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Abstract

Recent advances in large language models
(LLMs) and the abundance of food data have
resulted in studies to improve food understand-
ing using LLMs. Despite several recommen-
dation systems utilizing LLMs and Knowledge
Graphs (KGs), there has been limited research
on integrating food related KGs with LLMs.
We introduce KERL, a unified system that lever-
ages food KGs and LLMs to provide person-
alized food recommendations and generates
recipes with associated micro-nutritional infor-
mation. Given a natural language question,
KERL extracts entities, retrieves subgraphs
from the KG, which are then fed into the LLM
as context to select the recipes that satisfy the
constraints. Next, our system generates the
cooking steps and nutritional information for
each recipe. To evaluate our approach, we
also develop a benchmark dataset by curat-
ing recipe related questions, combined with
constraints and personal preferences. Through
extensive experiments, we show that our pro-
posed KG-augmented LLM significantly out-
performs existing approaches, offering a com-
plete and coherent solution for food recommen-
dation, recipe generation, and nutritional analy-
sis. Our code and benchmark datasets are pub-
licly available at https://github.com/
mohbattharani/KERL.

1 Introduction

The importance of food for well-being has created
the need to employ machine learning to promote
healthy lifestyles through food understanding. Sev-
eral recipe-sharing websites have created rich re-
sources of food data, attracting researchers to de-
vise food computing for classification, retrieval,
recipe generation, and recommendation. Food rec-
ommendation is a complex and multifaceted taks
given its direct impact on human health. An ef-
fective food recommendation system should con-
sider personal preferences, dietary constraints, and

health guidelines. In recent years, several ontolo-
gies and knowledge graph methods have helped
to better organize food data (Dooley et al., 2018;
Haussmann et al., 2019; Razzaq et al., 2023). Sub-
sequently, several food recommendation methods
have leveraged the KGs for personalized food rec-
ommendation (Chen et al., 2021; Shirai et al., 2021;
Ling et al., 2022; Li et al., 2023; Kobayashi et al.,
2024). Several studies have also utilized LLMs
for recipe generation (H. Lee et al., 2020; Yin
et al., 2023; Mohbat and Zaki, 2024) and nutri-
tion estimation (Yin et al., 2023; Tanabe and Yanai,
2024, 2025). However, there is a lack of unified
food understanding systems that not only recom-
mend personalized recipes but also generate cook-
ing steps and micro-nutrition information for the
recommended dishes.

Despite the success of LLMs in multiple do-
mains (Wu et al., 2023; Moor et al., 2023; Chhikara
et al., 2024; Mohbat and Zaki, 2024), they are prone
to hallucination and outdated information (Xu et al.,
2024b). Retrieval-augmented generation (RAG) ad-
dresses the issue by utilizing documents or KGs as
external knowledge (Mathur et al., 2024; He et al.,
2024; Rangel et al., 2024). Question-answering
over KGs (KGQA) retrieves the relevant subgraphs
from KG, uses reasoning to extract entities as an-
swers (Wang et al., 2021), or uses semantic parsing
or LLMs in a zero or few shot setting to transform
questions into SQL or SPARQL queries to get an-
swers from the KG (Banerjee et al., 2023; Taffa
and Usbeck, 2023; Avila et al., 2024). Despite var-
ious attempts to integrate external knowledge with
LLMs in several domains, there is a lack of work
on food recommendation that combines KGs and
LLMs while considering both health constraints
and user preferences.

We propose a personalized and unified food rec-
ommendation system called KERL that uses the
FoodKG (Haussmann et al., 2019) as the knowl-
edge source. The system illustrated in Fig. 1 com-
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KERL: 
Recipe-Gen

KERL: 
Nutri-Gen

Give me low-protein recipes with baking soda, 
tomato paste, green onions, ground cinnamon, flour 
and without orange slice, sweet rice flour, yellow 
cake mix, and that include cholesterol within range 
(0, 0.07), salt per 100g within range (0.14, 0.26). 

User question: 

1. Aunt Peg's Banana Bread
2. Sweet Potato Casserole With Praline Topping
3. Fresh Apricot Praline Butter

Answer:

Tag parsing

Sub-graphFood-KG

SPARQL Query:
SELECT DISTINCT ?name ?recipe

WHERE {{
?recipe rdfs:label ?name .
?recipe recipe-kb:uses ?ing .
?ing recipe-kb:ing_name ?ing_name .
FILTER (

regex(?ing_name, “ingr1”) 
&& regex(?ing_name, “ingr2”) 
&& !regex(?ing_name, “ingr3”)

) }}
KERL: 

Recom

Ingredients: = 1/3 cup teff flour, 1/3 
cup amaranth flour, …, 1/3 cup jam, 
1/4 cup unsweetened soymilk, 1 
tablespoons sunflower oil.

Cooking instructions:
1. Preheat oven to 350 degrees.
2. ...
3. Remove from the oven and let 

cool on a wire rack.
8. Serve with strawberry-pineapple 
jam.

Nutrition:
• Calories: 500
• Protein: …
•

Personalized recipe

Figure 1: KERL Overview: Given a natural language question (with constraints), the system parses entities and generates
a SPARQL query to retrieve a subgraph from the KG. The question and this subgraph as context, are given as input to the
recommendation model (KERL-Recom), which generates a list of recipe names that satisfy the constraints. The KERL-Recipe
and KERL-Nutri models then generate cooking steps and micro-nutrients.

prises three modules: a recommendation module
(KERL-Recom), a recipe generation module (KERL-
Recipe), and a nutrition generation module (KERL-
Nutri), which are trained using a low-rank adaption
(LoRA) approach (Hu et al., 2022). The KERL-
Recom module takes a user query, extracts enti-
ties, constructs a SPARQL query to retrieve rele-
vant subgraphs from the KG, and inputs these sub-
graphs along with the query into the LLM, which
returns dish names that satisfy the constraints. The
KERL-Recipe modules generates recipes from the
suggested titles, while the KERL-Nutri produces
detailed micro-nutritional information for recom-
mended dishes. Overall, we make the following
contributions.

• We propose KERL, a unified food recommen-
dation system based on a multi-LoRA ap-
proach, with a dedicated adapter for each task,
while utilizing the same base model, allowing
efficient training and inference.

• Our work generates comprehensive nutritional
information unlike previous approaches that
focus mainly on one aspect, such as calorie
count.

• We curated two open benchmark datasets us-
ing template questions, nutrient constraints,
and personal preferences.

• Through extensive experiments, we show that
each module of KERL outperforms the base-
line LLMs, showcasing the power of integrat-
ing KGs with LLMs.

2 Related Work

Food Recommendation The initial food recom-
mendation systems formulated recommendation
as a retrieval task by mapping the recipe compo-
nents such as title, ingredients, and images into a
common embedding space (Salvador et al., 2017;
Chen et al., 2018; Wahed et al., 2024; Li and Zaki,
2022). Later, the focus shifted towards the use of
food knowledge graphs. For example, (Li and Zaki,
2022; Gao et al., 2022) used graph neural network
to learn the user-recipe interactions in KGs, and
Chen et al. (2021) proposed knowledge base ques-
tion answering through information retrieval by
mapping questions and possible answers in a com-
mon embedding space. However, recent methods
employ LLMs for food recommendations. For ex-
ample, (Kirk et al., 2023) investigated ChatGPT for
nutrition questions, and (Geng et al., 2022; Rostami
et al., 2024) use LLMs as a language processing en-
gine in the food recommendation system. Despite
considerable efforts to leverage KGs and LLMs for
developing food recommendation systems, there
remains limited research on integrating food KGs
to augment LLMs for more personalized food rec-
ommendation. Specifically, individual preferences,
health considerations, and nutritional constraints
within a unified framework have not been exten-
sively explored.

Question Answering Over KGs Question an-
swering over knowledge graphs refers to retriev-
ing knowledge from a KG to answer queries. Ini-
tial studies parsed entities from a natural language
question and generated SPARQL queries from tem-
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plates to retrieve the answers (Shirai et al., 2021;
Haussmann et al., 2019; Rangel et al., 2024). Later,
researchers used embeddings from LSTM or graph
neural networks and framed the problem as a re-
trieval task (Chen et al., 2021; Gao et al., 2022;
He et al., 2024). Recent methods explore the in-
tegration of KGs to improve LLMs for reasoning
(Luo et al., 2023; Sun et al., 2023), chatbots for
customer service (Xu et al., 2024a), product rec-
ommendations (Eppalapally et al., 2024), and food-
related tasks (Qi et al., 2023; Hou and Zhang, 2024;
Ma et al., 2024; Zhang et al., 2024). For instance,
FoodGPT (Qi et al., 2023) aims to enhance recipe
generation, while (Zhang et al., 2024) focuses on
recommending foods based on their health effects.
Nevertheless, the full potential of KG and LLM
integration in food science remains underexplored
(Min et al., 2022; Ma et al., 2024), presenting a
critical research opportunity.

Recipe Generation One line of research focuses
on generating the recipe title from food images or
ingredients from the title, and then generating the
recipes (Reusch et al., 2021; Chhikara et al., 2024).
Several efforts tried to generate recipes directly
from inputs such as title, images, and ingredients
(Farahani et al., Dec 16, 2023; Yin et al., 2023;
Mohbat and Zaki, 2024). RecipeGPT (H. Lee
et al., 2020) fine-tunes GPT-2 (Radford et al., 2019)
while RecipeMC (Taneja et al., 2024) refines the
generated recipes using Monte Carlo Tree Search.
RecipeGM (Reusch et al., 2021) and Chef Trans-
former (Farahani et al., Dec 16, 2023) generate
recipes from ingredients, while FIRE (Chhikara
et al., 2024) predicts those ingredients from a
given image or title. However, more recent meth-
ods explore end-to-end fine-tuning of LLMs and
multi-modal models (MMMs) for recipe gener-
ation. FoodLMM (Yin et al., 2023) fine-tunes
LISA (Lai et al., 2024) for classification, ingredi-
ent detection, segmentation, and recipe generation,
while LLaVA-Chef (Mohbat and Zaki, 2024) in-
vestigates better fine-tuning schemes to improve
recipe generation. One recent work (Liu et al.,
2025) even tried retrieval augmented generation
(RAG) for recipe generation. However, all of these
methods focus solely on recipe generation.

Nutrition Generation Due to the effectiveness
of nutritional intake for personal health, researchers
employed MMMs for calorie estimation (Yin et al.,
2023; Tanabe and Yanai, 2024; Yao et al., 2024;
Tanabe and Yanai, 2025) from food images. Most

of these methods aim to estimate the calories
from one or more food images utilizing the Nu-
trition5k (Thames et al., 2021) dataset that contains
only 5000 recipes with a total of 125K images.
FoodLMM (Yin et al., 2023) leverages LISA (Lai
et al., 2024), CalorieLLaVA (Tanabe and Yanai,
2024) fine-tunes LLaVA (Liu et al., 2024) and
CaLoRAify (Yao et al., 2024) fine-tunes Llama-2
based visual language model for calorie estima-
tion. Most of the existing work is limited to calo-
rie estimation only, disregarding the estimation of
other vital micro-nutrients. This work considers
the estimation of several micro-nutrients, including
protein, fiber, fat, and cholesterol.

Base LLM
LoRA1 LoRA2 LoRA3

List of 
recipes

Cooking 
instructions

Nutritional 
information 

Constraint 
Question

Name, 
Ingredients

Name, 
Ingredients

Recom Recipe Nutri

Figure 2: KERL Multi-LoRA Setup: With the same base
model, a separate LoRA adapter is trained for each task. Dur-
ing inference, the desired adapter is activated while base model
remains the same.

3 KERL: Food Recommendation System

We propose KERL, a personalize food recommen-
dation system that unifies recommendation with
cooking steps and nutrition details generation by
leveraging multi-LoRA approach as illustrated in
Fig. 1. KERL uses the FoodKG (Haussmann et al.,
2019) as external knowledge source and an LLM
as a generative engine. FoodKG contains 1 mil-
lion recipes from Recipe1M (Salvador et al., 2017)
with ingredients, nutritional information, and tags,
organized into 67 million triplets. Let tj be a tag
in FoodKG, and R(tj) the set of tagged recipes
with tag tj where each recipe Xrecipe has a title or
name Xt, ingredients Xing, cooking steps Xinst

and nutrients Xnutri. Now, let I(tj) be the set of
ingredients in all recipes in R(tj), then we define
I+(tj) ⊂ I(tj) as the set of ingredients that the
user likes to have and I−(tj) ⊂ I(tj) as the set
of ingredients that the user wants to avoid. Let
Xnutri,i be the ith nutrient, then µ(R(tj), Xnutri,i)
and σ(R(tj), Xnutri,i) denote the mean and stan-
dard deviation of the nutrient, respectively. These
statistical measures are later used to define nutrient-
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based preference filters. To incorporate these
constraints into personalized recipe recommenda-
tions, we employ a modular approach in design-
ing KERL’s multi-LoRA architecture, as shown in
Fig. 2, where each LoRA adapter is fine-tuned for
a distinct sub-task. The KERL-Recom adapter is
fine-tuned to identify dishes from R(tj) that satisfy
the constraints in the user query as recommended
recipes. Subsequently, we also fine-tune the KERL-
Recipe and KERL-Nutri adapters for generation of
cooking instructions and micro-nutrients for the
recommended recipes. Together, the three mod-
ules comprise a comprehensive and integrated food
recommendation system.

3.1 KERL-Recom

Given a complex user query containing allowed and
disallowed ingredients, and other nutrition-based
constraints (see Table 1 for some examples), the
main task for the KERL-Recom adapter is to rec-
ommend relevant recipes leveraging the FoodKG
to return a high quality response. The steps involve
retrieval of query relevant subgraphs from the KG,
fine-tuning the model on user queries, and model
inference over the KG for generating the response
as recommended recipes.

Subgraph Retrieval: Given a natural language
question, the first step is to parse entities such as
the tag tj (e.g., American, Healthy) and ingredients
(e.g., sugar, cheese). These entities are then used to
generate SPARQL queries based on predefined tem-
plates, allowing us to retrieve relevant subgraphs
from FoodKG. Each subgraph contains the name
of the dish, the list of ingredients, and nutritional
information. The subgraphs are serialized into a
text sequence and given to LLM as a context. An
example of a KG subgraph, along with the relevant
recipe text is shown in Fig. 4 (See Appendix).

Model Optimization: KERL-Recom model is
trained to select recipes from the context that meet
the constraints in the question. Given that R(tj)
is the set of recipes with the relevant user tag tj ,
let R+(tj) denote the positive subset of recipes
that meet all query constraints, and let R−(tj) de-
note the rest of the recipes that make up the neg-
ative subset. During training, we select a subset
of recipes of size at most K, such that we sam-
ple at most K/2 positive recipes from R+(tj) and
at most K/2 negative recipes from R−(tj). This
determines the context Cj for the LLM training,
along with the full query, with K chosen so that

the model can fit within the GPU memory. This
approach allows the model to learn to select from a
wide distribution of contexts (positive or negative
recipes) despite |R−(tj)| ≫ |R+(tj)| (e.g., see the
dataset statistics in Table 2). The recipes sampled
from R+(tj) serve as the ground truth answer Y .
The model is trained using low-rank adaptation
(Hu et al., 2022) (see details in Sec. 5.1) with stan-
dard cross-entropy loss: LCE = CE(p(Y ), p(Ỹ )),
where p(Y ) is probability of ground truth recipe
tokens as one hot vector and p(Ỹ ) is the predicted
probability of the recipe tokens generated by the
model.

Inference over KG: During inference, the en-
tire FoodKG could theoretically be the context for
searching relevant recipes. However, in practice,
we parse the tag tj from the query and retrieve
R(tj) as context. The maximum number of tagged
recipes could be potentially very large, and the
resulting total number of tokens may exceed the
LLM’s sequence length, which may also lead to
GPU memory overflow. Therefore, like in training,
we iterate over R(tj) by providing the LLM with
the query and a subset of R(tj) as context Cj , and
combine the responses from multiple calls to the
LLM to generate the final answer. This approach
allows us to perform inference and evaluate the
model on a variable number of recipe subgraphs.

3.2 KERL-Recipe

KERL-Recipe, the recipe generation module en-
ables the recommendation system to generate
recipe steps. This module can leverage any recipe
generation model, such as LLaVA-Chef (Mohbat
and Zaki, 2024) or FoodMMM (Yin et al., 2023).
While these models rely on older LLM backbones,
recent advances such as LLaMA-3 (Grattafiori
et al., 2024) and Phi-3 (Abdin et al., 2024) have sig-
nificantly outperformed their predecessors. There-
fore, we employed Phi-3-mini for recipe genera-
tion, specifically generating cooking steps from the
dish names Xt, and ingredients Xing, or both. Un-
like (Mohbat and Zaki, 2024; Yin et al., 2023),
we use LoRA training, which reduces the num-
ber of training parameters and decreases the train-
ing time. Thus, KERL-Recipe, implemented as a
LoRA adapter, integrates seamlessly into the KERL
framework, while utilizing Phi-3 Mini as the base
model.
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Base question: Give me {tag} recipes with {ingredients} and
without {not_have_ingredients}

Template constraints: have {nutrition} no more than {limit},
{nutrition} within range {limit}

Personal preferences: tag: low-protein
Likes: baking soda, tomato paste, green onions, ground

cinnamon, flour
Dislikes: orange slice, rice flour, yellow cake mix
Nutrition constraints: cholesterol no more than 0.07,

salt per 100g (0.14, 0.26)

Question: Give me low-protein recipes with baking soda,
tomato paste, green onions, ground cinnamon, flour and
without orange slice, sweet rice flour, yellow cake mix,
and have cholesterol no more than 0.07, salt per 100g
within range (0.14, 0.26).

Answer: Aunt Pegś Banana Bread, Sweet Potato Casserole
With Praline Topping, Fresh Apricot Praline Butter.

Base question: What are the {tag} dishes that contain {ingre-
dients} but do not contain {not_have_ingredients}

Template constraints: have {nutrition} at least {limit}, and
{nutrition} less than {limit}

Personal preferences: tag: vegetarian
Likes: margarine, frozen peas, shredded cheddar cheese,

baking soda, vinegar
Dislikes: cracked wheat, chili pepper, fresh pepper
Nutrition constraints: fiber at least 4.24, saturated fat

less than 6.49

Question: What are the top vegetarian recipes containing mar-
garine, frozen peas, shredded cheddar cheese, baking
soda, vinegar and excluding cracked wheat, chili pepper,
fresh pepper, and meeting the fiber at least 4.24, saturated
fat less than 6.49 condition?

Answer: B. B. Kingś German Chocolate Cake, Apple Bread,
Momś Raisin Rock Cookies

Table 1: Examples of constraints, corresponding questions, and relevant recipe names as ground truth answers. Ingredient
preferences specify whether certain ingredients should or should not be included in the recipes. Nutritional constraints are
numerical conditions applied to nutrient values, defined by limits such as less than, greater than, or within a specified range.

3.3 KERL-Nutri
KERL-Nutri, the nutrition generation module, is
also a LoRA adapter trained to generate micro-
nutritional information from the recipe name Xt,
the ingredients Xing, and the cooking steps Xinstr

or their combination. The module helps ensure that
the recommended recipes follow the nutritional
constraints in the user query.

All three modules share the same backbone LLM
(namely, Phi-3-mini (Abdin et al., 2024)), with sep-
arate LoRA adapters fine-tuned for each task as
illustrated in Fig. 2. Training details and hyper-
parameters are discussed in Sec. 5.1. This design
allows multiple adapters to operate even on a single
GPU, enabling practical and efficient inference.

4 Benchmark Generation

One of our contributions is the creation of a
large benchmark dataset of realistic constrained
user queries for training and evaluation, given
the lack of real user data. For KERL-Recom
and KERL-Nutri, we curated base (template) ques-
tions using GPT-4 (Achiam et al., 2023), whereas
for KERL-Recipe, we borrowed template prompts
from LLaVA-Chef (Mohbat and Zaki, 2024) (see
Sec. 4.4 in Appendix). Based on the task, each base
question contains placeholders for inputs which are
then replaced with their values.

4.1 Generating Personal Preferences
To personalize the recommendation of recipes, in-
dividualized information about the person’s likes,
dislikes, and other personal choices are important.

Our benchmark incorporates both ingredient pref-
erences and nutritional constraints. We combine
the base question and constraints to obtain the
final constrained question. See Table 1 for ex-
amples. Recipes that satisfy all constraints are
considered ground truth answers or a positive set
of recipes R+(tj), and the remaining R−(tj) =
R(tj)−R+(tj) are considered as a negative set of
recipes. This allows us to generate personalized
food recommendations that take into account both
taste preferences and dietary needs.

Ingredient Preferences: Ingredient preferences
consider what a recipe should or should not contain
(e.g., Recipe should contain Spinach and Butter but
must not have Nuts). Given a set of tags, for each
tag tj we create a set of ingredients I(tj) used by
all recipes in R(tj). To model a person’s likes and
dislikes of ingredients, we randomly sample two
mutually exclusive sets of ingredients I+(tj) and
I−(tj) from I(tj) such that I+(tj) ∩ I−(tj) = ∅.
One set I+(tj) is treated as person’s preferred in-
gredients, while the other set I−(tj) is considered
as disliked ingredients that one may wish to avoid
in the recipes.

Nutritional Constraints: We also generate
nutrition-related user preferences by defining con-
straints on nutrients (e.g.,recipes with more than
2 grams of protein and less than 500 calories).
Each constraint is defined in the format: <nutri-
ent> <limit> <value> (e.g., salt less than 0.5g).
The limit can be one of three filters: ‘less than’,
‘greater than’, or ‘fall within a defined range’.
The <value> represents the threshold for the limit,
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or a range. To generate nutritional constraints,
first we randomly select one of the three filters.
Then, we define a threshold for the nutrient xthreshi

by sampling a random number in the range of
µ(R(tj), Xnutri,i)± 2σ(R(tj), Xnutri,i), where µ
and σ are the mean and standard deviation. For
the range filter, the upper and lower bounds are set
as either (0, xthreshi ) or (xthreshi ,max(Xnutri,i)).
Finally, all selected nutritional constraints are com-
bined with the base question. This approach en-
hances the diversity of the questions, incorporating
both conditional logic and negations, which are
crucial for generating more complex and realistic
queries.

Measure
KGQA Benchmark PFoodReq
Train set Test set Train set Test set

Number of questions 62320 7790 4613 2305
R(tj) (min) 7 7 2 2
R(tj) (max) 4445 4445 2486 2485
R(tj) (avg) 3167 3163 408.4 377.99
R+(tj) (min) 1 1 1 1
R+(tj) (max) 1776 954 296 178
R+(tj) (avg) 10.67 9.77 2.94 2.84

Table 2: KGQA Benchmark: Total number of questions, and
the number of tagged recipes for overall context R(tj) and
ground truth answer R+(tj).

4.2 KGQA Benchmark

In the KGQA benchmark, ingredient preferences
and nutrition constraints are combined with a user
query to create a detailed question. Examples of the
base question, constraints, nutritional limits, and
the final question are given in Table 1. To generate
final queries, we randomly sample a base ques-
tion from the templates, replace the placeholders
with ingredient choices and nutritional constraints.
The recipes that meet all the conditions in the final
question are considered recommended recipes.

We used FoodKG as our knowledge base, con-
taining over 1 million recipes labeled with 490
unique tags, where each recipe may have multiple
tags. Questions were generated based on health-
related tags, e.g., dairy-free, low-fat, high-fiber
(full list of tags is in Appendix A.1). Our dataset
consists of 77,900 question-answer pairs, split into
80% for training, 10% for validation, and 10% for
testing. Table 2 shows that the number of recipes
for a given tag R(tj), which is also the possible
context size |Cj |, ranging from 7 to 4,445, while
the recipes in the ground truth answer R+(tj) vary
from 1 to 954, highlighting the complexity and va-
riety of the questions. Note also, that our KGQA

benchmark is over an order of magnitude larger
than the pFoodReq dataset (Chen et al., 2021),
which has a total of only 6918 questions.

• For <name>, can you calculate the approximate
nutritional values for a standard serving?

• Estimated nutritional values for <name>.

• Generate the nutritional values of the dish based on
the ingredients: <ingredients>.

• A dish is cooked using <ingredients>, calculate the
nutritional values of the dish.

• Generate the nutritional values of the dish based on
its step-by-step instructions: <instructions>.

• Based on the cooking instructions provided, calcu-
late the nutritional values of the dish. Instructions:
<instructions>.

• For the following dish, estimate the nutritional val-
ues. Recipe: <name> <ingredients> <instructions>.

Table 3: Example prompts utilized for training the
KERL-Nutri model, where placeholders were replaced
with the corresponding information.

4.3 Nutrition Generation Benchmark

In the absence of a standardized benchmark for
micro-nutrients, we sourced ground-truth micro-
nutritional information from Recipe1M (and thus
FoodKG) and (Li et al., 2023), resulting in about
500,000 recipe samples for which we were able to
gather nutritional information. Using Recipe1M’s
predefined train-test splits, we use 19,000 recipes
for our test set, with the remaining recipes used as
the training set for our nutrition generation bench-
mark. Subsequently, to train LLMs, we curated
about 40 template prompts using GPT-4, with ex-
amples of some of the prompts given in Table 3.
The placeholders <name>, <ingredients>, and <in-
structions> in the prompts are replaced with their
corresponding actual information from the dataset
samples. For example, in the prompt "Estimated
nutrition for <name>" the placeholder <name> is
replaced with the recipe title (name) Xt, which is
then input to the LLM to generate the nutritional
information. The prompts are intended to gener-
ate nutritional information from recipe attributes
such as the title Xt, ingredients Xing, and cooking
instructions Xinstr, or their combinations, which
allows the model to learn nutritional information
from different attributes of the recipes.
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4.4 Recipe Generation Benchmark

Recipe generation benchmark utilizes Recipe1M
(Salvador et al., 2017), which contains over 1 mil-
lion recipes, split into train, test and validation
sets. The training set consists of 720,639 recipes.
For the test set, we use a filtered version of the
Recipe1M test set from LLaVA-Chef (Mohbat and
Zaki, 2024), referred to as test50k, which con-
tains 50,000 recipes. We base our approach on the
template prompts used in LLaVA-Chef (Mohbat
and Zaki, 2024), which employed GPT-3.5 to gen-
erate these prompts. The prompts are designed to
generate recipes from a given title (Xt), a list of
ingredients (Xing), or both. The example prompts
are provided in Table 4.

• Generate a comprehensive recipe for crafting
<name>.

• Detail the method for cooking a delightful <name>.

• Construct a detailed cooking procedure for <name>.

• Generate a recipe using <ingredients>.

• Given <ingredients>, give the detailed recipe.

• Compose a recipe for making a dish using the ingre-
dients: <ingredients>.

• Generate a recipe for crafting <name> using <ingre-
dients>.

• Outline the process of making a delicious <name>
using <ingredients>

• Given <ingredients>, suggest me recipe of <name>

Table 4: Example prompts utilized training KERL-Recipe
model, where placeholders were replaced with the correspond-
ing information.

5 Experimental Results

For baseline comparison, we select several open
source LLMs, as detailed Appendix B. We report
the performance of KERL-Recom on standard re-
trieval metrics such as precision, recall, and F1,
and KERL-Recipe on various text generation and
summarization metrics including BLEU (Papineni
et al., 2002), Rouge (Lin, 2004), METEOR (El-
liott and Keller, 2013) and CIDer (Vedantam et al.,
2015). For KERL-Nutri, we parse micro-nutrients
from the generated response and compute the mean
average error (MAE) with ground truth. The metric
definitions are provided in Appendix C. Our code
and benchmark datasets can be found at https:
//github.com/mohbattharani/KERL.

5.1 Experimental Setup
We leverage Phi-3-mini for its performance and
compact size and fine-tuned one LoRA (Hu et al.,
2022) adapter per task. For each task, we used the
same LoRA configuration with r = 64 and α = 16
and dropout = 0.5, where r is the dimensionality
of the low rank and α is the scaling factor. We
trained a separate LoRA adapter for each task, the
overall model is shown in Figure 2. During in-
ference, the same model with multiple adapters
allows us to deploy once and activate the task-
specific adapter as needed. All experiments were
performed on four NVIDIA RTX A6000 GPUs.
Each LoRA adapter is trained for two epochs on
task related dataset. The training hyper parameters
were kept the same for all models, with a starting
learning rate of lr = 2×10−5 and a cosine learning
rate scheduler. During validation, hyperparameters
were also fixed for all the models. Specifically, we
used temperature = 0.2, num beams =1
and maximum new tokens to 1024.

Model mAP P R F1
internLM2 (Cai et al., 2024) 0.06 0.024 0.055 0.034
Mistral (Jiang et al., 2023) 0.214 0.536 0.558 0.547
Phi-2 (Javaheripi et al., 2023) 0.271 0.084 0.378 0.137
Llama-2 (Touvron et al., 2023) 0.557 0.825 0.627 0.713
Llama-3.1 (Grattafiori et al., 2024) 0.146 0.28 0.406 0.332
Phi-3-mini-4K (Abdin et al., 2024) 0.047 0.192 0.044 0.071
Phi-3-mini-128K (Abdin et al., 2024) 0.275 0.778 0.278 0.41
KERL-Recom 0.96 0.978 0.969 0.973

Table 5: KGQA Benchmark Test Set: KERL-Recom versus
pre-trained LLMs.

5.2 KERL-Recom Evaluation
Comparison with Open Source LLMs: Table 5
presents the results of recent state-of-the-art LLMs
for recipe recommendation. Despite claims of supe-
riority by internLM2 (Cai et al., 2024) and Llama-
3.1 (Grattafiori et al., 2024) on various benchmarks,
both failed to understand the complex constraints
in our KGQA benchmark questions. The capability
of handing larger sequence length by Phi-3-mini-
128K (Abdin et al., 2024) helps it perform better
than Phi-3-mini-4K. Therefore, we selected Phi-3-
mini-128K as the base LLM for KERL due to its
compact size (3.8B parameters) and competitive
performance. Our fine-tuned LoRA KERL-Recom
model significantly outperforms the other models,
achieving a 56-point improvement over Phi-3-mini-
128K and 26-point improvement over the larger
Llama-2-7B (Touvron et al., 2023) in F1 score.

Impact of Recipe Types: To evaluate the general-
ization across various types of recipes, we compare
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Figure 3: F1 scores of different models across various recipe types. Our model, KERL-Recom, consistently
outperforms others with a significant margin in all categories.

Tag mAP P R F1
lactose 0.898 0.955 0.916 0.935
vegan 0.964 0.988 0.975 0.981
vegetarian 0.966 0.987 0.976 0.981
dairy-free 0.667 0.667 0.667 0.667
gluten-free 0.922 0.992 0.779 0.873
nut-free 1.0 0.909 1.0 0.952
egg-free 0.939 0.982 0.951 0.966
low-carb 0.952 0.983 0.965 0.974
low-fat 0.964 0.956 0.966 0.961
low-protein 0.981 0.988 0.981 0.984
low-sodium 0.982 0.978 0.982 0.98
low-cholesterol 0.924 0.98 0.951 0.965
high-protein 0.992 0.944 0.967 0.956
high-calcium 0.937 0.981 0.953 0.967
high-fiber 0.938 1.0 0.933 0.966

Table 6: KERL-Recom: per tag results on KGQA test set

F1 score for the baseline models and KERL-Recom
in Fig. 3 (and Table 13 in Appendix); our model
consistently outperforms all others. For dairy-free
recipes, only Llama-2 and our model could rec-
ommend the correct recipes. Furthermore, the
similarly high scores for KERL-Recom for most
recipe types, except for dairy-free and gluten-free,
as shown in Table 6 indicates that it generalizes
well across different types of dishes. Relatively
lower accuracy and F1 scores for dairy-free recipes
is due to the dearth of training samples of this tag
(see Table 11 in Appendix).

Comparison on pFoodReq Benchmark: The
PFoodReq approach (Chen et al., 2021) can also
generate recommendations for constrained queries.
However, it does it via an embedding-based ap-
proach that computes the similarity between the
user query embedding and KG subgraph embed-
dings. Table 7 shows how our KG-enhanced LLM
approach performs on the pFoodReq benchmark
dataset. We see that KERN-Recom outperforms
pFoodRec by 21.7 points on F1; it also outper-
forms Llama-2-7B by 56.5 points. Our method by
utilizing the power of generative models general-
izes better and outperforms the classical embedding

based methods.

Model mAP P R F1
P-MatchNN 0.455 - 0.451 0.412
pFoodReq 0.627 - 0.618 0.637
Llama-2 0.322 0.204 0.498 0.289
KERL-Recom 0.769 0.825 0.885 0.854

Table 7: PFoodReq Results: Our model compared to baseline
shows better scores.

5.3 KERL-Recipe Evaluation

Given recipe titles Xt, recipe ingredients Xing and
recipe images Xi, or subsets thereof, we now evalu-
ate how well models can generate the actual recipe
cooking steps Xinst. We compare pretrained LLMs
and their fine-tuned counterparts for recipe gener-
ation in Table 8. LLaVA-Chef (Mohbat and Zaki,
2024), based on LLaVA, is a state-of-the-art model
for this task, and it shows better scores than the pre-
trained LLaVA and LLaMA baselines. However,
we can observe that KERL-Recipe, not only out-
performs its base Phi-3 model, it has the best over-
all performance along various recipe quality met-
rics. It outperforms LLaVA-Chef, which involves
entire model training, whereas KERL-Recipe is
only LoRA fine-tuned. LLaVA-Chef improves al-
most 7 points on BLEU-1 over its base LLaVA
model, whereas KERL-Recipe improves about 20
points over Phi-3. Both LLaVA-Chef and KERL-
Recipe perform better when provided with ingredi-
ents Xing, compared to only using the recipe title
(Xt), suggesting that the ingredients are important
in recipe generation. Note that LLaVA-Chef has
the ability to process images, which enables it to
generate recipes from food images, whereas KERL-
Recipe is a text-only model. Overall, KERL-Recipe
not only outperforms in most metrics, it requires
training fewer parameters (LoRA adapter), yet im-
proves over its base model with significant margin.
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Model Inputs BLEU-1 BLEU-2 BLEU-3 BLEU-4 SacreBLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L CIDEr Perplexity ↓
LLaMA (Touvron et al., 2023) Xt + Xing 0.252 0.129 0.072 0.043 0.053 0.156 0.293 0.077 0.156 0.031 2.86
LLaVA (Liu et al., 2024) Xi + Xt + Xing 0.290 0.155 0.087 0.051 0.06 0.20 0.366 0.105 0.184 0.041 12.39
LLaVA-Chef Xt 0.283 0.149 0.081 0.047 0.116 0.142 0.37 0.108 0.193 0.094 2.08
LLaVA-Chef Xi + Xing 0.337 0.197 0.12 0.077 0.156 0.177 0.45 0.156 0.232 0.203 2.43
LLaVA-Chef Xi + Xt + Xing 0.366 0.218 0.137 0.09 0.170 0.189 0.473 0.17 0.240 0.242 17.90
Phi-3 Xt 0.178 0.089 0.047 0.025 0.029 0.187 0.268 0.069 0.134 0.003 11.51
Phi-3 Xing 0.202 0.108 0.06 0.034 0.039 0.207 0.298 0.087 0.149 0.003 11.65
Phi-3 Xt + Xing 0.209 0.114 0.064 0.038 0.216 0.042 0.31 0.095 0.155 0. 11.99
KERL-Recipe Xt 0.292 0.155 0.089 0.053 0.072 0.132 0.317 0.09 0.171 0.10 7.60
KERL-Recipe Xing 0.392 0.249 0.170 0.12 0.15 0.188 0.441 0.179 0.239 0.323 8.29
KERL-Recipe Xt + Xing 0.405 0.257 0.175 0.123 0.154 0.195 0.454 0.183 0.241 0.347 7.68

Table 8: Performance on Recipe Generation

Model Inputs Calories Fat Calories Protein Sugar Fiber Carbohydrates Sodium Cholesterol Saturated Fat Total Fat
Dataset Mean 426.39± 626.7 189.79±332.39 15.83±21.26 18.56± 52.27 3.55± 5.56 43.64± 80.57 0.66± 2.03 0.08± 0.14 8.15± 16.49 21.14±36.93
LLaVA-Chef Xt 306.54 172.16 11.8 17.44 3.85 33.31 29.02 3.13 10.46 23.4
LLaVA-Chef Xing 323.75 160.45 15.47 20.96 7.48 38.39 160.72 16.82 19.81 37.61
LLaVA-Chef Xinstruct 319.42 161.77 15.39 22.31 7.86 38.87 111.78 14.63 19.76 36.94
LLaVA-Chef Xt + Xing + Xinst 323.6 161.5 12.68 20.6 5.43 39.29 192.55 21.51 19.78 40.32
KERL-Nutri Xt 258.28 134.81 8.97 14.22 2.32 29.05 0.5 0.05 6.12 14.98
KERL-Nutri Xing 226.65 104.98 7.44 12.28 1.88 25.38 0.38 0.04 4.56 11.67
KERL-Nutri Xinstruct 245.54 124.7 8.58 13.58 2.19 27.68 0.46 0.04 5.45 13.86
KERL-Nutri Xt + Xing + Xinst 221.38 103.03 7.29 11.92 1.84 24.69 0.37 0.04 4.48 11.45

Table 9: Performance on Nutrient Generation: Mean absolute error per micro-nutrient.

5.4 KERL-Nutri Evaluation

Nutrition generation module (KERL-Nutri) is based
on LoRA fine-tuning the base Phi-3 model. For
comparison, we also fine-tune LLaVA-chef (the
full model) on the nutrition generation benchmark.
Our model outperforms others, as evident in Table
9 where the first row shows the mean values of the
micro-nutrients in the test set. LLaVA-Chef esti-
mates nutrition slightly better when only title Xt

is given compared to using ingredients Xing or in-
structions Xinstruct. However for KERL-Nutri, in-
gredients play a crucial role in nutrition estimation,
as they contain the actual nutrients. Generating
nutrients from only instruction has slightly higher
MAE, as instructions may not explicitly mention all
ingredients. Overall, KERL-Nutri achieves lower
errors when provided with the complete recipe,
including the title, ingredients, and cooking instruc-
tions.

6 Conclusion

We present KERL, a food recommendation system
that combines the power of KGs with LLMs in a
question answering framework. We also create a
large-scale QA benchmark dataset using FoodKG.
After evaluation of several open source LLMs we
selected Phi-3-mini as the base LLM, training it to
understand the subgraphs from FoodKG to help an-
swer complex constrained questions regarding per-
sonalized food recommendations. Using a multi-
LoRA approach, we also fine-tune adapters to gen-
erate cooking steps and nutritional information for
the recipes, offering a seamless solution for meal
planning and cooking. Our evaluation shows that

KERL outperforms baseline models for all three
tasks, with more relevant recipes, better quality
cooking steps, and more accurate nutrient values.
In the future, we plan to leverage Chain-of-Thought
reasoning along with RAG to further improve the
performance while incorporating ingredient sub-
stitution, person’s health information, and cultural
preferences.

7 Limitations

• KERL-Recom relies on the recipe subgraphs
retrieved from FoodKG (Haussmann et al.,
2019). Therefore, the system will not rec-
ommend any recipe if none of the recipe in
KG meet all the constraints. The system may
also fail if incorrect context information is
provided, hence the results should not be used
without proper safeguards.

• KERL-Recom do not directly establish the re-
lationship between the person’s health con-
ditions and the corresponding dietary restric-
tions. For example, it can recommend sugar-
free recipes, but it may not accurately recom-
mend the correct recipes for a diabetic person.
This capability is left for future research.

• KERL-Nutri generates the micro-nutritional
information for most recipes, but it may not
accurately generate micro-nutritional details
for extreme cases, such as for recipes with
high or very low calories.
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A Dataset Details

A.1 Recipe tags

Recipes in FoodKG are tagged with one or more
tags, making a total of 490 unique tags. We se-
lected recipes associated with health-related tags,
listed in Table 10, for the generation of KGQA
benchmark to ensure that the question-answer pairs
inherently focus on health constraints. Note that
the recipes tagged with these tags were also tagged
with 454 other tags, indicating that the dataset cov-
ers a wide variety of recipe types. An example of a
KG subraph correponding to a recipe is shown in
Fig. 4.

lactose vegan vegetarian
dairy-free gluten-free nut-free
egg-free low-carb low-fat
low-sodium low-cholesterol low-protein
high-protein high-calcium high-fiber

Table 10: Tags representing various dietary preferences and
nutritional constraints.

A.2 KGQA benchmark details

The recipes in FoodKG, the knowledge base used
for KGQA benchmark, are tagged with one or more
tags. Table 11 shows the number of tagged recipes
for each tag used for dataset generation and the
associated number of questions in the train and test
splits. The limited number of dairy-free tagged
recipes (only 7) led to fewer corresponding test
questions (only 3). As a result, the evaluated mod-
els also show the lowest F1 score for this tag, as
shown in Figure 3.

Tag Tagged recipes Train set Test set
lactose 366 874 112
vegan 968 2287 314
vegetarian 3392 8142 979
dairy-free 7 18 3
gluten-free 565 1328 187
nut-free 45 107 13
egg-free 440 1078 124
low-carb 4239 10248 1244
low-fat 2202 5296 639
low-sodium 4445 10561 1407
low-cholesterol 3710 8990 1059
low-protein 3320 7944 1032
high-protein 690 1642 219
high-calcium 540 1318 162
high-fiber 33 76 8

Table 11: KGQA benchmark: Number of tagged recipes for
each tag and questions for each tag.

B Foundational Models

Here we provide a list of baseline LLMs we com-
pare with in our empirical evaluation.

internLM2 (Cai et al., 2024) is the second gener-
ation internLM model, trained to capture long-term
dependencies. It outperforms on 30 benchmarks in
long context modeling and open-ended subjective
evaluations.

Mistral (Jiang et al., 2023) is engineered for
superior performance and efficiency. Its 7B model
can outperforms LLaMA-2 13B model.

LLama-2 (Touvron et al., 2023) is a collection
of foundation language models ranging from 7B to
70B. Due to the popularity of the llama series, we
select Llama-2-7B model in our study.

Llama-3.1 (Grattafiori et al., 2024) is a set of
large scale very powerful open source LLM that
improves upon Llama-2, and is comparable to the
flagship models like GPT-4 and Claude 3.5 Sonnet.
Therefore, it became an obvious choice for our
study.

Phi-2 (Javaheripi et al., 2023) is a 2.7B pa-
rameter LLMs designed for efficient and high-
performing natural language processing tasks. It
has demonstrated better performance than the
LLaMA-2 (13B) and Mistral (7B) models on a
range of benchmark tasks, showcasing its effective-
ness in various NLP domains.

Phi-3 (Abdin et al., 2024) has improved models
in the Phi series; even its mini version with 3.8B pa-
rameters outperforms several 7B and 13B models.
We used Phi-3-mini-4k and Phi-3-mini-128K in our
study for their performance despite their smaller
size.

C Metrics

C.1 Metrics for Recommendation Evaluation
We use standard retrieval metrics and provide their
formal definitions considering order agnostic eval-
uation of all the models. Let Y be a list of recipes
as ground truth answer and Ỹ a list of recipes rec-
ommended by the model. Then, we define true
positive (TP), false positive (FP) and false negative
(FN) as follows:

TP = Y ∩ Ỹ

FP = Ỹ − Y

FN = Y − Ỹ

Then precision (P), recall (R), and F1 scores are
computed as follows:
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Title: Corn Frittata With Cheese
Nutrition:
• calories: 282.2
• cholesterol: 0.438 
• fat cals: 165.0
• fat per 100g: 7.05
• fiber: 1.9
• protein: 18.0
• Salt per 100g: 0.09 
• saturated fat: 6.6
• saturates per 100g : 2.529
• serving size: 261.0
• servings per recipe": 4.0
• recipe sodium: 0.234
• sugar: 2.3
• sugars per 100g: 0.881
• total carbohydrates: 12.2
• total fat: 18.4               

Ingredients:
• Eggs
• fresh basil
• frozen whole kernel corn
• green onions
• olive oil
• roma tomatoes
• shredded cheddar cheese
• zucchini

Figure 4: FoodKG Recipe sample: left panel shows a 2-hop KG subgraph for the recipe node shown on the right.

P =
|TP |

|TP |+ |FP |

R =
|TP |

|TP |+ |FN |

F1 =
2PR

P +R

We compute precision at rank r for all relevant
recipes M and average them to get average preci-
sion (AP). Then, we calculate mean average preci-
sion (mAP) by taking the average of AP across all
N samples, formally defined as follows:

AP =
1

|M |
∑

r∈M
P (r)

mAP =
1

N

N∑

i=1

APi

C.2 Metrics for Recipe Generation

Here we provide formal definitions of the different
metrics used in our evaluation of generated recipes.

BLEU score: Bilingual Evaluation Understudy
(BLEU) score (Papineni et al., 2002), initially
proposed for machine translation evaluation, is
a metric that quantifies the similarity between a
generated text sequence and a reference text se-
quence. Let Ypred be the predicted text sequence of
length np, Ylabel be the ground truth text sequence
of length nl, and N the number of n-grams, then
the BLEU score is defined as:

BLEU = BP exp
N∑

n=1

wn · log(prec)

prec =

∑
p∈Ypred

∑
n-gram∈p

Countclip(n-gram)

∑
p′∈Ypred

∑
n-gram′∈p′

Count(n-gram′)

BP =

{
1, np > nl

e1−np/nl np ≤ nl

Where, prec is n-gram precision, wn is the
weight for each precision score and BP is brevity
penalty that penalizes too short sequences. For the
BLEU-N score, the weight of the precision score
is wn = 1

N . BLEU cannot be directly compared
between research papers (Post, 2018) as it is a pa-
rameterized metric and the parameters are often not
reported. Therefore, we adhere to the standard im-
plementation of BLEU-N (https://github.
com/salaniz/pycocoevalcap). Further-
more, SacreBLEU (Post, 2018) (https://
github.com/mjpost/sacreBLEU) is a re-
producible and shareable implementation of the
BLEU score.

Rouge score: Rouge (Recall-Oriented Under-
study for Gisting Evaluation) (Lin, 2004) was
designed to evaluate the text summarization sys-
tem. Rouge-N computes N-gram recall between
predicted text (summary) and ground truth, and is
defined as:

Rouge-N =∑
s∈Ylabel

∑
n-gram∈s

Countmatch(n-gram)

∑
s∈Ylabel

∑
n-gram∈s

Count(n-gram)
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Where Countmatch is maximum number of n-
grams co-occurring in predicted text Ypred and ref-
erence ground truth Ylabel. Rouge-L (Lin and Och,
2004) operates on the basis of the longest common
subsequence between generated text and ground
truth references. It measures the extent to which
the generated text captures the longest in-sequence
co-occurrences of words in the references.

CIDEr: Consensus-based Image Description
Evaluation (CIDEr) (Vedantam et al., 2015) was
introduced as a metric to quantify the quality of
generated image captions or descriptions. It oper-
ates by measuring the degree of consensus between
a generated caption and a set of human-authored
reference captions. The mathematical formulation
of CIDEr is as follows:

CIDEr(Ypred, Ylabel) =

N∑

n=1

wn
1

m

∑

j

gn(Ypred).g
n(Y j

label)

||gn(Ypred)||||gn(Y j
label)||

where Y j
label is jth ground truth sentence, gn(.)

is a vector representing Term Frequency Inverse
Document Frequency (TF-IDF) weighting for each
n-gram.

METEOR: METEOR (Metric for Evaluation of
Translation with Explicit Ordering) (Elliott and
Keller, 2013) is a machine translation evaluation
metric that leverages unigram matching between
machine-generated translations (hypotheses) and
human-produced references (ground truth). It in-
corporates both precision (P) and recall (R) of uni-
grams, as well as other features such as word order
and synonym matching, to arrive at a comprehen-
sive assessment of translation quality. The formal
definition of METEOR is as follows:

METEOR =
10PR

R+ 9P
(1− Penalty)

The penalty factor accounts for word order and
length differences between the hypothesis and ref-
erence.

Perplexity: Perplexity, a widely used metric for
evaluating autoregressive or causal language mod-
els, quantifies the degree of uncertainty a model
exhibits when predicting the next token in a se-
quence. It is formally defined as the exponential

average negative log-likelihood of a given text se-
quence. Mathematically, for a text sequence X of
length m generated using a model fθ(.), perplexity
can be calculated as:

ppl(X) = exp

(
− 1

m

m∑

i

log fθ(xi|x<i)

)

where, fθ(xi|x<i) signifies the probability as-
signed by the model to the token xi, conditioned
on the preceding tokens x<i.

C.3 Metrics for Nutrition Generation

Micro-nutrients were formatted in a pre-defined
JSON style during the training, so the model was
also expected to generate text in a similar style,
making it easy to parse micro-nutrients and their
values. Note that each generated sample output
may not contain all the desired micro-nutrients.
Therefore, for each sample, we consider the micro-
nutrient tags found in the generated text. We parse
all the micro-nutrient tags from the generated text
along with their numerical values and compute the
mean average error with the ground truth, formally
defined as:

MAE(nutri) =
1

n

n∑

i=1

|yinutri − ỹinutri|

Where, yinutri and ỹinutri are the ground truth and
predicted values of the nutrient, respectively.

D Additional Results

D.1 KERL-Recom

Performance on Recipe Types Table 13 shows
the performance of open source LLMs and our
model on the KGQA benchmark for recipes tagged
with some of the tags such as lactose, vegan, veg-
etarian, gluten-free and nut-free. LLaMA-2 ranks
as the second best, except for the gluten-free tag.
Mistral performs similarly to or slightly better than
Phi-3-mini, but Phi-3-mini is smaller than the other
models. Overall, KERL-Recom, leveraging Phi-3-
mini as the base model, achieves precision and F1
greater than 90 for all tags.

Qualitative results Despite the impressive per-
formance of KERL-Recom, it is prone to failure
by recommending false positives or missing true
positive in recommended recipes. For examples,
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Model Inputs Calories Fat Calories Protein Sugar Fiber Carbohydrates Sodium Cholesterol Saturated Fat Total Fat
Dataset Mean 321.76 ± 222.82 135.36±122.82 12.69± 12.51 10.01± 11.89 2.67± 2.54 29.86±23.94 0.44±0.44 0.05±0.06 5.62±5.74 15.09 ± 13.65
LLaVA-Chef Xt 205.13 118.21 9.22 9.6 3.07 20.9 28.66 2.69 8.07 17.97
LLaVA-Chef Xing 229.17 111.5 13.23 14.61 6.82 27.45 155.73 15.36 18.13 34.44
LLaVA-Chef Xinst 222.32 111.05 13.25 15.34 7.23 27.38 110.52 13.5 17.94 32.85
LLaVA-Chef Xt + Xing + Xinst 233.35 113.36 10.5 14.01 4.81 28.4 188.49 19.37 17.79 36.52
KERL-Nutri Xt 159.44 85.58 6.64 6.62 1.61 16.17 0.29 0.03 3.91 9.51
KERL-Nutri Xing 132.62 61.23 5.47 4.82 1.22 12.62 0.21 0.02 2.56 6.8
KERL-Nutri Xinst 147.19 75.84 6.29 6.11 1.46 14.91 0.26 0.03 3.27 8.43
KERL-Nutri Xt + Xing + Xinst 127.67 59.49 5.3 4.64 1.18 12.09 0.2 0.02 2.48 6.61

Table 12: Performance of nutrition generation models, filtered to include only the 95th percentile of samples.

Model Tag mAP P R F1
internLM2

lactose

0.015 0.008 0.017 0.011
Mistral 0.14 0.538 0.368 0.437
Llama-2 0.477 0.838 0.514 0.637
Llama-3.1 0.152 0.233 0.321 0.27
Phi-3-mini-128K 0.202 0.812 0.217 0.343
KERL-Nutri 0.898 0.955 0.916 0.935
internLM2

vegan

0.09 0.038 0.0079 0.051
Mistral 0.201 0.549 0.492 0.519
Llama-2 0.669 0.885 0.71 0.788
Llama-3.1 0.161 0.296 0.43 0.351
Phi-3-mini-128K 0.404 0.873 0.421 0.568
KERL-Nutri 0.964 0.988 0.975 0.981
internLM2

vegetarian

0.085 0.034 0.078 0.048
Mistral 0.201 0.531 0.52 0.526
Llama-2 0.639 0.856 0.708 0.775
Llama-3.1 0.179 0.325 0.462 0.381
Phi-3-mini-128K 0.361 0.871 0.352 0.501
KERL-Nutri 0.966 0.987 0.976 0.981
internLM2

gluten-free

0.062 0.027 0.058 0.037
Mistral* 0.26 0.581 0.673 0.624
Llama-2 0.559 0.87 0.609 0.717
Llama-3.1 0.208 0.364 0.548 0.438
Phi-3-mini-128K 0.282 0.811 0.285 0.421
KERL-Nutri 0.939 0.982 0.951 0.966
internLM2

nut-free

0.103 0.019 0.067 0.029
Mistral* 0.224 0.542 0.591 0.565
Llama-2 0.628 0.833 0.682 0.75
Llama-3.1 0.243 0.345 0.455 0.392
Phi-3-mini-128K 0.385 0.786 0.367 0.5
KERL-Nutri 1.0 0.909 1.0 0.952

Table 13: Results on KGQA test set reported for several tags.
Overall, KERL-Recom performs better for numerous types of
recipes.

row-2 in Table 14 shows the question where KERL-
Recom suggested false positive whereas in row-3
it suggested a recipe that is not even in context.
Similarly, the last row demonstrates an example,
where the model failed to select all true positives
from context, resulting few true negatives.

D.2 KERL-Nutri

In Table 9, we compare the performance of LLaVA-
Chef and our KERL-Nutri model on generating
the micro-nutrients for the recommended recipes.
For some nutrients, the MAE is rather large. This
happens because some ground truth samples have
abnormally high or zero nutritional values, intro-
ducing noise that affects model performance. To
analyze this, we filtered the samples within a spe-
cific percentile range, excluding outliers, and then
calculated the MAE. Detailed results on nutrient
generation for the 95th percentile of samples are
shown in Table 12. We observe that removing noisy

samples reduces MAE by about half for all the nu-
trients. Nevertheless, our KERL-Nutri remains the
superior model.
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User question Recipe in context KERL-Recom recommen-
dations

What low-protein recipes use crushed
red pepper flakes, bacon, ginger ale,
ground black pepper, pepper and ex-
clude cream of coconut, tamari, fresh
thyme leaves, and have fiber more than
4.28, sugars per 100g within range (0,
5.99)?

Tamarind Juice,
Mock Sangria,
Low-Carb Balsamic
Dressing,
County Cherry Dessert,
Mock Champagne

Low Carb Balsamic
Dressing,
Mock Champagne,
Mock Sangria

Suggest me vegetarian dishes that re-
quire fresh ground black pepper, green
onions, fresh parsley, plain yogurt, red
onions and must not contain fine salt,
peach slices, arhar dal, and have a total
of fiber not above 5.4, sugars per 100g
no more than 3.66.

Gyoza or Pot Sticker
Dipping Sauce,
Wild Rice Stuffing Side
Dish,
Pixie Cookies

Wild Rice Stuffing Side
Dish,
Pixie Cookies

Can you list the low-carb recipes that
use curry powder, cooked spaghetti,
steak, bottled hot pepper sauce, con-
densed beef broth but do not contain
whole wheat pancake mix, chicken
thigh fillets, white bread, while contain-
ing fat cals not less than 203.0, and pro-
tein within range (0, 32.5)?

Quick Sausage, White
Bean and Spinach Stew,
Jamaican Brown Stew
Chicken,
Watermelon, Cucumber
and Feta Salad

Jamaican Brown Stew
Chicken,
Manic Bullet

Can you suggest low-sodium recipes
cooked with fresh ground black pepper,
plain yogurt, all - purpose flour, fresh
lemon juice, apples but do not have
garam masala, wheat and have protein
no more than 13.08, sugars per 100g no
more than 11.53?

Fudge Pie, Pasta Pascal,
Chocolate-Pecan
Brownies,
Cold Oven Pound Cake,
Cucumber and Feta Salad,
Lemon Meringue Tart,
Cold Oven Pound Cake

Fudge Pie,
Cold Oven Pound Cake,
Lemon Meringue Tart

Table 14: Qualitative results of KERL-Recom: The second column lists the recipes in the subgraph (only names
for simplicity) where blue color shows recipes that satisfy the user constraints R+(tj). Row 1 shows a perfect
result, row 2 shows one false positive recommendation, row 3 shows two suggested recipes, with only one present
in the context and is also true positive, and the final row shows a subset of the ground truth selected by the model
with missing true positives from recommended recipes. These sample results suggest that despite showing strong
performance, it may fail by suggesting false negatives, missing true positives, or recommending unrelated recipes.
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