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Abstract

The emergence of audio language models is
empowered by neural audio codecs, which es-
tablish critical mappings between continuous
waveforms and discrete tokens compatible with
language model paradigms. The evolutionary
trends from multi-layer residual vector quan-
tizer to single-layer quantizer are beneficial for
language-autoregressive decoding. However,
the capability to handle multi-domain audio
signals through a single codebook remains con-
strained by inter-domain distribution discrep-
ancies. In this work, we introduce UniCodec,
a unified audio codec with a single codebook
to support multi-domain audio data, including
speech, music, and sound. To achieve this, we
propose a partitioned domain-adaptive code-
book method and domain Mixture-of-Experts
strategy to capture the distinct characteristics of
each audio domain. Furthermore, to enrich the
semantic density of the codec without auxiliary
modules, we propose a self-supervised mask
prediction modeling approach. Comprehensive
objective and subjective evaluations demon-
strate that UniCodec achieves excellent audio
reconstruction performance across the three au-
dio domains, outperforming existing unified
neural codecs with a single codebook, and
even surpasses state-of-the-art domain-specific
codecs on both acoustic and semantic represen-
tation capabilities1.

1 Introduction

Many recent developments of speech language
models (SLMs) (Bai et al., 2023; Défossez et al.,
2024; Peng et al., 2024; Ji et al., 2024a) integrate
the speech modality with text-based large language
models (LLMs) and have led to significant ad-
vancements in speech understanding and genera-
tion tasks. This paradigm relies on discrete acoustic
codec models, which convert high-rate speech sig-

*Corresponding author.
1https://github.com/Jiang-Yidi/UniCodec

nals into a finite set of discrete speech tokens, bridg-
ing the gap between continuous speech signals
and discrete-token-based language models, thus
enabling speech applications powered by LLMs.

Most existing neural audio codecs
(NACs) (Zeghidour et al., 2022; Kumar et al., 2023;
Ji et al., 2024b; Défossez et al., 2023; Défossez
et al., 2024) employ a multi-layer Residual Vector
Quantizer (RVQ), where each quantizer operates
on the residual of the previous quantizer. This RVQ
structure generates multiple parallel hierarchical
token streams for downstream language models
to decode, hence it increases the complexity
and the generation latency of SLMs (Xie and
Wu, 2024a,b; Défossez et al., 2024). To address
this problem, several recent works, including
WavTokenizer (Ji et al., 2024c), Single-Codec (Li
et al., 2024), and BigCodec (Xin et al., 2024),
focus on developing single-layer quantizer to
streamline the process. Integrating a single-layer
quantizer with LLMs facilitates rapid extraction of
speech features on input audio while significantly
reducing the burden of autoregressive modeling.
These works demonstrate that using a single VQ
to discretize speech could achieve competitive
performance in both audio reconstruction and
generation tasks. Therefore, our work follows this
trend and focuses on developing high-performing
single-layer quantizer codec.

An ideal codec should be able to perform well
across various audio domains, such as speech, mu-
sic, and sound, with distinct domain characteristics.
Prior RVQ-based neural audio codecs using multi-
layer RVQ and hence multi-codebooks, such as
DAC (Kumar et al., 2023) and Encodec (Défossez
et al., 2023), exhibit strong reconstruction capabili-
ties for speech, music, and sound. However, previ-
ous studies such as Wavtokenizer (Ji et al., 2024c)
show that using a unified single-codebook codec for
speech, music, and sound still poses a great chal-
lenge: The unified codec suffers from notable per-
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Table 1: Comparison of recent codec models based on single codebook, compatibility with speech, music, and
sound domains, and whether they use separate models for different domains or a unified model.

Model Single Codebook Speech Music&Sound Separate/Unified model

DAC (Kumar et al., 2023) Unified
Encodec (Défossez et al., 2023) Unified

Mimi (Défossez et al., 2024) Unified
SemantiCodec (Liu et al., 2024) Unified

SpeechTokenizer (Zhang et al., 2023) -
BigCodec (Xin et al., 2024) -
TAAE (Parker et al., 2024) -

Wavtokenizer (Ji et al., 2024c) Separate&Unified
UniCodec Unified

formance degradation compared to domain-specific
codec models, since the substantial distribution dis-
crepancies between these domains make it difficult
to effectively capture their distinct characteristics
with a single codebook. To tackle this challenge, in
this work, we develop a unified audio codec with
a single codebook, designed to support multiple
audio domains—including speech, music, and
sound—while achieving both low bitrate and
high acoustic reconstruction quality.

In addition to powerful acoustic reconstruction
capabilities, strong semantic representation capa-
bilities (that is, encapsulating rich semantic infor-
mation) of NACs are crucial for effective integra-
tion of NACs with LLMs, since strong semantic
capabilities can ease understanding of audio con-
tent and facilitate generation of semantically rea-
sonable audio. There are two main challenges in
enriching the semantic representations of NACs.
(1) There is an inherent trade-off between seman-
tic richness and reconstruction performance, since
semantic features provide a higher-level, more ab-
stract understanding, while reconstruction features
emphasize fine-grained details of audio. (2) The
majority of existing works enrich semantic capa-
bilities through distillation from additional pre-
trained speech semantic encoders (Zhang et al.,
2023; Défossez et al., 2024), separate semantic
codebooks (Liu et al., 2024), or auxiliary seman-
tic modules (Ye et al., 2024). However, methods
using an additional pretrained semantic encoder
are constrained by reliance on a pretrained speech
encoder, are less elegant and not fully adaptable,
and difficult to support unified modeling of speech,
music, and sound. Moreover, an auxiliary seman-
tic module introduces additional computation cost
and degrades the efficiency of feature extraction.
Since both reconstruction quality and efficiency
are critical for NACs, we explore a more elegant

approach by directly learning semantic informa-
tion through the codec itself, without additional
modules, while preserving high reconstruction
ability.

Our contributions can be summarized as follows:

• We introduce UniCodec, a unified audio codec
with a single quantizer, designed to support vari-
ous audio types, including speech, music, and
sound, with a single codebook. To achieve
this, we propose a partitioned domain-adaptive
codebook method based on domain Mixture-of-
Experts (MoE) strategy to effectively capture the
distinct characteristics of each audio domain.

• We propose a self-supervised, masked modeling
approach to enrich semantic information without
extra modules.

• Comprehensive objective and subjective evalua-
tions show that UniCodec achieves better recon-
struction and semantic performance compared to
existing unified codecs with a single codebook,
and even outperforms domain-specific codecs.

2 Related Work

Neural Audio Codecs Neural Audio Codecs
(NACs) aim to compress audio signals into highly
compressed discrete tokens while preserving high
reconstruction quality. The predominant paradigm
of NACs utilizes the Vector Quantized Variational
Autoencoder (VQ-VAE) (van den Oord et al., 2017;
Gârbacea et al., 2019) architecture, where an en-
coder transforms the audio signal into a latent
representation, a quantizer discretizes this rep-
resentation, and a decoder reconstructs the sig-
nal. SoundStream (Zeghidour et al., 2022) en-
hances this approach by incorporating Residual
Vector Quantization (RVQ), and improves both
modeling and reconstruction capabilities for NACs.
Encodec (Défossez et al., 2023) further refines
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SoundStream by introducing multi-scale discrimi-
nators and a loss-balancing strategy to optimize
reconstruction performance. Numerous works
such as DAC (also named RVQGAN) (Kumar
et al., 2023) and Mimi (Défossez et al., 2024) con-
tinue enhancing RVQ-based NACs. While multi-
codebook residual modeling boosts reconstruction
quality, it complicates the autoregressive process
in SLMs and suffers from unacceptable latency.
In contrast, single-layer quantizer codecs, such as
Single-Codec (Li et al., 2024), WavTokenizer (Ji
et al., 2024c), BigCodec (Xin et al., 2024), and
TAAE (Parker et al., 2024), show promising po-
tentials due to their ability to seamlessly integrate
into SLMs with low latency and reduced compu-
tational overhead. However, there is still much
room to improve the performance of single-layer
low-bitrate codecs; hence, this work focuses on
enhancing single-layer low-bitrate codecs.

Unified Audio Signal Modeling A unified NAC
capable of processing various audio types, such as
speech, music, and sound, will be greatly benefi-
cial for constructing universal audio language mod-
els (ALMs) that are generalizable to various audio
types (Liu et al.). RVQ-based audio codec mod-
els, such as SoundStream (Zeghidour et al., 2022),
Encodec (Défossez et al., 2023), and DAC (Kumar
et al., 2023), are trained on a combination of speech,
music, and sound datasets. While these codecs
achieve high reconstruction quality, their perfor-
mance significantly degrades in low-bitrate scenar-
ios, particularly when restricted to the first code-
book. Although existing single-layer codecs (Ji
et al., 2024c) perform well in one or two audio
domains, they struggle to simultaneously maintain
superior performance on speech, music, and sound
domains while operating at a low bitrate.

Semantic Audio Representation Learning Dis-
crete tokens compressed by acoustic NACs lack
high-level semantic information, which is essential
for effective SLMs. To address this issue, mod-
els such as SpeechTokenizer (Zhang et al., 2023)
and Mimi (Défossez et al., 2024) leverage self-
supervised-learning (SSL) based speech represen-
tation models to distill semantic information into
the first-layer codebook. XCodec (Ye et al., 2024)
concatenates acoustic tokens with semantic tokens
produced by SSL models before the RVQ stage
and introduces a semantic reconstruction loss. Fun-
Codec (Du et al., 2024) offers various methods to
integrate SSL-based semantic tokens with RVQ-

based acoustic tokens. However, these approaches
rely on SSL encoders, which complicate the train-
ing process and constrain the semantic capabilities
of NACs. SemantiCodec (Liu et al., 2024) com-
bines quantized semantic tokens with acoustic to-
kens and introduces a diffusion process to enhance
reconstruction quality, but the diffusion process
introduces additionally training cost. In contrast,
UniCodec requires neither additional SSL encoders
nor complex diffusion process, hence simplifying
the training process while encapsulating rich se-
mantic information.

3 Methodology

UniCodec is built upon the highly competitive
single-layer encoder-VQ-decoder codec, Wavto-
kenizer (Ji et al., 2024c). The left part of Figure 1
provides an overview of the architecture of Uni-
Codec, which comprises three modules: an encoder
that processes the input audio to generate a latent
feature representation, a quantizer that discretizes
the feature into tokens through a single codebook,
and a decoder that reconstructs the audio signal
from the compressed, discrete tokens. We first
make the following enhancements over Wavtok-
enizer (Section 3.1). We enhance the encoder by
incorporating transformer layers, which can better
capture and represent complex patterns. We also
enhance the codebook utilization rate to maximize
the use of codebook and improve efficiency. More
importantly, to build a unified tokenizer capable of
supporting multi-domain audio reconstruction, we
propose two novel strategies: a partitioned domain-
adaptive codebook (Section 3.2), and a domain
mixture-of-experts (MoE) encoder structure (Sec-
tion 3.3), which is detailed in the upper-right part of
Figure 1. UniCodec is trained end-to-end through
two stages. In the first acoustic training stage, the
model is trained by optimizing a reconstruction
loss applied over both time and frequency domains,
along with a perceptual loss using discriminators
operating at different resolutions, the same as Wav-
tokenizer. In the following semantic training stage
(Section 3.4), which is depicted in the lower-right
part of Figure 1), a contrastive loss is added into
the training objective.

3.1 Enhanced Encoder and Quantizer

The encoder of Wavtokenizer (Ji et al., 2024c)
consists of convolutional blocks followed by a
two-layer LSTM and a final 1D convolution layer,

19114



Convnet

Reconstruction
Decoder

··· ··· ···

Partitioned Codebook

Attention

Add & Norm

Feed Forward
w. MoE

Add & Norm

Convnet

Transformer
Encoder

Conv representaton 

Mask

Quantizer

 Contrastive
loss

Masked Conv
representaton

Quantized Tokens 

speech music audio

Router

Expert 1 2 3

Mixture of
Experts

Semantic
Stage

Input hidden

Output hidden

Top Kr

distractors

Figure 1: Left: Overview of the proposed UniCodec.
Upper-right: the domain MoE encoder structure. Lower-
right: the semantic training stage.

which limits its capacity for effective feature ex-
traction. To enhance the ability to encode audio
into compact representations while ensuring high-
quality audio reconstruction, inspired by Mimi
Codec in Moshi (Défossez et al., 2024), we replace
the LSTM sequence modeling in the encoder with
a contextual Transformer architecture following
the convolutional blocks. Consistent with Mimi,
the Transformer consists of 8 layers, 8 attention
heads, RoPE position encodings, GELU activa-
tions (Hendrycks and Gimpel, 2016), with a hidden
size of 512 and an MLP dimension of 2048.

Scaling the training data to cover multiple audio
domains necessitates scaling the codebook concur-
rently, which introduces the challenge of optimiz-
ing codebook utilization during the vector quanti-
zation process. To improve codebook utilization
and improve efficiency, we adopt the SimVQ al-
gorithm (Zhu et al., 2024), which effectively and
efficiently mitigates the issue of representation col-
lapse in vector-quantized model by using a simple
linear layer.

3.2 Domain-adaptive Codebook

To achieve seamless integration of data from three
distinct domains—speech, music, and sound—into
a unified audio tokenizer, we propose a novel par-
titioned domain-adaptive codebook. In this frame-
work, the codebook is divided into three specialized
regions: the first region, spanning indices 0 to 4095,
is dedicated to the speech domain; the second, from

4096 to 8191, is for the music domain; and the re-
maining indices from 8191 to 16383 are allocated
for the sound domain. This design is inspired by the
hypothesis in Semanticodec (Liu et al., 2024) that
general sound tends to encompass a broader range
of sounds than speech and music, hence we allocate
a larger region for sound. During the training pro-
cess, the model only updates the codebook entries
corresponding to the domain of the input sample,
ensuring that domain-specific features are accu-
rately captured and learned. This partitioned code-
book approach facilitates the construction of a uni-
fied audio tokenizer that can effectively handle the
unique characteristics of each domain, providing a
flexible solution for multi-domain audio represen-
tation. The ablation experimental results in Table 6
of Section 5.3 validate this strategy achieves perfor-
mance improvement when scaling up the amount
of training data covering different audio types and
also codebook size.

3.3 Domain MoE

For training the codec on data from multiple audio
domains, we employ a domain Mixture-of-Experts
(MoE) strategy for the Feed-Forward Networks
(FFNs) in our Transformer encoder, inspired by
the DeepSeekMoE architecture (Dai et al., 2024).
Different from traditional MoE architectures, such
as GShard (Lepikhin et al., 2020), DeepSeekMoE
utilizes finer-grained experts, designates some as
shared experts and the rest as routed experts. The
shared expert is responsible for capturing common
patterns across all audio types, while the router
experts implicitly learn to model domain-specific
characteristics. This architectural design is well-
suited to capture domain-specific features while
maintaining high performance and computational
efficiency. For the FFN input ut of the t-th token,
the computation of the FFN hidden output ht can
be formulated as follow:

ht = ut +

Ns∑

i=1

FFN s
i (ut) +

Nr∑

i=1

gi,tFFN r
i (ut)

(1)

gi,t =
g′i,t∑Nr
j=1 g

′
j,t

(2)

g′i,t =

{
si,t, si,t ∈ Topk(sj,t|1 ≤ j ≤ Nr,Kr)

0, otherwise

(3)
si,t = Sigmoid(uTt ei) (4)

19115



where Ns and Nr denote the numbers of shared
experts and routed experts, respectively. FFN s

i (·)
and FFN r

i (·) demote the i-th shared expert and
the i-th routed expert, respectively. g(i, t) is the
gating value for the i-th expert. Kr is the number
of activated routed experts. si, t is the token-to-
expert affinity. ei is the centroid vector of the i-th
routed expert, and Topk(·,K) denotes the set com-
prising K highest scores among the affinity scores
calculated for the t-th token and all routed experts.
Considering the trade-off between computational
cost and performance on all three audio domains,
we set Ns = 1, Nr = 3, and Kr = 1.

3.4 Semantic Training Stage

To simultaneously enhance semantic representation
capabilities while preserving high reconstruction
ability, we introduce a domain-agnostic masked
modeling approach for UniCodec, inspired by
Wav2Vec 2.0 (Baevski et al., 2020). Notably, our
approach does not add any extra modules. Specifi-
cally, we mask a proportion of the features output
from the convolution layers in the encoder before
passing them into the contextual Transformer lay-
ers. Following the masking strategy of Wav2Vec
2.0 (Baevski et al., 2020), we randomly sample a
proportion p of all time steps to serve as starting
indices and then mask the subsequent M consecu-
tive time steps from each sampled index, allowing
overlapping spans.

After the contextual Transformer layers and the
quantizer, the quantized output qt, centered over
the masked time step t, requires the model to iden-
tify the unmasked convolutional latent representa-
tion ct from a set of K + 1 convolutional latent
representations ĉ ∈ Ct, which includes ct and K
distractors (Gutmann and Hyvärinen, 2010; Oord
et al., 2018). These distractors are uniformly sam-
pled from other masked time steps within the same
utterance. The contrastive loss is computed as:

Lm = −log
exp(sim(qt, ct)/K)∑
ĉ∈Ct

exp(sim(qt, ĉ)/K)
(5)

where we compute the cosine similarity
sim(a, b) = aT b/||a||||b|| between quan-
tized tokens and unmasked convolutional latent
representations (He et al., 2020; Chen et al., 2020).

Our preliminary experiments show that train-
ing from scratch with reconstruction, masked
modeling, and contrastive loss is challenging, as

the single-quantizer codec struggles to simultane-
ously perform reconstruction and mask prediction.
Therefore, we first train the codec model with
reconstruction-related loss following Wavtokenizer
in the initial acoustic training stage, omitting the
masking strategy. Then we introduce this semantic
training stage with a more difficult mask predic-
tion goal, allowing the codec to encapsulate high-
level semantic information after acquiring initial
reconstruction ability.

4 Experimental Setup

Datasets. We train UniCodec on approximately
80,000 hours of data spanning speech, music, and
audio domains. For the speech domain, we use
Librilight (Kahn et al., 2020), LibriTTS (Zen et al.,
2019), VCTK (Veaux et al., 2016), and Common-
Voice (Ardila et al., 2019). For the music domain,
we use Jamendo (Bogdanov et al., 2019) and Mu-
sicDB (Rafii et al., 2017) datasets. For the audio
domain, we use AudioSet (Gemmeke et al., 2017).
We evaluate the speech reconstruction performance
on LibriTTS test-clean. We evaluate the audio and
music reconstruction performance on the AudioSet
eval and MusicDB test sets, respectively.
Training details. Throughout the entire training
process, all input speech, music, and audio sam-
ples are resampled to 24 kHz. The batch size is
10 × 32 on 32 NVIDIA A800 80G GPUs. We
uniformly truncate excessively long segments in
the training data to a fixed duration of 10 seconds
and feed them into the model. We use the AdamW
optimizer (Kingma and Ba, 2015; Loshchilov and
Hutter, 2019) with an initial learning rate of 2e-4
and betas set to (0.9, 0.999). The learning rate is
decayed based on a cosine scheduler (Loshchilov
and Hutter, 2017).

During training, we provide a domain ID for
each sample to allow the model to use partitioned
domain-adaptive codebook to capture the distinct
characteristics of each domain. However, for fair
comparisons during evaluation, we do not pro-
vide domain IDs; instead, we rely on the codebook
to autonomously learn the distinct paradigms of
each domain and rely on the quantizer to select
the nearest token from the entire codebook. As
explained in Section 3, we design initial acoustic
training and semantic training stages for UniCodec
to balance acoustic and semantic capabilities. We
follow the Wav2vec 2.0 (Baevski et al., 2020) mask
strategy and configuration. The mask ratio p and
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mask length M is set to 0.1 and 5. For the loss
weights, we set the contrastive loss coefficient to
0.001.

Training with large-scale and diverse dataset in
both acoustic and semantic stages ensure gener-
alization ability of UniCodec. However, our pre-
liminary experiments indicate that large-scale data
training performs worse compared to training on
only LibriTTS dataset. Upon analysis, we find that
diverse and noisy data significantly hinders codec
reconstruction learning. To further improve the re-
construction ability, we select high-quality data for
a further fine-tuning stage. More details about the
fine-tuning stage are in Appendix C.
Evaluation Metrics. We adopt a comprehensive
set of evaluation metrics, as follows.
Tokens Per Frame (TPF): The number of parallel
tokens per timestep of encoded audio, affecting
ease of modeling token sequences in generative
models.
Tokens Per Second (TPS): The number of to-
kens per second. It determines the context length
required by a generative model, especially when
residual tokens are used in flattened form.
Downsample Rate (DR): The token compression
rate. It is calculated by dividing the input audio
sample rate by TPS, indicating the difficulty of
compressing audio waveforms into tokens.
Mel Distance (Reconstruction): L1 distance be-
tween the mel-scaled magnitude spectrograms of
the ground truth and the generated sample.
STFT Distance (Reconstruction): L1 distance be-
tween time-frequency representations of the ground
truth and the prediction, computed using multi-
scale Short-Time Fourier Transform (STFT).

More details about the metrics for speech recon-
struction evaluation can be found in Appendix E.
Baselines. We select both state-of-the-art (SOTA)
multi-layer quantizer codec models and single-
layer quantizer codec models as the baselines. For
multi-layer codecs, we compare against DAC (Ku-
mar et al., 2023), Encodec (Défossez et al.,
2023), SpeechTokenizer (Zhang et al., 2023), and
Mimi (Défossez et al., 2024). For single-layer
codecs, we compare with the official checkpoints
provided by Wavtokenizer (speech) 2, Wavtok-
enizer (music and audio) 3, BigCodec (Xin et al.,
2024) 4, and TAAE (Parker et al., 2024) 5.

2wavtokenizer_medium_speech_320_24k_v2.ckpt
3wavtokenizer_medium_music_audio_320_24k_v2.ckpt
4huggingface.co/Alethia/BigCodec/resolve/main/bigcodec.pt
5huggingface.co/stabilityai/stable-codec-speech-16k

5 Results and Discussions

5.1 Reconstruction Evaluation

We compare the reconstruction performance of
UniCodec against a broad selection of SOTA and
competitive codec models as baselines. Table 2
presents the results of UniCodec and baselines
on speech (LibriTTS test-clean), music (MusicDB
test), and audio (AudioSet eval) domains, in terms
of Mel Distance and STFT Distance. Noted that
all the reported results of UniCodec are inferred
without provided domain IDs. As shown in Ta-
ble 2, UniCodec demonstrates excellent recon-
struction performance on all three domains, out-
performing the unified single-codebook baseline
Wavtokenizer (unified) and also speech-specific
single-codec baselines such as BigCodec, TAAE,
and Wavtokenizer (speech). In the music and
audio domains, UniCodec also outperforms the
music/audio-specific baseline Wavtokenizer (mu-
sic/audio) on both MusicDB test set and AudioSet
eval set. Even when compared to multi-layer
RVQ-based unified baselines such as Encodec and
Mimi, the single-layer unified UniCodec shows su-
perior performance across all three domains, except
for slightly lower performance compared to DAC
(which has a much larger tokens-per-second rate)
in the music domain. The Real-Time Factors (RTF)
and comparisons of the number of parameters can
be found in Appendix B.

Table 3 further compares the speech domain re-
construction performance of different codec mod-
els on LibriTTS test-clean, using PESQ, STOI,
F1 and UTMOS, assessing the codecs in terms of
naturalness, distortion, and intelligibility. The uni-
fied UniCodec significantly outperforms WavTok-
enizer (unified) across all metrics. Even compared
to WavTokenizer (speech) and BigCodec, which
are SOTA speech-specific models with single-layer
quantizers, UniCodec achieves better PESQ and
STOI, demonstrating superior reconstruction qual-
ity. Furthermore, despite having a much higher
downsampling rate (DR), UniCodec remains com-
petitive with multi-layer quantizer models such
as Encodec, Mimi, and SpeechTokenizer, which
have higher tokens per second (TPS). Appendix A
also reports the reconstruction performance on Lib-
riTTS test-other.

The reconstruction results of the MUSHRA sub-
jective test are shown in Table 4. UniCodec outper-
forms WavTokenizer (unified) markedly in recon-
struction quality across speech, music, and audio
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Table 2: Objective reconstruction results of UniCodec and baselines on speech, music and audio domains on
LibriTTS test-clean, MusicDB test set, and Audioset eval set, in terms of Mel Distance and STFT Distance. TPS
denotes token per second. We bold the best results in all the models, and bold and underline the best results in
single-codebook codec models.

Model Unified TPS↓ LibriTTS test-clean MusicDB test AudioSet eval

Mel Dist↓ STFT Dist↓ Mel Dist↓ STFT Dist↓ Mel Dist↓ STFT Dist↓
DAC 600 0.3697 1.5525 0.3578 1.9621 0.4581 2.1378

Encodec 600 0.5367 1.8271 0.5565 2.1678 0.7601 2.6273
Mimi 100 0.6709 1.9859 0.6714 2.2526 0.8406 2.6639
TAAE 50 0.7508 2.2426 1.4067 4.1340 1.9335 5.2897
DAC 75 0.7217 2.1662 1.8894 6.2476 1.7063 5.2923

BigCodec 80 0.4427 1.7385 1.3803 4.2366 1.8632 5.6171
Wavtokenizer (speech) 75 0.5001 1.7879 0.6586 3.0335 0.5990 2.5479

Wavtokenizer (music/audio) 75 0.5451 1.8649 0.4516 2.2450 0.4536 2.1871
Wavtokenizer (unified) 75 0.5308 1.8614 0.5435 2.5451 0.5193 2.3727

UniCodec (Ours) 75 0.3442 1.5147 0.3959 2.1822 0.3820 2.1065

Table 3: Objective reconstruction results on the Speech domain from UniCodec and baselines on LibriTTS
test-clean, in terms of naturalness, distortion, and intelligibility. DR denotes the Downsample Rate (the input audio
sample rate division by Tokens Per Second (TPS)). Unified denotes the codec model can support all three domains
of speech, music, and sound. The results of models marked by † are cited from the Wavtokenizer paper (Ji et al.,
2024c) and others are reproduced by us based on the checkpoints released by the corresponding work.

Model Unified DR (↑) TPF (↓) TPS (↓) PESQ (↑) STOI (↑) F1 (↑) UTMOS (↑)

Ground Truth† - - - - - - - 4.0562
DAC 40 8 600 3.5197 0.9709 0.9546 3.6905

Encodec† 40 8 600 2.7202 0.9391 0.9527 3.0399
SpeechTokenizer† 40 8 600 2.6121 0.9165 0.9495 3.8794

Mimi 240 8 100 2.2695 0.9118 0.912 3.5731
TAAE 320 2 50 1.8955 0.8816 0.9260 4.1389

DAC 320 1 75 1.1763 0.7739 0.7560 1.3531
BigCodec 200 1 80 2.6872 0.9293 0.9480 4.0367

Wavtokenizer (speech)† 320 1 75 2.3730 0.9139 0.9382 4.0486
Wavtokenizer (unified) 320 1 75 1.8379 0.8718 0.9175 3.6115

UniCodec (Ours) 320 1 75 3.0266 0.9493 0.9486 3.9873

Table 4: Subjective MUSHRA test reconstruction results from codec models on speech, music and audio
domains, on LibriTTS test-clean, MusicDB test set and AudioSet eval set. We report mean and standard deviation.

Model Unified LibriTTS test-clean (↑) MusicDB test (↑) AudioSet eval (↑)

Ground Truth - 93.52 ± 1.99 96.18 ± 1.47 95.28 ± 2.18
Wavtokenizer (speech) 85.44 ± 2.29 - -

Wavtokenizer (music & audio) - 75.24 ± 2.38 80.19 ± 2.43
Wavtokenizer (unified) 80.40 ± 2.54 56.10 ± 3.74 62.21 ± 3.42

UniCodec (Ours) 90.74 ± 2.06 77.77 ± 2.45 82.43 ± 2.56

domains. Even when compared to domain-specific
codecs, UniCodec performs slightly better than
WavTokenizer (speech) in the speech domain, and
WavTokenizer (music/audio) in the music and au-
dio domains. These results further demonstrate
that in all three domains, UniCodec achieves su-
perior subjective reconstruction performance
while maintaining a high compression rate.

5.2 Semantic Evaluation
We evaluate the semantic richness of different
codec models on several speech, music, and audio

domain datasets of the ARCH benchmark (La Qua-
tra et al., 2024). The speech domain includes
the RAVDESS (Livingstone and Russo, 2018) and
Audio-MNIST (Becker et al., 2024) datasets, the
music domain includes the MTT (Law et al., 2009)
and MS-DB (Rafii et al., 2017) datasets, and the au-
dio domain includes the ESC50 (Piczak, 2015) and
VIVAE (Holz et al., 2022) datasets. We extract em-
beddings corresponding to the discrete codebooks
of each acoustic codec model as its respective repre-
sentations and evaluate the classification accuracy
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Table 5: Semantic representation evaluation results on the ARCH benchmark, in terms of classification accuracy.
The results of models marked by † are cited from the Wavtokenizer paper (Ji et al., 2024c).

Model TPS (↓) Speech Music Audio

RAVDESS (↑) AM (↑) MTT (↑) MS-DB (↑) ESC50 (↑) VIVAE (↑)

Encodec† 150 27.43 36.49 19.00 32.45 16.99 26.30
DAC† 100 25.00 62.87 25.02 51.37 20.65 29.91
Wavtokenizer (speech)† 75 32.55 69.57 - - - -
Wavtokenizer (music&audio)† 75 - - 28.35 57.64 25.50 35.63
UniCodec 75 40.28 70.94 29.55 59.29 26.00 34.17

w/o semantic stage 75 36.81 69.84 28.09 54.05 20.80 30.21

Table 6: Ablation study of UniCodec by evaluating the effects of domain ID during evaluation, the domain MoE
module, domain-adaptive codebook, and the semantic training stage and the fine-tuning stage.

Model LibriTTS test-clean MusicDB test AudioSet eval

Mel Dist ↓ STFT Dist ↓ Mel Dist ↓ STFT Dist ↓ Mel Dist ↓ STFT Dist ↓
UniCodec 0.3442 1.5147 0.3959 2.1822 0.3820 2.1065

w. domain id 0.3474 1.5151 0.3912 2.1818 0.3824 2.1061
w/o finetune stage 0.4476 1.7005 0.4490 2.2505 0.4366 2.1659
w/o semantic&finetune stage 0.4481 1.6978 0.4534 2.2690 0.4380 2.1723

w/o MoE 0.4883 1.8024 0.4592 2.3153 0.4548 2.2633
w/o partitioned codebook 0.4873 1.7742 0.5064 2.3031 0.5135 2.2382

of the codec models on the ARCH datasets using
these representations. The experimental results, as
shown in Table 5, demonstrate that our UniCodec
outperforms WavTokenizer, DAC (configured with
a single quantizer) and Encodec (configured with
two-layer quantizers), in terms of classification
accuracy. Furthermore, performance comparison
against the counterpart that excludes the seman-
tic stage training (w/o semantic stage) verifies the
effectiveness of the proposed semantic training us-
ing mask prediction and contrastive loss. In future
work, we plan to explore UniCodec-based ALM on
downstream audio tasks such as audio continuation
and generation.

5.3 Ablation study

We conduct ablation study by evaluating the ef-
fect of proposed methods and modules on the Lib-
riTTS test-clean, MusicDB test, and AudioSet eval
sets. As shown in Table 6, providing the domain
ID for the partitioned domain-adaptive codebook
during evaluation performs comparably to the de-
fault setting without providing domain ID. The
only exception is the music domain, where perfor-
mance improves slightly due to the inherent mixed
nature of songs, which contain both speech and
music elements. These results demonstrate that
the partitioned domain-adaptive codebook can au-
tonomously capture distinct domain-specific fea-
tures. The third row shows that without the fine-

tuning stage, a significant performance degrada-
tion is observed when trained on large but noisy
data. This highlights the critical role of high-quality
data in codec training. The fourth row reports re-
sults without both semantic training and fine-tuning
stages. Comparison between the third and fourth
rows shows that our proposed semantic stage en-
hances semantic information while preserving re-
construction ability. Furthermore, removing the
MoE module from UniCodec without the semantic
and fine-tuning stages (i.e., only the initial acoustic
training stage) results in an additional performance
degradation. Removing the partitioned domain-
adaptive codebook (i.e. naive single codebook)
leads to even greater degradation than removing the
MoE module. These results confirm the effective-
ness of the proposed domain MoE and partitioned
domain-adaptive codebook strategy in achieving a
unified codec with superior reconstruction ability.

6 Conclusions

In this work, we introduce UniCodec, a low-bitrate
unified audio tokenizer designed to support multi-
domain audio data, including speech, music, and
sound, using a single quantizer. To achieve this
goal of unified modeling, we propose the parti-
tioned domain-adaptive codebook and the domain
MoE strategy to capture the distinct characteristics
of each domain. To enrich the semantic information
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without introducing additional modules, we pro-
pose a self-supervised mask prediction modeling
algorithm during codec training. Comprehensive
objective and subjective evaluations demonstrate
that, as a unified audio codec with a single code-
book, UniCodec achieves excellent performance in
both acoustic and semantic capabilities.

7 Limitations

Our experiments reveal that UniCodec training will
be disrupted by noisy or low-quality inputs. Model-
ing speech in complex environments, such as noisy
settings or with overlapped speech, remains a chal-
lenge. We anticipate that future work will address
these issues, improving model robustness for such
scenarios.

Although our experiments demonstrate that the
proposed semantic training stage with mask predic-
tion and contrastive loss effectively captures seman-
tic information, it remains challenging for a unified
single-codebook codec to balance both acoustic
and semantic density across diverse domain data.
We believe that it is a promising research direction
to focus on enhancing semantic capabilities while
preserving reconstruction performance, without in-
troducing additional modules.

We have evaluated the model in streaming use
cases but have observed some performance degra-
dation. Future work should aim to improve stream-
ing capabilities while maintaining high reconstruc-
tion quality.

Due to space limit and computational constraints,
we have focused on demonstrating UniCodec’s re-
construction capabilities and have not yet explored
training UniCodec with LLM to function as an Au-
dio Language Model (ALM). In future work, we
plan to investigate the performance of UniCodec-
based ALM on downstream audio tasks.
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A Speech Reconstruction Evaluation

We further evaluate UniCodec on the LibriTTS test-
other set to assess its reconstruction ability on noisy
data. The results in Table 8 show that the recon-
structed speech from our model achieves a higher
UTMOS score than the ground truth on the Lib-
riTTS test-other noisy dataset. This indicates that
UniCodec reconstructs speech with greater natural-
ness and quality, even in the presence of noise. As
a unified codec with a single codebook, UniCodec
outperforms Wavtokenizer (unified) across all met-
rics. Even when compared with other state-of-the-
art speech-specific codecs with a single codebook,
UniCodec maintains competitive performance.

B Real-Time Factor

To evaluate the real-time performance of different
audio codec models, we compute the Real-Time
Factor (RTF) for audio durations of 5, 10, 30, and
60 seconds. The evaluation is conducted on a test
set of 1,000 audio clips to ensure a robust and fair
comparison. All experiments are performed on an
NVIDIA A100 GPU. RTF measures the processing
speed relative to real-time feature extraction, a crit-
ical metric for NACs to minimize latency. Lower
RTF values indicate faster processing. As shown in
Table 9, UniCodec has more parameters than Wav-
tokenizer due to the incorporation of transformer
layers and the MoE structure. This results in a
higher RTF for UniCodec with 5-second inputs
compared to Wavtokenizer. However, for 10, 30,
and 60-second inputs, UniCodec exhibits better
RTF performance, and benefits from the superior
parallel processing capabilities of its transformer
layers, compared to the LSTM module in Wav-
tokenizer. Semanticodec has a much larger RTF,
making it unsuitable for real-time applications. For
DAC, we do not report results for 30s and 60s due
to out-of-memory issues.

C Fine-tuning Stage

In the finetune stage, we select high-quality speech
data with a high UTMOS, including LibriTTS train-
clean, VCTK, and LJSpeech (Ito, 2017). Addi-
tionally, the learning rate and mel loss coefficient
are set to 5e-5 and 450, respectively. These train-
ing strategies in the finetune stage significantly en-
hance the model’s ability to better learn reconstruc-
tion ability.

Table 7: Codebook utilization rate of the whole code-
book and three domain-partitioned codebook in the con-
dition of with and without domain id provided.

Whole Speech Music Audio

w/o domain id 99.63% 98.54% 100% 99.95%
w. domain id 99.62% 98.54% 100% 99.96%

D Codebook Utilization

We further evaluate the codebook utilization rate
for both the entire codebook and the partitioned
codebook across each domain. The results are eval-
uated on the LibriTTS test-clean, MusicDB test,
and AudioSet eval sets. As shown in Table 7, the
utilization rates for each domain-partitioned code-
book are nearly fully exploited, demonstrating that
our UniCodec’s domain-adaptive codebook is both
well-trained and effectively utilized.

E Speech Reconstruction Metrics

PESQ (Rix et al., 2001) (Distortion): A speech
quality assessment metric that compares recon-
structed speech with reference speech, with scores
ranging from 1 to 5, and correlates with human
judgment.
STOI (Intelligibility): A metric measuring speech
intelligibility by comparing short-time spectral en-
velopes between reconstructed and ground truth
speech, with scores ranging from 0 to 1.
F1 Score (Voiced/Unvoiced Classification): It
balances precision and recall for voiced/unvoiced
classification.
UTMOS (Saeki et al., 2022) (Naturalness): An
automatic speech MOS (Mean Opinion Score)
predictor evaluates the naturalness of generated
speech, reflecting overall auditory quality.
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Table 8: Objective reconstruction results on the Speech domain from UniCodec and baselines on LibriTTS
test-other, in terms of naturalness, distortion, and intelligibility. DR denotes the Downsample Rate (the input audio
sample rate division by Tokens Per Second (TPS)). Unified denotes the codec model can support all three domains
of speech, music, and sound. The results of models marked by † are cited from the Wavtokenizer paper (Ji et al.,
2024c) and others are reproduced by us based on the checkpoints released by the corresponding work.

Model Unified DR (↑) TPF (↓) TPS (↓) PESQ (↑) STOI (↑) F1 (↑) UTMOS (↑)

Ground Truth† - - - - - - - 3.4831
DAC† 48.9 9 900 3.7595 0.9576 0.9696 3.3566

Encodec† 40 8 600 2.6818 0.9241 0.9338 2.6568
SpeechTokenizer† 40 8 600 2.3269 0.8811 0.9205 3.2851

Mimi 240 8 100 2.0952 0.8816 0.8875 3.0608
TAAE 320 2 50 1.7539 0.8380 0.8994 3.7136

DAC† 440 1 100 1.2454 0.7505 0.7775 1.4986
BigCodec 200 1 80 2.3817 0.9094 0.9237 3.5453

Wavtokenizer (speech)† 320 1 75 2.2614 0.8907 0.9172 3.4312
Wavtokenizer (unified) 320 1 75 1.6649 0.8312 0.8874 3.0820

UniCodec 320 1 75 2.2749 0.9095 0.9109 3.5800

Table 9: Real-Time Factors (RTFs) for audio codec models on test audio clips of 5s, 10s, 30s and 60s duration using
an A100 GPU.

Model Parameter (M) RTF (5s)↓ RTF (10s)↓ RTF (30s)↓ RTF (60s)↓
DAC 76 0.01021 0.00771 - -

SemantiCodec 507 1.10905 0.54455 0.69320 0.61164
Wavtokenizer 77 0.00377 0.00321 0.00286 0.00280

UniCodec 274 0.00467 0.00287 0.00196 0.00187
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