japanese Japonic Japanesic High
kor Korean Hangul Koreanic Korean Mid
pol Polish Latin Indo-European Balto-Slavic High
por Portuguese Latin Indo-European Italic High
rus Russian Cyrillic Indo-European Balto-Slavic High
vie Vietnamese Latin Austroasiatic Vietic High

Table 7: Lineage for Cluster Languages. 23 languages covered by our main experiments, each language’s
corresponding script, family, subgrouping, and if it is classified as higher or mid-resourced according to (Joshi
et al., 2020).

Gemma-2     mT5

Figure 9: Win-rate % comparison of Learned Routing (mT5) and Learned Routing (Gemma2) against Random
Routing (left) and multiple Single Teacher Models (right).
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performing all baseline approaches with a notable
65.2% gain over random routing and an average
gain of 27.7% over single teacher models.

F Difference in per-language gains.

In Figure 10, we compare both reward-based rout-
ing and learned routing strategies against random
routing for medium-resource and high-resource
languages.

High-resource languages (Joshi et al., 2020),
English, German, French, Chinese, and Ara-
bic see a 127.6% gain with reward-based rout-
ing and a 42.4% gain with learned routing.
Medium-resource languages that includes Turk-
ish and Ukrainian, experience greater benefits,
with reward-based routing achieving a 134.7%
gain and learned routing achieving a 57.1% gain
over random routing. These findings suggest
that medium-resource languages gain more from
strategic sampling than from random routing. De-
tailed per-language gains are provided in Table 8.

The results indicate that reward-based routing
leads to larger gains across all languages com-
pared to learned routing, whether against single
teachers or random routing. Mid-resource lan-
guages, Turkish and Ukrainian, consistently show
high gains in all scenarios, followed by Arabic.
However, no distinct pattern emerges for high-
resource languages. Notably, reward-based rout-
ing results in significant gains for Chinese against
both random routing and single teachers. Addi-
tionally, both reward-based and learned routing
achieve substantial gains for English when com-
pared to random routing.

G Discriminative tasks.

Table 9 presents the performance of various stu-
dent models on three held-out discriminative
tasks: XCOPA, XNLI, and XStoryCloze. The re-
sults, averaged across seven languages, highlight
the relative improvements or declines in accuracy
compared to the base model (AYA23).

H Textual Characteristics

To obtain a more holistic view of how multilin-
gual arbitration impacts model generation char-
acteristics, we report average statistics, includ-
ing the number of tokens along with readability
and lexical diversity scores. Metrics like length
are straightforward to compute and serve as posi-
tively correlated proxies for quality (Singh et al.,

2024). These metrics are calculated from model
generations over 100 instances from the Dolly200
Eval set (Singh et al., 2024). We standardize com-
parisons across models by allowing for a maxi-
mum output length of 600 tokens.

In addition to basic statistics like length, we
also compute:
Gunning Fog Index (Gunning, 1968) is a read-
ability test that estimates the years of formal ed-
ucation required to understand a piece of text
on the first reading. Gunning-Fog uses sentence
length and prevalence of complex words to es-
timate the complexity of the text and assign a
grade level between 0 and 20. A score of 17-18
indicates college graduate-level text.
Rix (Anderson, 1983) calculates readability
based on the number of words with more than
six characters divided by the number of sentences
in the text. A score of 5 corresponds to a grade
level of around 10, while a score of 7 or higher
indicates the need for a higher educational level
to comprehend.
Measure of Textual Lexical Diversity (MTLD)
score (Shen, 2022) helps tracking changes in
vocabulary by reflecting the average number of
words in a sequence that maintains a certain type-
token ratio (TTR), a measure of vocabulary va-
riety (McCarthy and Jarvis, 2010). An MLTD
score of 50 can be considered as moderate lexical
diversity. All the results are presented in Table 3
and Figure 11.

Average number of tokens per generation.
The most significant change is observed in the
average number of tokens per generation. The
base model generates an average of 76 tokens per
generation, whereas routing approaches produce
substantially longer outputs, ranging from 160
tokens with Fixed Routing to 242 tokens with
Learned Routing. In contrast, both random rout-
ing and single teacher models (averaged across
Aya 23, Llama 3, and Gemma 2) generate around
144 tokens on average. These findings demon-
strate that arbitration methods result in longer
text generations compared to both random rout-
ing and single teacher models.

Textual properties. The readability metrics
show smaller absolute changes compared to the
average number of tokens. For the Gunning-Fog
index, changes range from a decrease of 0.16 for
Gemma 2 to an increase of 3.28 for Learned Rout-
ing, relative to the base student model. Similarly,
the Rix index varies from a decrease of 0.42 for
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Figure 10: Win-rate Changes Across Language Resource Level. We compare the win rates of Mid-Resource
Languages and High-Resource Languages against random-routing. Mid-resource languages consist of Turkish
and Ukrainian and high-resource languages are English, German, French, Chinese and Arabic.

% gain (Single Teachers) % gain (Random Routing)

Language Reward-based Learned Reward-based Learned

Arabic 75.7 43.4 115.1 43.5
Chinese 114.5 2.9 101.8 -4.6
English 55.2 0.4 116.0 115.7
French 22.5 -4.4 79.3 39.1
German 31.7 28.8 76.7 88.7
Turkish 52.2 59.6 228.9 94.5
Ukrainian 59.9 43.7 172.9 87.2

Table 8: Win-rate gains across languages. This table presents the percentage gain of reward-based routing and
learned routing compared to single teachers and random routing across seven languages. The highest gain in
each column is highlighted in bold, while the second highest gain is indicated in blue.

XCOPA XNLI XStoryCloze Average

BASE MODEL

AYA23 (Base) 64.1 42.9 68.23 58.41

SINGLE TEACHER

AYA23 65.5 ↑ 2.18 43.86 ↑ 2.23 68.05 ↓ 0.27 59.13 ↑ 1.23

LLAMA-3 65.1 ↑ 1.56 44.04 ↑ 2.65 66.46 ↓ 2.60 58.53 ↑ 0.20

GEMMA-2 66.1 ↑ 3.12 43.98 ↑ 2.51 67.74 ↓ 0.72 59.3 ↑ 1.52

TRANSLATION 64.6 ↑ 0.78 43.46 ↑ 1.30 66.77 ↓ 2.14 58.27 ↓ 0.24

MULTILINGUAL ARBITRATION

RANDOM ROUTING 65.9 ↑ 2.80 44.01 ↑ 2.58 67.25 ↓ 1.44 59.05 ↑ 1.09

FIXED ROUTING 67.4 ↑ 5.14 43.89 ↑ 2.30 68.33 ↑ 0.14 59.87 ↑ 2.50

REWARD BASED ROUTING 66.2 ↑ 3.27 44.21 ↑ 3.05 68.20 ↓ 0.05 59.53 ↑ 1.91

LEARNED ROUTER 65.8 ↑ 2.65 43.62 ↑ 1.67 68.36 ↑ 0.19 59.25 ↑ 1.43

Table 9: Performance of Student Models on held-out Discriminative Tasks: XCOPA, XNLI, and XStoryCloze.
The results are averaged over seven languages, highlighting the improvements or declines in performance
compared to the base model AYA23.

Gemma 2 to an increase of 3.04 for Learned Rout-
ing. Both metrics reveal that arbitration methods
result in higher scores. The Gunning-Fog index
shows an absolute difference of 1.05 between
arbitration methods and single teacher models,

whereas the difference is 0.78 for random routing.
For the Rix index, the absolute difference is 1.11
between arbitration methods and single teachers,
compared to 0.65 for random routing.

These indices serve as proxies for evaluating
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Figure 11: Evaluation of Textual Characteristics: We analyze characteristics of student models in four
languages: ENGLISH, GERMAN, FRENCH AND UKRANIAN. The number of tokens, Gunning-Fog, Rix Index,
and MLTD for each model highlights the differences in verbosity, readability and lexical diversity.

text complexity. There is a clear trend indicating
that multilingual arbitration strategies, especially
the learned routing approach, lead to higher read-
ability metrics. In contrast, single teacher models,
especially Gemma 2, generally result in lower
values.

Regarding the MLTD score, we observe signif-
icant changes, with Reward-based routing show-
ing an increase of up to 7.97 and Learned routing
showing an increase of 7.1 relative to the base stu-
dent model, which are considered substantial im-
provements (Treffers-Daller et al., 2016). Arbitra-
tion methods result in higher MLTD scores com-
pared to both random routing and single teacher
results. The average absolute difference is 1.77
between arbitration (averaged over all 3 methods)
and single teacher models (averaged over Aya 23,
Llama 3 and Gemma 2), while the difference is
5.46 for random routing.

Overall, multilingual arbitration strategies sig-
nificantly increase the number of tokens in gen-
erations, readability metrics and improve lexical
diversity compared to single teacher models. This
suggests that multilingual arbitration enhances

data quality and diversity, which in turn leads to
improvements in student model performance and
explains the significant increase in win rates.

Routed Dataset Composition Characteris-
tics. Here, we analyze how prompt characteris-
tics affect the reward-based router decision, using
the same subset of the UltraFeedback Binarized
Dataset (UFB) as depicted in Figure 6. The av-
erage MLTD score and number of tokens of the
prompts routed to a particular model is shown in
Figure 12.

Figure 12a shows that the average MLTD
scores for English prompts routed to different
models range from 46.28 to 64.07. Aya 23 re-
ceives English prompts with the highest MLTD
score of 64.07, while Llama 3 has an average
MLTD score of 56.41, and Gemma 2 has the low-
est score of 46.28. In contrast, for non-English
prompts, Aya 23 has an average MLTD score
of 67.42, Llama 3 scores 79.66, and Gemma 2
achieves the highest MLTD score of 85.24.

Figure 12b shows that the longest English
prompts are routed to Aya 23, with an average of
121.5 tokens, while Gemma 2 receives the short-
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Figure 12: Characteristics of Prompts Routed to Given Models: We analyze the MTLD (a) and number of
tokens (b) for the set of prompts routed to each of the teacher models as selected by Reward-Based Routing.
Each line represents a different language and each column is a particular teacher model.

est English prompts, averaging 69.4 tokens. En-
glish prompts routed to Geo-clusters and Llama
3 have average token counts of 87.1 and 92.7, re-
spectively. For non-English prompts, the pattern
differs. Geo-clusters receive the shortest prompts,
averaging 78.8 tokens. Aya 23 receives prompts
with an average of 90.7 tokens, Gemma 2 with
94.1 tokens, and Llama 3 receives the longest
non-English prompts, averaging 112.0 tokens.

We can conclude, for English prompts, those
that are more lexically diverse and longer tend to
be routed to Aya 23. In contrast, for non-English
prompts, Gemma 2 and Llama 3 are preferred
for handling more lexically diverse and longer
prompts.

I Full Budget Comparison

To show the effectiveness of reward-based rout-
ing, we also compare it against a variant, we refer
to as Full Budget. In this variant, we include
the completions generated by all M teacher mod-
els in the pool for each prompt. This results in
a dataset with M times more data points than
the other variants presented in the paper. The re-
sults shown in Table 10 demonstrate that strategic
sampling outperforms even the version where all
generations from all models are used.

J Language-Specific Win Rates

In Table 11, we present the language-specific
win rates (%) for 23 languages, comparing the
Reward-Based Routing model against the best-
performing state-of-the-art model in our experi-
ments, Gemma2-9B-IT. In 19 of these languages,
the model trained with the reward-based routing

approach achieves higher win rates than Gemma2-
9B-IT.
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Language Reward-Based Routing All Completions Tie

ENGLISH 54.0 31.5 14.5

GERMAN 47.5 33.5 19.0

FRENCH 50.0 34.0 16.0

ARABIC 46.5 34.5 19.0

CHINESE 51.0 39.0 10.0

TURKISH 54.5 27.5 18.0

UKRAINIAN 45.0 34.0 21.0

Table 10: Win rates (%) Comparison of Reward-based routing trained student with all completions trained
student model. The Reward-based routing variant consistently outperforms the latter with the highest gain in
Turkish.

Language Code Reward-Based Routing Gemma2-9B-IT Tie

ar 57.5 36.0 6.5
cs 50.5 42.5 7.0
de 50.0 46.0 4.0
el 57.0 37.5 5.5
en 37.0 57.0 6.0
es 41.0 52.5 6.5
fa 57.0 35.5 7.5
fr 35.0 55.5 9.5
he 65.0 29.0 6.0
hi 50.0 44.0 6.0
id 53.0 42.0 5.0
it 49.5 42.0 8.5
ja 44.0 45.5 10.5
ko 53.0 34.5 12.5
nl 49.0 46.0 5.0
pl 49.0 45.0 6.0
pt 46.5 45.5 8.0
ro 58.0 37.5 4.5
ru 50.5 44.5 5.0
tr 47.5 45.0 7.5
uk 48.5 44.5 7.0
vi 53.5 42.5 4.0
zh 50.5 44.5 5.0

Table 11: Language-Specific Win Rates (%) of Reward-Based Routing Compared to Gemma2-9B-IT Across
23 Languages.
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K Student Model Generations

Examples of model generations in English from different student models can be found in Table 12.

Prompt: Cats have relatively few taste buds compared to humans (470 or so versus more than 9,000
on the human tongue). Domestic and wild cats share a taste receptor gene mutation that keeps their
sweet taste buds from binding to sugary molecules, leaving them with no ability to taste sweetness. Their
taste buds instead respond to acids, amino acids like protein, and bitter tastes. Cats also have a distinct
temperature preference for their food, preferring food with a temperature around 38 °C (100 °F) which
is similar to that of a fresh kill and routinely rejecting food presented cold or refrigerated (which would
signal to the cat that the “prey” item is long dead and therefore possibly toxic or decomposing). Why are
cats so picky about what they eat?

Student Model Generation

Single Llama 3

Cats are known for being picky eaters, and their unique taste preferences are due to
a combination of factors. The main reason is that cats have a specific temperature
preference for their food, which is around 38°C (100°F). This temperature is similar to
the temperature of a fresh kill, which is around 37°C (98°F) to 40°C (104°F). Cats are
also born with a natural instinct to hunt and kill prey, and they are trained to associate
certain temperatures with food that is fresh and safe to eat. In addition, cats have a
limited number of taste buds compared to humans, which is around 470 taste buds
on the tongue. This is because cats have a unique taste receptor gene mutation that
prevents their sweet taste buds from binding to sugary molecules. Instead, their taste
buds respond to acids, amino acids, and bitter tastes. This means that cats are not as
sensitive to sweet tastes as humans are, and they are more likely to be attracted to foods
that have a strong flavor or aroma. Another factor that contributes to cats’ picky eating
habits is their ability to detect and avoid potential toxins. Cats have a natural instinct
to avoid food that is toxic or decomposed, and they are trained to associate certain
temperatures and textures with potential toxins. This is why cats often reject food that
is presented cold or refrigerated, as it may indicate that the food is no longer fresh or
safe to eat. Overall, cats’ picky eating habits are a result of their unique biological and
behavioral characteristics, including their temperature preference, limited number of
taste buds, and ability to detect and avoid potential toxins.

Random Routing They have a distinct temperature preference for their food.

Reward-Based Rout-
ing

According to the text, cats are picky about what they eat because they have a distinct
temperature preference for their food. They prefer food with a temperature around 38
°C (100 °F), which is similar to that of a fresh kill and routinely reject food presented
cold or refrigerated. This is because cats have a genetic mutation that prevents their
sweet taste buds from binding to sugary molecules, leaving them with no ability to
taste sweetness. Their taste buds instead respond to acids, amino acids like protein,
and bitter tastes.

Learned Routing

Cats are picky eaters due to several factors related to their biological and evolutionary
traits: Taste Sensitivity: Cats have fewer taste buds than humans and cannot taste
sweetness due to a genetic mutation. Their taste buds are more responsive to acids,
amino acids, and bitter tastes, aligning with their carnivorous diet. Temperature
Preference: Cats prefer food at around 38°C (100°F), similar to a fresh kill, and often
reject cold or refrigerated food, which they may perceive as old and potentially unsafe.
These factors ensure that cats consume food that meets their nutritional needs and is
safe, reflecting their evolutionary adaptations as obligate carnivores.

Table 12: Comparison of student model responses trained using different methods: Single Llama 3 (best English
teacher), random routing, reward-based routing, and learned routing. The Single Llama 3 student’s answer is too
long and includes a lot of irrelevant details, while random routing generates responses that are too brief and
insufficient.
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Examples of model generations in Turkish from different student models can be found in Table 13.

Prompt: Kedilerin, insanlara kıyasla nispeten az sayıda tat alma tomurcuğu vardır (insan dilindeki
9.000’den fazla ile karşılaştırıldığında yaklaşık 470). Evcil ve yabani kediler tat alıcı gen mutasyonunu
paylaşıyor. Bu da tatlı tat alma tomurcuklarının şekerli moleküllere bağlanmasını engelliyor ve tatlı tadı
alma yeteneklerini kaybediyor. Onun yerine tat alma tomurcukları asitlere, protein gibi amino asitlere ve
acı tatlara tepki verir. Kediler ayrıca yiyecekleri için belirgin bir sıcaklık tercihine sahiptir, taze bir öldürme
ile benzer olan yaklaşık 38 °C (100 °F) sıcaklığındaki yiyecekleri tercih eder ve rutin olarak soğuk veya
buzdolabında sunulan yiyecekleri reddeder (ki bu, “av” öğesinin uzun zamandır ölü olduğunu ve bu nedenle
muhtemelen toksik veya çürümeye başladığını kedilere işaret eder). Neden kediler yemek konusunda bu
kadar seçicidir?

Student Model Generation

Single Aya 23
Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir avın sıcak-
lığını tercih ederler.

Random Routing

Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir öldürme
ile benzer olan yaklaşık 38 °C (100 °F) sıcaklığındaki yiyecekleri tercih ederler. Bu,
kedilerin yiyecekleri için belirli bir sıcaklık aralığına sahip oldukları ve bu sıcaklıkta
yiyecekleri tercih ettikleri anlamına gelir. Kediler ayrıca soğuk veya buzdolabında
sunulan yiyecekleri reddederler, bu da yiyecekleri için belirli bir sıcaklık aralığına
sahip oldukları ve bu sıcaklıkta yiyecekleri tercih ettikleri anlamına gelir. Bu, kedilerin
yiyecekleri için belirli bir sıcaklık aralığına sahip oldukları ve bu sıcaklıkta yiyecekleri
tercih ettikleri anlamına gelir.

Reward-Based Rout-
ing

Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir öldürme
ile benzer olan yaklaşık 38 °C (100 °F) sıcaklığındaki yiyecekleri tercih ederler.
Bu, kedilerin yiyecekleri için bir sıcaklık tercihine sahip oldukları ve bu sıcaklıkta
yiyecekleri tercih ettikleri anlamına gelir. Kediler ayrıca soğuk veya buzdolabında
sunulan yiyecekleri reddederler, bu da yiyeceklerin “av” öğesinin uzun zamandır
ölü olduğunu ve bu nedenle muhtemelen toksik veya çürümeye başladığını kedilere
işaret ettiği anlamına gelir. Bu nedenle, kediler yiyecek konusunda bu kadar seçici
olabilirler.

Learned Routing
Kediler, yiyecekleri için belirgin bir sıcaklık tercihine sahiptir ve taze bir öldürme
ile benzer olan yaklaşık 38 °C (100 °F) sıcaklığındaki yiyecekleri tercih ederler. Bu,
yiyeceklerin taze ve toksik olmamasını garanti eder.

Table 13: Comparison of student model responses trained using different methods: Single Aya 23 (best Turkish
teacher), random routing, reward-based routing, and learned routing. The Aya 23 student’s answer is too short
and inadequate, while random-routing generates responses that are repetitive.
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