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Abstract

Despite the rapidly growing demand for multi-
modal retrieval, progress in this field remains
severely constrained by a lack of training data.
In this paper, we introduce MegaPairs, a novel
data synthesis method that leverages vision lan-
guage models (VLMs) and open-domain im-
ages, together with a massive synthetic dataset
generated from this method. Our empiri-
cal analysis shows that MegaPairs generates
high-quality data, enabling the multimodal re-
triever to significantly outperform the baseline
model trained on 70× more data from existing
datasets. Moreover, since MegaPairs solely re-
lies on general image corpora and open-source
VLMs, it can be easily scaled up, enabling con-
tinuous improvements in retrieval performance.
In this stage, we produced more than 26 million
training instances and trained several models
of varying sizes using this data. These new
models achieve state-of-the-art zero-shot per-
formance across 4 popular composed image
retrieval (CIR) benchmarks and the highest
overall performance on the 36 datasets pro-
vided by MMEB. They also demonstrate no-
table performance improvements with addi-
tional downstream fine-tuning. Our code, syn-
thesized dataset, and pre-trained models are
publicly available at https://github.com/
VectorSpaceLab/MegaPairs.

1 Introduction

Multimodal retrieval is a critical research problem
for IR and AI communities. It aims to satisfy
people’s information needs across different data
modalities, especially texts and images. Nowa-
days, multimodal retrieval has been applied to a
wide variety of real-world scenarios, such as im-
age search (Chen et al., 2015; Wu et al., 2021;
Zhang et al., 2024), visual question answering
(VQA) (Marino et al., 2019; Mathew et al., 2021),

*Co-first authors.
†Corresponding authors.

and retrieval-augmented generation (RAG) of vi-
sion language models (Chen et al., 2022; Yu et al.,
2024). Given the widespread application scenar-
ios, it’s necessary to develop universal multimodal
retrievers which can uniformly support any task
requirements and working domains.

The progress of universal multimodal retrievers
have been substantially advanced on top of the pre-
trained vision-languages models, like CLIP (Rad-
ford et al., 2021), ALIGN (Jia et al., 2021), and
SigLIP (Zhai et al., 2023). These models are pre-
trained to produce discriminative and unified repre-
sentations for texts and images, thus creating a solid
foundation for multimodal retrieval. However, the
existing vision-language encoders are mostly pre-
trained from text-image matching tasks. Although
these models have achieved an initial capability for
text-to-image retrieval (Young et al., 2014; Chen
et al., 2015), they are insufficient for other com-
mon multimodal tasks, such as composed image
retrieval (Liu et al., 2021; Baldrati et al., 2023;
Zhang et al., 2024) and multimodal document re-
trieval (Chang et al., 2022; Liu et al., 2022).

To enhance the multi-task capacity, fine-tuning
pre-trained models with comprehensive instruc-
tions, commonly known as instruction-tuning, has
gained significant popularity. This approach was
first applied in the supervised fine-tuning of large
language models (LLMs) (Ouyang et al., 2022; Wei
et al., 2021; Chung et al., 2024), and later intro-
duced for training text embeddings (Su et al., 2022;
Asai et al., 2022; Zhang et al., 2023; Xiao et al.,
2024). Building on these successes, instruction-
tuning has been further extended to multimodal
embedding models (Wei et al., 2024; Sharify-
moghaddam et al., 2024), where pre-trained vision-
language encoders are continually fine-tuned us-
ing a variety of multimodal retrieval instructions.
Given the scarcity of instruction-tuning data for em-
bedding models, researchers have proposed lever-
aging LLMs to generate synthetic data from In-
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ternet resources (Wang et al., 2023). In the field
of multimodal retrieval, a notable example is pre-
sented by MagicLens (Zhang et al., 2024), which
synthesizes open-ended search instructions for co-
existing images within the same webpage.

Despite recent advancements by MagicLens, cur-
rent data synthesis methods still face significant
limitations in data scalability, quality, diversity,
and availability. Specifically, only a small fraction
of webpages on the internet contain multiple im-
ages (scalability), not to mention that many of these
co-existing images are either unrelated or near-
duplicates (quality). Besides, the remaining cor-
related images often exhibit monotonous relation-
ships, such as different angles of the same object
(diversity). Finally, large-scale instruction-tuning
datasets for multimodal retrieval are typically held
privately by individual research labs (availability).

In this paper, we introduce a novel data syn-
thesis method called MegaPairs, accompanied by
a large-scale instruction dataset generated using
this approach. MegaPairs is distinguished by its
construction of a heterogeneous KNN triplet for
open-domain images. Particularly, it leverages
three different similarity models to sample corre-
lated image pairs, including CLIP vision-encoder
for visual-semantic correlations (Sun et al., 2023),
DINO vision-encoder for visual-pattern correla-
tions (Oquab et al., 2024), and CLIP text-encoder
for caption correlations. The sampled image pairs
are presented for the VLM and LLM annotators,
which generate comprehensive descriptions of the
relationships between the two images and create
pseudo-retrieval instructions based on the descrip-
tions. This approach enables a huge amount of
instructions to be generated for a general dataset,
like Datacomp (Gadre et al., 2024), which signif-
icantly improves the scalability of data synthesis.
It also introduces diverse instructions of guaran-
teed quality, given its sampling of heterogeneous
relationships from open-ended image corpora. Ad-
ditionally, by utilizing open-source VLM and LLM
models (e.g., InternVL2-26B (Chen et al., 2024b),
Llama-3-8B (Dubey et al., 2024)), the entire pro-
cess can operate at a low cost.

We’ve produced 26 million data instances in this
stage, achieving superior data quality compared to
the existing datasets. In our pilot experiment, with
just 500K sampled instances from MegaPairs, the
same pre-trained model’s fine-tuning performance
already surpasses that of the entire 36.7M training
instances from MagicLens, i.e., delivering better re-

sults with 70× less training data. We further trained
three multimodal retrievers, MMRet, of varying
sizes based on the whole synthetic dataset and per-
form comprehensive evaluations with a wide range
of multimodal retrieval tasks. Remarkably, MMRet
achieved state-of-the-art performance on 4 popu-
lar composed image retrieval (CIR) benchmarks
and the 36 datasets provided by MMEB (Jiang
et al., 2024b) in the zero-shot setting. Furthermore,
the models demonstrated substantial improvements
and maintain leading positions after downstream
fine-tuning. The entire suite of assets, including the
dataset, the well-trained models, and the data pro-
duction pipeline, will be made publicly available
to advance the future progress in this field.

2 Related Work

Multimodal Retrieval. Traditionally, retrieval
tasks have focused on scenarios where queries
and candidates exist in distinct modalities, such
as unimodal retrieval (Thakur et al., 2021) and
cross-modal retrieval (Chen et al., 2015). How-
ever, there is a growing demand for multimodal
retrieval tasks, where queries or candidates in-
tegrate both image and text modalities. These
tasks have wide applications, including image re-
trieval with instructions (Wu et al., 2021; Liu et al.,
2021; Zhang et al., 2024), multimodal document
retrieval (Chang et al., 2022; Liu et al., 2022),
knowledge retrieval with multimodal queries (Luo
et al., 2023), and retrieval-augmented generation
(Yasunaga et al., 2023; Yu et al., 2024). Most ex-
isting methods employ pre-trained vision-language
models (VLMs) to address these tasks (Radford
et al., 2021; Li et al., 2023; Saito et al., 2023).
However, the common VLMs are purely trained on
image-text matching datasets (Changpinyo et al.,
2021; Schuhmann et al., 2022), which are in lack
of ability to jointly encode and comprehend both
modalities effectively. As a result, it is necessary
to create proper datasets so as to extend VLMs for
the diversified multimodal retrieval tasks.

Instruction Tuning for Multimodal Retrieval.
Instruction-tuning is a popular strategy to enhance
the multi-task capacity for both large language
models (Ouyang et al., 2022; Chung et al., 2024;
Tan et al., 2024) and embedding models (Su et al.,
2022; Asai et al., 2022; Zhang et al., 2023; Xiao
et al., 2024; Chen et al., 2024a). While there have
been a few instruction datasets proposed for mul-
timodal retrieval (Liu et al., 2021, 2022; Chang
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Summarize the Relationships

How 2020 Toyota Yaris Concept 
Hints To Design Future Toyota.

Multiple 
Similarity Models

...

Query Item

The images both relate to Toyota 
vehicles.... The source image 
highlights the futuristic exterior 
of ..., while the target focuses on 
the practical interior seating....

MLLM
Generate instructions
• What does the inside 

of this car look like?
• What is visible when 

the door is opened?

LLM

What does the inside of this car 
look like?...

Mined Image Pairs Resulted Triplet Data

Retrieved Images

(a)

(b)
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Image-Text 
Dataset

Query Item 
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Figure 1: Construction pipeline of multimodal triplets: (a) mining of image pairs, (b) generation of open-ended
instructions. Multiple similarity models are used to introduce diversified correlations for the image pairs.

et al., 2022; Wei et al., 2024; Zhou et al., 2024),
they are limited in scale and diversity due to their
reliance on human annotation. Recently, a notable
progress was made by MagicLens (Zhang et al.,
2024), where a large-scale open-ended search in-
struction dataset is created from the co-existed im-
ages within webpages. However, given the shortage
of multi-image webs, MagicLens is limited by its
scalability and data-quality. Moreover, this dataset
is still held private and inaccessible to public users.
As a result, the creation and release of high-quality
instruction-tuning datasets have become imperative
for advancing multimodal retrieval research.

3 Methodology

3.1 MegaPairs Construction

Training on large-scale open-world data signifi-
cantly enhances the generalization capabilities of
foundation models. For instance, CLIP (Radford
et al., 2021) has achieved remarkable advance-
ments in cross-modal retrieval and various down-
stream tasks due to its extensive training on text-
image pairs. However, the multimodal instruc-
tion tuning data, despite its importance to mul-
timodal retrieval (Zhang et al., 2024), is scarce
in natural world and expensive to annotate by hu-
man effort. In this paper, we propose to construct
large-scale multimodal instruction-tuning datasets
through data synthesis. Formally, each data in-
stance contains the following triplet: a pair of im-
ages (Iq, It), together with a textual instructions
Tq→t specifying the transition relationship from
query image Iq to target image It.

We identify two primary technical challenges
in acquiring such triplets: (1) sampling relevant
and diversified image pairs at scale, (2) precise
annotation of instruction for the sampled image

pair. To address these challenges, we propose
leveraging the common open-domain image cor-
pora. Intuitively, a large-scale corpus contains
abundant correlated images of diverse semantic
relationships, which can be mined and annotated
for our instruction-tuning data. Our data synthesis
pipeline is demonstrated as Figure 1, which in-
volves two main components: the mining of image
pairs and the generation of open-ended instructions.

Mining Correlated Image Pairs. As illustrated
in Figure 1(a), we propose sampling correlated im-
age pairs from a large-scale image corpus. For
each query image (Iq, Cq), we utilize multiple sim-
ilarity models to search for a diverse set of corre-
lated target images of heterogeneous correlations
{It1 , It2 , . . . , Itn}. In our work, the following
types of correlations are used: (1) visual-semantic
correlation, which measures the semantic correla-
tion of two images regardless of visual similarity,
e.g., two different views of the same cars; (2) visual-
pattern correlation, which captures the visual simi-
larity of two images regardless of semantic corre-
lation, e.g., different cars in similar backgrounds;
(3) caption correlation, which measures the textual
similarity between two images’ captions.

Recognizing the importance of hard negatives
in training retrieval models (Xiong et al., 2020;
Hofstätter et al., 2021; Zhang et al., 2022), for each
pair (Iq, Iti), we include additional images {Itj |
tj ̸= ti} from the retrieved set as hard negative
samples. This approach is simple but empirically
effective. We validate the scalability and quality
of our data pairs in Section 4.3, with additional
examples visualized in Appendix F.

Generating Open-Ended Instructions. As
shown in Figure 1(b), we utilize open-source
multimodal large language models (MLLM) and
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large language models (LLM) for the automated
annotation of mined image pairs P = {(Iq, Iti)}.
Initially, each image pair (Iq, Iti) is processed by
the MLLM to generate a detailed description Di of
the common concepts and differences between the
query image Iq and the target image Iti . This de-
scription Di is then refined by the LLM to produce
textual instructions Tq→ti . We prompt the LLM to
generate multiple Tq→ti for each pair, enhancing
the diversity of the textual instructions. Ultimately,
we construct a multimodal triplet (Iq, Tq→ti , Iti),
where (Iq, Tq→ti) can be used to retrieve Iti . This
two-step annotation method ensures both accuracy
and diversity in the automated annotation process
while leveraging open-source models. The detailed
prompts can be found in Appendix A.

Implementations. A dataset of 26,235,105 im-
age pairs is created based on the above data synthe-
sis pipeline. We utilize a subset from the Recap-
DataComp-1B (Li et al., 2024b) as our image cor-
pus, containing 20 million captioned images. For
similarity models, we employ EVA-CLIP’s image
encoder for visual-semantic correlation (Sun et al.,
2023), DINOv2 (Oquab et al., 2024) for visual-
pattern correlation, and EVA-CLIP’s text encoder
for caption similarity. We filter the image pairs
whose similarity score is within (0.8, 0.96), thus
eliminating weak associations and near duplica-
tions. We further leverage InternVL2-26B (Chen
et al., 2024b) and LLaMA3-8B (Dubey et al., 2024)
to generate the open-ended instructions. For each
image pair, we create at least three different textual
instructions and introduce five hard negatives.

3.2 MMRet Model
We propose MMRet, a series of models designed
for universal multimodal retrieval based on pre-
trained vision-language models (VLMs). Our MM-
Ret integrates two distinct VLM architectures to
achieve a universal multimodal embedding.

CLIP-based MMRet. The original CLIP (Rad-
ford et al., 2021) model employs a dual encoder
architecture that independently encodes image and
text data. We denote the image encoder as ΦI and
the text encoder as ΦT . Given an image I or text
T , their embeddings are computed as follows:

ei = ΦI(I)

et = ΦT (T )
(1)

To produce the multimodal embedding for a com-
posed image-text sample (I, T ), we employ the

score-fusion strategy as used by UniIR (Wei et al.,
2024), which directly uses an element-wise addi-
tion of the outputs from the dual encoders:

eit = ΦI(I) + ΦT (T ) (2)

In our CLIP-based MMRet, we trained both base
and large models.

MLLM-based MMRet. The multimodal large
language models (MLLMs) incorporate a vi-
sual encoder, typically based on a vision trans-
former (Dosovitskiy et al., 2021), into a large lan-
guage model (LLM). This integration allows image
tokens to be directly processed by the LLM. Con-
sequently, MLLMs can effectively handle diverse
multimodal inputs by converting any type of input
into a sequence of tokens. For instance, composed
image-text data is transformed into interleaved se-
quences of image and text tokens, enabling the
model to process them seamlessly.

Our MMRet model builds upon the LLaVA-
1.6 (Liu et al., 2024). In both training and inference
stages, MMRet uses task-specific instructions for
query inputs to improve generalization, aligning
with standard practices in LLM-based embedding
models (Wang et al., 2023; Li et al., 2024a). A typi-
cal multimodal query input is structured as follows:

⟨instruct⟩ {task_inst} ⟨query⟩ {qt} {qi} [EOS]
(3)

where {task_inst} represents the task-specific in-
struction, {qt} denotes the input query text, and
{qi} is the input query image. The normalized last
hidden state of the [EOS] token in the MLLM is
used as the embedding of any given input sequence.

3.3 Multimodal Contrastive Learning
We employ multimodal contrastive learning to
transform the original CLIP and MLLM into
our MMRet model, enabling various multimodal
retrieval tasks. We use the standard InfoNCE
loss (Oord et al., 2018) as our training objective:

L = − 1

|Q|
∑

qi∈Q
log

exp(eqi · ec+i /τ)∑
cj∈C exp(eqi · ecj/τ)

(4)

where the set Q includes all query samples qi in a
batch. The vectors eqi and ec+i

are the embeddings

of the query qi and its positive candidate c+i , respec-
tively. The set C contains all in-batch candidates.
Notably, both q and c can be images, text, or com-
posed image-text data. The parameter τ modulates
the penalties on negative samples and is set to 0.02
unless otherwise specified in this paper.
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Methods Backbone # Params CIRCO CIRR FashionIQ GeneCIS

mAP@5 R@1 Rs@1 R@10 Rs@1

SEARLE (Baldrati et al., 2023) CLIP-B 165M 9.4 24.0 54.9 22.9 -
CIReVL (Karthik et al., 2023) CLIP-B 12.3B† 14.9 23.9 60.2 28.3 15.9
LDRE (Yang et al., 2024) CLIP-B 7.9B† 18.0 25.7 60.5 24.8 -
MagicLens-B (Zhang et al., 2024) CLIP-B 166M 23.1 27.0 66.7 26.3 15.0
MagicLens-B‡ (Zhang et al., 2024) CoCa-B 267M 30.8 31.6 69.3 35.2 17.4∗

MMRet-Base CLIP-B 149M 34.3 36.1 71.6 31.9 18.0

Pic2Word (Saito et al., 2023) CLIP-L 429M 8.7 23.9 - 24.7 11.2
PLI (Chen and Lai, 2023) CLIP-L 428M 10.4 25.5 55.6 35.4 -
SEARLE (Baldrati et al., 2023) CLIP-L 442M 11.7 24.2 53.8 25.6 12.3
CompoDiff (Gu et al., 2024a) CLIP-L 568M 12.6 18.2 57.4 36.0 14.9
CIReVL (Karthik et al., 2023) CLIP-L 12.5B† 18.6 24.6 59.5 28.6 15.9
LDRE (Yang et al., 2024) CLIP-L 8.2B† 23.4 26.5 60.4 28.5 -
MagicLens-L (Zhang et al., 2024) CLIP-L 465M 29.6 30.1 68.1 30.7 16.3
MagicLens-L‡ (Zhang et al., 2024) CoCa-L 613M 34.1∗ 33.3∗ 70.9∗ 38.0 16.7

MMRet-Large CLIP-L 428M 39.2 38.0 73.2 34.6 18.1

LDRE (Yang et al., 2024) CLIP-G 10.3B† 31.1 36.2 68.8 32.5 -
CIReVL (Karthik et al., 2023) CLIP-G 14.6B† 26.8 34.7 68.0 32.2 17.4∗

IP-CIR (Li et al., 2024c) CLIP-G 43.8B† 32.8 39.3 70.0 45.7∗ -
E5-V (Jiang et al., 2024a) LLaVA-1.6 8.35B 19.1 33.9 - 31.8 -
MM-Embed (Lin et al., 2024) LLaVA-1.6 7.57B 32.3 - - - -

MMRet-MLLM LLaVA-1.6 7.57B 42.2 46.7 75.4 35.6 21.1

Table 1: Zero-shot retrieval performance on various CIR benchmarks. ∗ denotes the previous best performance for
each benchmark prior to MMRet. † indicates methods with multiple components (e.g., GPT-3.5, Qwen1.5-32B); we
report # parameters of components with known sizes. The CoCa-based MagicLens‡ models are proprietary. Results
in bold and underline denote the best and second-best performances for each model scale, respectively. Our MMRet
model achieves state-of-the-art results across different model sizes and benchmarks, surpassing the previous SOTA
by 8.1% on the main benchmark CIRCO, significantly advancing zero-shot CIR methods.

4 Experiments

In this section, we first evaluate the effectiveness of
MegaPairs on zero-shot composed image retrieval
(CIR) tasks in Section 4.1. Next, we explore the im-
pact of MegaPairs on broader multimodal retrieval
tasks in Section 4.2. Finally, we conduct detailed
analysis on our MegaPairs in Section 4.3.

4.1 Zero-shot Performance on CIR tasks

4.1.1 Implementation Details
We utilize our MegaPairs dataset to perform mul-
timodal contrastive training for our MMRet mod-
els. For the CLIP-based MMRet, we initialize the
model using both the base1 and large2 versions
of CLIP, referred to as MMRet-Base and MMRet-
Large, respectively. For the MLLM-based MMRet,
we leverage the LLaVA-1.6 Mistral 7B architec-
ture3 and initialize the model parameters accord-
ingly, which we denote as MMRet-MLLM. The

1https://huggingface.co/openai/clip-vit-base-patch16
2https://huggingface.co/openai/clip-vit-large-patch14
3https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf

training details of MMRet on MegaPairs can be
found in Appendix B.

4.1.2 Benchmarks
We evaluate our MMRet in a zero-shot setting
across four different composed image retrieval
benchmarks: CIRCO (Baldrati et al., 2023),
CIRR (Liu et al., 2021), FashionIQ (Wu et al.,
2021), and GeneCIS (Vaze et al., 2023). Following
previous practice (Zhang et al., 2024), CIRCO is
considered our main benchmark due to its extensive
candidate pool and high-quality annotations. De-
tailed information and metrics for each benchmark
can be found in Appendix C.

4.1.3 Evaluation Results
The main evaluation results of MMRet across four
benchmarks are shown in Table 1, with full results
for each benchmark provided in Appendix D. We
have identified three key observations:

(1) Our MMRet-MLLM model achieves lead-
ing performance across three of the four bench-
marks. Specifically, on our main benchmark,
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Models Per Meta-Task Score Overall
Classification VQA Retrieval Grounding

number of datasets 10 10 12 4 36

BLIP2 (Li et al., 2023) 27.0 4.2 33.9 47.0 25.2
SigLIP (Zhai et al., 2023) 40.3 8.4 31.6 59.5 34.8
CLIP (Radford et al., 2021) 42.8 9.1 53.0 51.8 37.8
OpenCLIP (Cherti et al., 2023) 47.8 10.9 52.3 53.3 39.7
UniIR (Wei et al., 2024) 42.1 15.0 60.1† 62.2 42.8
MagicLens (Zhang et al., 2024) 38.8 8.3 35.4 26.0 27.8
E5-V (LLaVA-1.6) (Jiang et al., 2024a) 21.8 4.9 11.5 19.0 13.3

MMRet-MLLM (LLaVA-1.6) 47.2 18.4 56.5 62.2 44.0

Table 2: Zero-shot performance on the Massive Multimodal Embedding Benchmark (MMEB). †UniIR was trained
on M-BEIR (Wei et al., 2024), which includes 10 of the 12 datasets in the MMEB retrieval tasks, it does not
strictly adhere to a zero-shot setting. In contrast, our MMRet-MLLM, trained exclusively on the MegaPairs dataset,
achieves state-of-the-art zero-shot performance in overall scores and multiple meta-tasks on MMEB.

CIRCO, MMRet-MLLM surpasses the current
SOTA CoCa-based MagicLens-L by achieving
42.2% mAP@5 compared to 34.1% (an increase
of 8.1%). On CIRR test set, it exceeds the current
SOTA by 7.4% and 4.5% in R@1 and Rs@1, re-
spectively. Additionally, on GeneCIS, it leads the
current SOTA by 3.7% in Rs@1.

(2) MMRet exhibits superior performance
across all model scales. For instance, MMRet-
Base and MMRet-Large outperform comparable
models by 4.5% and 4.7% in R@1 on the CIRR test
set, respectively. Additionally, they surpass simi-
lar models by 3.5% and 5.1% in mAP@5 on the
CIRCO benchmark. In the fashion-domain bench-
mark FashionIQ, while not achieving the highest
scores, our CLIP-based MMRet shows competitive
performance against other CLIP-based models.

(3) The MMRet-Base model surpasses most
larger models, underscoring the exceptional
quality of our MegaPairs dataset. Despite be-
ing our smallest model, MMRet-Base outperforms
many larger models such as the MagicLens-L. For
instance, it achieving the best result on CIRCO with
a mAP@5 of 34.3%, excluding our own MMRet-
Large and MMRet-MLLM models. It even exceeds
the performance of models with dozens of times
more parameters (e.g., MM-Embed), emphasizing
the effectiveness of our MegaPairs dataset.

4.2 Performance on MMEB

To further validate the generalization ability of
MegaPairs for broader multimodal embedding
tasks, we evaluate MMRet on the Massive Mul-

timodal Embedding Benchmark (MMEB) (Jiang
et al., 2024b). MMEB is a comprehensive bench-
mark that includes 36 datasets across four meta-
task categories: Classification, Visual Question An-
swering, Retrieval, and Visual Grounding. It is
designed to evaluate the quality of multimodal em-
beddings and assesses models across diverse com-
binations of text and image modalities. We present
the performance of MMRet in both zero-shot and
supervised fine-tuning scenarios. Following pre-
vious works (Jiang et al., 2024a,b), we conduct
experiments using our MMRet-MLLM.

4.2.1 Zero-shot Performance
Implementation Details. In the zero-shot eval-
uation on MMEB, we directly utilize our MMRet-
MLLM from Section 4.1, maintaining implementa-
tion details consistent with Section 4.1.1.

Metrics. We evaluate Precision@1 for all tasks,
which measures the ratio of positive candidates
ranked in the top position for all queries. We report
the average scores for the four meta tasks as well as
the overall average. Following the MMEB setting,
we incorporate the predefined task-specific instruc-
tions into queries for all tasks during evaluation.

Results. The zero-shot performance of our
MMRet-MLLM on MMEB is presented in Ta-
ble 2. MMRet-MLLM achieved state-of-the-art
zero-shot performance across various embedding
meta-task, recording the highest overall average
performance. Compared to the recent E5-V (Jiang
et al., 2024a), which uses a similar LLaVA-1.6 (Liu
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Models Per Meta-Task Score Average Score

Classification VQA Retrieval Grounding IND OOD Overall

number of datasets 10 10 12 4 20 16 36

CLIP 55.2 19.7 53.2 62.2 47.6 42.8 45.4
OpenCLIP 56.0 21.9 55.4 64.1 50.5 43.1 47.2
VLM2Vec (LLaVA-1.6) 54.7 50.3 56.2 64.0 61.0 47.5 55.0
VLM2Vec (Phi-3.5-V) 54.8 54.9 62.3 79.5 66.5 52.0 60.1

MMRet-MLLM 56.0 57.4 69.9 83.6 68.0 59.1 64.1

Table 3: Supervised fine-tuning results on the MMEB benchmark. The backbone of our MMRet-MLLM is
LLaVA-1.6 (Liu et al., 2024). We compare our results with the following baselines: CLIP (Radford et al., 2021),
OpenCLIP (Cherti et al., 2023), and two versions of VLM2Vec (Jiang et al., 2024b) that employ the LLaVA-1.6 (Liu
et al., 2024) and Phi-3.5-V (Abdin et al., 2024) backbones. All baseline results are sourced from (Jiang et al.,
2024b). IND: in-distribution dataset; OOD: out-of-distribution dataset.

et al., 2024) backbone for universal multimodal em-
bedding, MMRet-MLLM trained on our MegaPairs
dataset demonstrated superior performance. No-
tably, the second-best model, UniIR, was trained
on M-BEIR (Wei et al., 2024), which encompasses
datasets from 10 of the 12 retrieval meta-tasks in
MMEB, and thus is not considered zero-shot for
this meta-task. Consequently, our MLLM-Ret sig-
nificantly outperforms the remaining methods in
the retrieval meta-task and demonstrates strong gen-
eralization capabilities across all tasks.

4.2.2 Supervised Fine-tuning Performance
Implementation Details. We further fine-tune
our MMRet-MLLM on MMEB to investigate the
impact of MegaPairs on downstream task per-
formance. The MMEB dataset includes 20 in-
distribution (IND) datasets for training and 16 out-
of-distribution (OOD) datasets for evaluation. We
utilize the training sets from the 20 IND datasets,
comprising approximately 662K data points. The
learning rate is set to 5 × 10−6, and we employ
LoRA with a rank of 32. The batch size is set
to 192, and we train for one epoch. Following
the VLM2Vec configuration (Jiang et al., 2024b),
we incorporate task-specific instructions into the
queries during training.

Metrics. We employ the same metrics as outlined
in Section 4.2.1. Additionally, we report the aver-
age scores for both the IND and OOD datasets.

Results. Table 3 compares the supervised fine-
tuning performance of our MMRet model with var-
ious baselines on the MMEB dataset. Our MMRet-
MLLM achieves state-of-the-art performance, with

an overall average Precision@1 of 64.1%. Com-
pared to VLM2Vec (LLaVA-1.6) (Jiang et al.,
2024b), which directly fine-tunes LLaVA-1.6 on
MMEB, MMRet-MLLM enhances downstream
task performance by 9.1% through multimodal con-
trastive training on our MegaPairs. Notably, our
model shows improvements of 11.6% and 7.1% on
out-of-distribution (OOD) datasets compared to the
two versions of VLM2Vec, highlighting the supe-
rior generalization capability of our MegaPairs for
broader downstream multimodal embedding tasks.

4.3 Detailed Investigation on MegaPairs

We first assess the quality and scalability of our
MegaPairs dataset in Section 4.3.1. Next, we
evaluate the effectiveness of the hard negative
samples provided by MegaPairs in Section 4.3.2.
Finally, we explore the strategies used for min-
ing image pairs from open-domain image corpora
in Section 4.3.3. Unless otherwise specified, all
subsequent experiments are conducted using our
MMRet-base model.

4.3.1 Data Scalability and Quality
We first evaluated the performance trend of MMRet
by training it on different sizes of subsets from the
MegaPairs dataset to verify its scalability. Subse-
quently, we compared it with existing datasets to
highlight the high-quality features of MegaPairs.
Performance Scaling. As shown in Figure 2, the
performance of MMRet-base across various bench-
marks consistently improves with the increasing
size of training data. This upward trend highlights
the effectiveness and scalability of MegaPairs.
Dataset Quality Comparison with Exsiting
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Figure 2: Performance scaling of MMRet-base on the
MegaPairs as data size increases. The dashed lines in-
dicate the performance of MagicLens-B (CLIP) trained
on their dataset of 36.7M data pairs.

Negatives CIRCO CIRR† FIQ CIS

Qry HN mAP@5 R@1 R@10 Rs@1

✗ ✗ 10.1 0.2 25.3 14.4
✓ ✗ 29.7 32.1 27.6 16.6
✓ ✓ 32.3 33.7 30.1 17.0

Table 4: Performance comparison of MMRet-base using
different negative strategies at a 1M scale. Qry: query
image negative; HN: our mined hard negatives. †We
report CIRR validation set performance due to their test
server submission limits.

Datasets. The dashed lines in Figure 2 repre-
sent the performance of the MagicLens-B (CLIP)
model, trained on their 36.7M dataset (Zhang et al.,
2024). Remarkably, with only 0.5M samples from
our MegaPairs dataset, constituting less than 2% of
MagicLens, MMRet significantly surpasses Magi-
cLens across all benchmarks using the same CLIP-
base backbone. This result underscores the superior
quality and efficiency of our MegaPairs dataset.

4.3.2 The Impact of Hard Negatives
In MegaPairs, images from the retrieved set that
are not the target are marked as hard negatives,
providing a diverse and ample set of hard nega-
tive target images for each image pair. As shown
in Table 4, compared to not using negatives or only
using the query image as a negative, training with
our mined hard negatives significantly enhances
model performance across all benchmarks.

4.3.3 Data Pair Search Strategy
We explored the impact of various search strate-
gies in constructing heterogeneous triplets. For a

Strategy CIRCO CIRR† FIQ CIS

D I T mAP@5 R@1 R@10 Rs@1

✓ ✗ ✗ 29.0 31.5 24.7 17.2
✗ ✓ ✗ 30.0 30.0 29.6 15.3
✗ ✗ ✓ 31.6 32.2 28.7 17.3

✓ ✓ ✗ 31.0 32.1 28.5 17.1
✓ ✗ ✓ 32.4 33.3 28.9 17.5
✗ ✓ ✓ 32.2 33.3 29.7 16.4

✓ ✓ ✓ 32.3 33.7 30.1 17.0

Table 5: Performance comparison of MMRet-base using
different data pairing strategies at 1M scale. D: DINOv2
Encoder; I: CLIP Image Encoder; T: CLIP Text Encoder.
FIQ and CIS represent the FashionIQ and GeneCIS
benchmarks, respectively. † We report CIRR validation
set performance due to test server submission limits.

fair comparison, we selected 1M data entries for
each construction strategy and trained the model
for 2000 steps.

Table 5 presents the results of various data pair-
ing strategies across multiple benchmarks. Initially,
when evaluating individual strategies, we observed
that triplets based on text similarity achieved the
highest zero-shot CIR performance. We hypothe-
size that text similarity captures more diverse rela-
tionships than image similarity. Furthermore, com-
bining any two pairing strategies consistently out-
performed using a single strategy. This enhance-
ment is likely due to the increased diversity within
the dataset, which is essential for training robust
multimodal embedding models. Ultimately, em-
ploying all three strategies simultaneously provided
the most robust performance across all datasets. As
a result, this approach was chosen for constructing
the MegaPairs.

5 Conclusion

In this paper, we introduce MegaPairs, a large-scale
multimodal pairing dataset designed for training
universal multimodal retrievers. MegaPairs com-
prises diverse image pairs from the open world,
annotated with open-ended textual instructions that
capture their visual and semantic relationships. Us-
ing MegaPairs, we trained our MMRet models,
achieving state-of-the-art zero-shot performance
in four composed image retrieval tasks and on
the Massive Multimodal Embedding Benchmarks,
which consists of 36 different datasets. Extensive
experiments further demonstrate the generalization
capability and high-quality features of MegaPairs.
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Limitations

In constructing MegaPairs, we discovered that us-
ing diverse retrievers can generate richer image
pairs. Our study employed three distinct retriev-
ers, which offered substantial diversity. However,
there remains potential to explore additional pair-
ing methods, such as leveraging more advanced
text domain retrievers (e.g., BGE (Xiao et al.,
2024)) or incorporating varied strategies like image-
text retrieval.

Ethics Statement

All images in our MegaPairs dataset are sourced
from the Recap-Datacomp-1B dataset (Li et al.,
2024b), and have undergone rigorous screening
by the Datacomp team to remove harmful con-
tent (Gadre et al., 2024). Despite our best efforts,
we acknowledge that these screenings may not be
entirely comprehensive or without omissions. Ad-
ditionally, we strongly discourage the use of MM-
Ret models for encoding and retrieving sensitive
content.
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Appendix

A Detailed Prompt for Annotating
Open-Ended Instructions

To annotate open-ended instructions, we begin by
using the MLLM to generate a detailed description
of the commonalities and differences between the
query image and the target image, where the cor-
responding prompt is illustrated in Figure 3. Sub-
sequently, the description is refined by the LLM
to produce textual instructions, with the associated
prompt provided in Figure 4.

Source Image: 

  

Target Image: 

  

Carefully observe the connections and 

differences between Source Image and 

Target Image. Summarize the key 

commonality and detailed differences 

between them in under WORD_NUM 

words. Use this template: 'Both images 

are / have / exhibit / show [COMMON 

POINTS]. However, the Source Image 

[DIFFERENCES], whereas the Target 

Image [DIFFERENCES].'

Source Image

Target Image

Figure 3: The specific prompts for MLLM. The value
of WORD_NUM ranges from 60 to 100 in our practical
data generation to enhance the diversity of the generated
description.

B Training Details of MMRet on
MegaPairs

For the CLIP-based MMRet, the training process
employs a batch size of 2048, with each query
paired with one positive image and four hard nega-
tives. All input images are resized to 224x224 to
match the model’s configuration. During training,
all CLIP parameters remain unfrozen. MMRet-
base is trained for 15,000 steps, while MMRet-
large is trained for 25,000 steps on the MegaPairs
dataset.

For the MLLM-based MMRet, we use a batch
size of 144 during training, with each query asso-
ciated with one positive image and three hard neg-
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## Instruction: Based on the provided connection of two different images, create interesting text 
queries that can be used with the source image to retrieve the target image.

1) Replace similarities with the source image using non-specific pronouns to avoid revealing 
explicit details about the source image, and keep it concise. 

2) Detail the unique differences that are present only in the target image.

## Demonstrations: 
- Connection: Both images show a hand holding another hand. However, the Source Image 

includes a small heart symbol, whereas the Target Image does not.
- Text Query: ["Look for the same interaction but devoid of any heart symbol.", "Remove the 

small heart symbol", "An Image of the same gesture, but without the small heart symbol."]

- Connection: Both images exhibit a small, white, propeller-driven aircraft. However, the Source 
Image is parked outdoors with a clear sky in the background, whereas the Target Image is 
indoors in a hangar with artificial lighting. 

- Text Query: ["Find a similar vehicle indoors in a hangar with artificial lighting.", "Similar 
aircraft located indoors within a hangar and under artificial lighting.", "What if this plane is put 
indoors?"]   
……

## Your Task:

- Connection:  

- Text Query:     

Descriptions from MLLM

Figure 4: The specific prompts for LLM. The figure showcases two demonstrations, while in our practical data
generation process, five demonstrations are randomly selected from a pool of 50 and fed into the LLM.

atives. We apply LoRA (Hu et al., 2022) to both
the ViT encoder and the LLM backbone of LLaVA-
1.6, setting the LoRA rank to 32. Although the
original model supports variable resolution image
processing, we use a fixed resolution of 512x512
for all images to manage the token sequence length.
MMRet-MLLM is trained for 20,000 steps on the
MegaPairs dataset.

For both CLIP-based and MLLM-based MMRet
models, we set an initial learning rate of 5× 10−6

and employ a linear decay strategy.

C Detailed Information and Evaluation
Metrics of Zero-Shot CIR Benchmarks

The detailed information and metrics of our evalua-
tion in zero-shot composed image retrieval (CIR)
tasks for each benchmark are as follows:
CIRCO (Baldrati et al., 2023) is a challenging
zero-shot CIR benchmark comprising 123,403 can-
didate natural images. We evaluete our MMRet
models on its test set, which contains 800 com-
posed image-text queries, each annotated with mul-

tiple ground-truth images. We use mean Average
Precision (mAP) as the evaluation metric. Due
to its extensive candidate pool and high-quality
annotations, CIRCO serves as a robust and compre-
hensive benchmark for zero-shot CIR evaluation,
and we consider it our main benchmark.

CIRR (Liu et al., 2021) is the first dataset for con-
ducting the CIR task using natural images. We
conduct zero-shot evaluations on its test set, which
comprises 4,148 queries and a corpus of 2,315 im-
ages. Each query in CIRR is annotated with exactly
one positive target image, but it suffers from some
false negative issues. For each query, CIRR pro-
vides a subset retrieval setting that retrieves target
images from a small corpus. We assess both stan-
dard and subset retrieval performance using recall
metrics (R and Rs).

FashionIQ (Wu et al., 2021) is another CIR task fo-
cusing on fashion products. We conduct zero-shot
evaluations on its validation set, which includes
6,016 queries and 15,536 images. FashionIQ com-
prises three sub-tasks: dress, shirt, and toptee. We
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evaluate each sub-task separately and report their
average recall values.
GeneCIS (Vaze et al., 2023) is a benchmark for
conditional image similarity measurement, com-
prising four sub-tasks about changing or focusing
the attribute or object in the given image. In each
sub-task, models need to retrieve the most similar
images from a dedicated small subset for the given
query image and the condition keyword. We ap-
proach it as a CIR task by combining the query
image and the text description of the sub-task de-
rived from the condition keyword as a composed
image-text query. Each query’s candidate subset
averages 13.8 images, and the mean Rs across all
four subsets is reported.

D Full results on CIR Benchmarks

We report the full results on four CIR benchmarks
(Baldrati et al., 2023; Liu et al., 2021; Wu et al.,
2021; Vaze et al., 2023) in Tables 6, 7, 8, and 9,
respectively. Our MMRet model achieves state-of-
the-art performance across various model sizes on
the CIRCO, CIRR, and GeneCIS benchmarks.

E Full Results on MMEB Benchmark

We list the full results on the MMEB bench-
mark (Jiang et al., 2024b) in Table 10. The MMEB
benchmark consists of 36 datasets spanning four
meta-task categories, including 20 in-distribution
datasets and 16 out-of-distribution (OOD) datasets.
The results on the OOD datasets are highlighted
with a gray background in the table. Our MM-
Ret model achieves state-of-the-art performance in
both zero-shot and fine-tuning settings. Notably,
MMRet surpasses the second-best performance on
the OOD datasets, demonstrating its remarkable
generalization capability.

F Visualized Examples of MegaPairs

We present several examples of MegaPairs in Fig-
ure 5. Each row corresponds to a single example,
where the query item, comprising an image and its
corresponding alt-text caption, is associated with
multiple target images. These target images include
both visually similar ones and semantically related
ones beyond visual features.

For example, in the 4th row, the query image
showing an ottoman with the alt-text caption Round
ottoman, tufted surface is paired with target
items that feature visually similar images (e.g., the
1st target image, which shows an ottoman, and

the 3rd target image, which depicts a sofa with a
similar style) as well as semantically related images
that transcend visual features (e.g., the 2nd and
4th target images, depicting the interior of a car
and a living room wall, respectively. These share
few visual features with the query image but also
exhibit a tufted surface). In the 5th row, the query
image showing an F1 car with the alt-text caption
AMG F1 W09 is paired with target items featuring
visually similar images (e.g., the 1st target image,
which shows an F1 car in red, and the 3rd target
image, which displays a race scene with multiple
F1 cars) as well as semantically related images
that transcend visual features (e.g., the 2nd target
image, which shows an F1 driver, and the 4th target
image, depicting an F1 circuit. These images bear
no visual similarity to the query image but share
the F1 concept).

G Qualitative Results of MMRet on
Zero-shot CIR Tasks

We present several top-5 retrieved images of our
MMRet and the SOTA MagicLens (Zhang et al.,
2024) on zero-shot CIR tasks, as shown in Figure 6.
Since only the CLIP-based checkpoint is available
for MagicLens, we select the CLIP-L backbone
for both methods. 1) For the blue ties query,
MMRet accurately interprets the query and identi-
fies both the specific attire and indoor setting, re-
trieving multiple images that meet the specified re-
quirements. In contrast, MagicLens focuses solely
on the individual object, overlooking the broader
semantic context. 2) For the sweet, beverage,
boats and sky query, MMRet demonstrates a
solid understanding of real-world entity concepts,
successfully integrating both foreground and back-
ground elements to retrieve the most relevant im-
age. 3) The success on the bench top query high-
lights MMRet’s ability to comprehend specific pose
and angle requirements. 4) The success on the
darker ground and closer distance query il-
lustrates MMRet’s capacity to recognize lighting
conditions and shooting distance. 5) The success
on the whell in the air query indicates that MM-
Ret can identify dynamic actions and contextual
scene elements.
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Methods Backbone # Params mAP@5 mAP@10 mAP@25 mAP@50

PALAVRA (Cohen et al., 2022) CLIP-B 176M 4.6 5.3 6.3 6.8
PLI (Chen and Lai, 2023) BLIP-B 224M 7.1 8.0 9.2 9.7
SEARLE (Baldrati et al., 2023) CLIP-B 165M 9.4 9.9 11.1 11.8
CIReVL (Karthik et al., 2023) CLIP-B 12.3B† 14.9 15.4 17.0 17.8
LDRE (Yang et al., 2024) CLIP-B 7.9B† 18.0 18.3 20.2 21.1
MagicLens-B (Zhang et al., 2024) CLIP-B 166M 23.1 23.8 25.8 26.7
MagicLens-B‡ (Zhang et al., 2024) CoCa-B 267M 30.8 32.0 34.5 35.6

MMRet-Base CLIP-B 149M 34.3 35.0 37.6 38.7

Pic2Word (Saito et al., 2023) CLIP-L 429M 8.7 9.5 10.6 11.3
PLI (Chen and Lai, 2023) CLIP-L 428M 10.4 11.6 13.0 13.7
SEARLE (Baldrati et al., 2023) CLIP-L 442M 11.7 12.7 14.3 15.1
CIReVL (Karthik et al., 2023) CLIP-L 12.5B† 18.6 19.0 20.9 21.8
LinCIR (Gu et al., 2024b) CLIP-L 442M 12.6 13.6 15.0 15.9
CompoDiff (Gu et al., 2024a) CLIP-L 568M 12.6 13.4 15.8 16.4
MagicLens-L (Zhang et al., 2024) CLIP-L 465M 29.6 30.8 33.4 34.4
MagicLens-L‡ (Zhang et al., 2024) CoCa-L 613M 34.1 35.4 38.1 39.2

MMRet-Large CLIP-L 428M 39.2 40.2 42.9 44.0

Pic2Word (Saito et al., 2023) CLIP-H 987M 11.7 12.3 13.7 14.4
SEARLE (Baldrati et al., 2023) CLIP-H 1.0B 16.1 16.9 18.8 19.7
LinCIR (Gu et al., 2024b) CLIP-H 1.0B 17.6 18.5 20.5 21.4
Pic2Word (Saito et al., 2023) CLIP-G 2.5B 5.5 5.6 6.7 7.1
SEARLE (Baldrati et al., 2023) CLIP-G 2.6B 13.2 13.9 15.3 16.0
CompoDiff (Gu et al., 2024a) CLIP-G 2.9B 15.3 17.7 19.4 -
CIReVL (Karthik et al., 2023) CLIP-G 14.6B† 26.8 27.6 30.0 31.0
LinCIR (Gu et al., 2024b) CLIP-G 2.6B 19.7 21.0 23.1 24.2
LDRE (Yang et al., 2024) CLIP-G 10.3B† 31.1 32.2 35.0 36.0
IP-CIR (Li et al., 2024c) CLIP-G 43.8B† 32.8 34.3 36.9 38.0
E5-V (Jiang et al., 2024a) LLaVA-1.6 8.35B 19.1 - - -
MM-Emded (Lin et al., 2024) LLaVA-1.6 7.57B 32.3 - - -

MMRet-MLLM LLaVA-1.6 7.57B 42.2 43.4 46.5 47.6

Table 6: Full results on the CIRCO benchmark (Baldrati et al., 2023). † indicates methods with multiple
components (e.g., GPT-3.5, Qwen1.5-32B); we report # parameters of components with known sizes. The CoCa-
based MagicLens‡ models are proprietary. Results in bold denote the best performances for each model scale.
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Methods Backbone # Params Index Set Subset Set

R@1 R@5 R@10 R@50 R@1 R@2 R@3

PALAVRA (Cohen et al., 2022) CLIP-B 176M 16.6 43.5 58.5 84.0 41.6 65.3 80.9
PLI (Chen and Lai, 2023) BLIP-B 224M 27.2 58.9 71.4 91.3 55.1 77.4 89.1
SEARLE (Baldrati et al., 2023) CLIP-B 165M 24.0 53.4 66.8 89.8 54.9 76.6 88.2
CIReVL (Karthik et al., 2023) CLIP-B 12.3B† 23.9 52.5 66.0 87.0 60.2 80.1 90.2
LDRE (Yang et al., 2024) CLIP-B 7.9B† 25.7 55.1 69.0 89.9 60.5 80.7 90.7
MagicLens-B (Zhang et al., 2024) CLIP-B 166M 27.0 58.0 70.9 91.1 66.7 83.9 92.4
MagicLens-B‡ (Zhang et al., 2024) CoCa-B 267M 31.6 64.0 76.9 93.8 69.3 86.0 94.0

MMRet-Base CLIP-B 149M 36.1 68.1 79.5 94.7 71.6 87.2 94.0

Pic2Word (Saito et al., 2023) CLIP-L 429M 23.9 51.7 65.3 87.8 - - -
PLI (Chen and Lai, 2023) CLIP-L 428M 25.5 54.6 67.6 88.7 55.6 77.5 89.5
SEARLE (Baldrati et al., 2023) CLIP-L 442M 24.2 52.5 66.3 88.8 53.8 75.0 88.2
CIReVL (Karthik et al., 2023) CLIP-L 12.5B† 24.6 52.3 64.9 86.3 59.5 79.9 89.7
LinCIR (Gu et al., 2024b) CLIP-L 442M 25.0 53.3 66.7 - 57.1 77.4 88.9
CompoDiff (Gu et al., 2024a) CLIP-L 568M 18.2 53.1 70.8 90.3 57.4 77.1 87.9
MagicLens-L (Zhang et al., 2024) CLIP-L 465M 30.1 61.7 74.4 92.6 68.1 84.8 93.2
MagicLens-L‡ (Zhang et al., 2024) CoCa-L 613M 33.3 67.0 77.9 94.4 70.9 87.3 94.5

MMRet-Large CLIP-L 428M 38.0 70.3 81.1 94.7 73.2 88.0 94.3

Pic2Word (Saito et al., 2023) CLIP-H 987M 32.9 63.1 73.9 - 62.2 81.4 91.2
SEARLE (Baldrati et al., 2023) CLIP-H 1.0B 34.0 64.0 75.3 - 64.6 83.2 92.8
LinCIR (Gu et al., 2024b) CLIP-H 1.0B 33.8 63.5 73.4 - 62.4 81.5 92.1
Pic2Word (Saito et al., 2023) CLIP-G 2.5B 30.4 58.1 69.2 - 68.9 85.5 93.0
SEARLE (Baldrati et al., 2023) CLIP-G 2.6B 34.8 64.1 75.1 - 68.7 84.7 93.2
CompoDiff (Gu et al., 2024a) CLIP-G 2.9B 26.7 55.1 74.5 92.0 64.5 82.4 91.8
CIReVL (Karthik et al., 2023) CLIP-G 14.6B† 34.7 64.3 75.1 91.7 68.0 84.9 93.2
LinCIR (Gu et al., 2024b) CLIP-G 2.6B 35.3 64.7 76.1 - 63.4 82.2 92.0
LDRE (Yang et al., 2024) CLIP-G 10.3B† 36.2 66.4 77.3 94.0 68.8 85.7 93.8
IP-CIR (Li et al., 2024c) CLIP-G 43.8B† 39.3 70.1 80.0 94.9 70.0 86.9 94.2
E5-V (Jiang et al., 2024a) LLaVA-1.6 8.35B 33.9 64.1 75.9 93.5 - - -

MMRet-MLLM LLaVA-1.6 7.57B 46.7 76.0 85.1 96.5 75.4 89.6 95.7

Table 7: Full results on the CIRR benchmark (Liu et al., 2021). † indicates methods with multiple components (e.g.,
GPT-3.5, Qwen1.5-32B); we report # parameters of components with known sizes. The CoCa-based MagicLens‡

models are proprietary. Results in bold denote the best performance for each model scale.
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Methods Backbone # Params Dress Shirt Toptee Overall

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

PALAVRA (Cohen et al., 2022) CLIP-B 176M 17.3 35.9 21.5 37.1 20.6 38.8 19.8 37.3
PLI (Chen and Lai, 2023) BLIP-B 224M 28.6 50.8 38.1 57.8 40.9 62.7 35.9 57.1
SEARLE (Baldrati et al., 2023) CLIP-B 165M 18.5 39.5 24.4 41.6 25.7 46.5 22.9 42.5
CIReVL (Karthik et al., 2023) CLIP-B 12.3B† 25.3 46.4 28.4 47.8 31.2 53.9 28.3 49.4
LDRE (Yang et al., 2024) CLIP-B 7.9B† 27.4 46.3 20.0 41.8 27.1 48.8 24.8 45.6
MagicLens-B (Zhang et al., 2024) CLIP-B 166M 21.5 41.3 27.3 48.8 30.2 52.3 26.3 47.4
MagicLens-B‡ (Zhang et al., 2024) CoCa-B 267M 29.0 48.9 36.5 55.5 40.2 61.9 35.2 55.4

MMRet-Base CLIP-B 149M 26.1 49.3 33.7 53.4 36.0 57.5 31.9 53.4

Pic2Word (Saito et al., 2023) CLIP-L 429M 20.0 40.2 26.2 43.6 27.9 47.4 24.7 43.7
PLI (Chen and Lai, 2023) CLIP-L 428M 28.1 51.1 38.6 58.5 39.4 62.7 35.4 57.4
SEARLE (Baldrati et al., 2023) CLIP-L 442M 20.5 43.1 26.9 45.6 29.3 50.0 25.6 46.2
CIReVL (Karthik et al., 2023) CLIP-L 12.5B† 24.8 44.8 29.5 47.4 31.4 53.7 28.6 48.6
LinCIR (Gu et al., 2024b) CLIP-L 442M 20.9 42.4 29.1 46.8 28.8 50.2 26.3 46.5
CompoDiff (Gu et al., 2024a) CLIP-L 568M 32.2 46.3 37.7 49.1 38.1 50.6 36.0 48.6
MagicLens-L (Zhang et al., 2024) CLIP-L 465M 25.5 46.1 32.7 53.8 34.0 57.7 30.7 52.5
MagicLens-L‡ (Zhang et al., 2024) CoCa-L 613M 32.3 52.7 40.5 59.2 41.4 63.0 38.0 58.2

MMRet-Large CLIP-L 428M 29.7 50.3 37.0 56.1 37.0 59.3 34.6 55.2

Pic2Word (Saito et al., 2023) CLIP-H 987M 28.0 51.5 36.9 56.0 40.2 62.0 35.0 56.5
SEARLE (Baldrati et al., 2023) CLIP-H 1.0B 28.5 51.1 36.5 55.5 38.8 60.9 34.6 55.8
LinCIR (Gu et al., 2024b) CLIP-H 1.0B 29.8 52.1 36.9 57.8 42.1 62.5 36.3 57.5
Pic2Word (Saito et al., 2023) CLIP-G 2.5B 25.4 47.7 33.2 50.4 35.2 57.6 31.3 51.9
SEARLE (Baldrati et al., 2023) CLIP-G 2.6B 28.2 50.3 36.5 55.4 39.8 61.5 34.8 55.7
CompoDiff (Gu et al., 2024a) CLIP-G 2.9B 37.8 49.1 41.3 55.2 44.3 56.4 39.0 51.7
CIReVL (Karthik et al., 2023) CLIP-G 14.6B† 27.1 49.5 33.7 51.4 35.8 56.1 32.2 52.4
LinCIR (Gu et al., 2024b) CLIP-G 2.6B 38.1 60.9 46.8 65.1 50.5 71.1 45.1 65.7
LDRE (Yang et al., 2024) CLIP-G 10.3B† 35.9 58.6 26.1 51.1 35.4 56.7 32.5 55.5
IP-CIR (Li et al., 2024c) CLIP-G 43.8B† 48.0 66.7 39.0 61.0 50.2 71.1 45.7 66.3
E5-V (Jiang et al., 2024a) LLaVA-1.6 8.35B 36.4 56.4 23.8 47.5 35.3 57.5 31.8 53.8

MMRet-MLLM LLaVA-1.6 7.57B 29.1 50.5 38.5 58.6 39.2 60.6 35.6 56.6

Table 8: Full results on the FashionIQ benchmark (Wu et al., 2021). † indicates methods with multiple compo-
nents (e.g., GPT-3.5, Qwen1.5-32B); we report # parameters of components with known sizes. The CoCa-based
MagicLens‡ models are proprietary. Results in bold denote the best performance for each model scale.

Methods Backbone # Params Focus Attribute Change Attribute Focus Object Change Object Avg

R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1 R@2 R@3 R@1

CIReVL (Karthik et al., 2023) CLIP-B 12.3B† 17.9 29.4 40.4 14.8 25.8 35.8 14.6 24.3 33.3 16.1 27.8 37.6 15.9
MagicLens-B (Zhang et al., 2024) CLIP-B 166M 15.5 28.4 39.1 12.3 23.0 32.1 14.4 26.2 35.5 17.7 28.4 39.2 15.0
MagicLens-B‡ (Zhang et al., 2024) CoCa-B 267M 16.2 27.8 38.6 16.2 27.2 36.6 17.1 27.7 38.2 20.2 32.2 42.9 17.4

MMRet-Base CLIP-B 149M 18.3 30.9 39.6 15.2 25.6 34.8 16.6 27.3 35.8 21.7 34.9 45.0 18.0

Pic2Word (Saito et al., 2023) CLIP-L 429M 15.7 28.2 38.7 13.9 24.7 33.1 8.4 18.0 25.8 6.7 15.1 24.0 11.2
SEARLE (Baldrati et al., 2023) CLIP-L 442M 17.0 29.7 40.7 16.4 25.3 34.1 8.0 16.9 25.6 7.9 16.8 24.8 12.3
CIReVL (Karthik et al., 2023) CLIP-L 12.5B† 19.5 31.8 42.0 14.4 26.0 35.2 12.3 21.8 30.5 17.2 28.9 37.6 15.9
LinCIR (Gu et al., 2024b) CLIP-L 442M 16.9 30.0 41.5 16.2 28.0 36.8 8.3 17.4 26.2 7.4 15.7 25.0 12.2
CompoDiff (Gu et al., 2024a) CLIP-L 568M 13.5 24.3 36.1 19.2 28.6 37.2 8.1 16.4 25.1 18.7 31.7 40.6 14.9
MagicLens-L (Zhang et al., 2024) CLIP-L 465M 16.1 28.2 39.0 15.6 27.5 36.3 16.3 26.2 35.5 17.1 29.5 39.7 16.3
MagicLens-L‡ (Zhang et al., 2024) CoCa-L 613M 16.6 28.7 39.3 16.0 27.5 36.5 15.7 27.6 37.3 18.7 31.7 40.2 16.7

MMRet-Large CLIP-L 428M 18.4 30.0 38.5 15.4 27.6 35.7 17.4 26.6 36.3 21.0 34.0 42.4 18.1

Pic2Word (Saito et al., 2023) CLIP-H 987M 18.6 30.7 42.1 13.2 23.9 33.1 9.2 17.6 27.1 6.6 16.5 25.4 11.9
SEARLE (Baldrati et al., 2023) CLIP-H 1.0B 18.8 31.5 42.3 15.5 26.9 35.9 10.6 18.7 26.5 8.5 17.9 26.2 13.3
LinCIR (Gu et al., 2024b) CLIP-H 1.0B 19.6 31.5 41.6 16.6 27.6 37.5 9.8 18.8 27.9 9.0 17.6 25.7 13.8
Pic2Word (Saito et al., 2023) CLIP-G 2.5B 12.5 23.4 33.7 11.7 21.9 30.9 9.9 19.3 27.4 8.6 18.2 26.1 10.7
SEARLE (Baldrati et al., 2023) CLIP-G 2.6B 16.3 29.4 40.7 16.2 27.3 35.5 10.8 18.2 27.9 8.3 15.6 25.8 12.9
CompoDiff (Gu et al., 2024a) CLIP-G 2.9B 14.3 26.7 38.4 19.7 28.8 37.4 9.2 19.1 25.8 18.7 31.7 40.2 15.5
CIReVL (Karthik et al., 2023) CLIP-G 14.6B† 20.5 34.0 44.5 16.1 28.6 39.4 14.7 25.2 33.0 18.1 31.2 41.0 17.4
LinCIR (Gu et al., 2024b) CLIP-G 2.6B 19.1 33.0 42.3 17.6 30.2 38.1 10.1 19.1 28.1 7.9 16.3 25.7 13.7

MMRet-MLLM LLaVA-1.6 7.57B 18.4 31.4 41.0 16.7 27.7 36.4 22.4 32.5 41.6 26.9 40.4 49.9 21.1

Table 9: Full results on the GeneCIS benchmark (Vaze et al., 2023). † indicates methods with multiple compo-
nents (e.g., GPT-3.5, Qwen1.5-32B); we report # parameters of components with known sizes. The CoCa-based
MagicLens‡ models are proprietary. Results in bold denote the best performance for each model scale.
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Task Zero-shot Fine-Tune

CLIP OpenCLIP SigLIP BLIP2 MagicLens E5-V UniIR MMRet VLM2Vec MMRet

Classification (10 tasks)
ImageNet-1K 55.8 63.5 45.4 10.3 48.0 9.6 53.7 49.1 65.6 58.8
N24News 34.7 38.6 13.9 36.0 33.7 23.4 33.9 45.8 79.5 71.3
HatefulMemes 51.1 51.7 47.2 49.6 49.0 49.7 51.0 51.0 67.1 53.7
VOC2007 50.7 52.4 64.3 52.1 51.6 49.9 62.7 74.6 88.6 85.0
SUN397 43.4 68.8 39.6 34.5 57.0 33.1 61.7 60.1 72.7 70.0
Place365 28.5 37.8 20.0 21.5 31.5 8.6 38.0 35.3 42.6 43.0
ImageNet-A 25.5 14.2 42.6 3.2 8.0 2.0 12.9 31.6 19.3 36.1
ImageNet-R 75.6 83.0 75.0 39.7 70.9 30.8 61.6 66.2 70.2 71.6
ObjectNet 43.4 51.4 40.3 20.6 31.6 7.5 37.1 49.2 29.5 55.8
Country-211 19.2 16.8 14.2 2.5 6.2 3.1 8.8 9.3 13.0 14.7
All Classification 42.8 47.8 40.3 27.0 38.8 21.8 42.1 47.2 54.8 56.0

VQA (10 tasks)
OK-VQA 7.5 11.5 2.4 8.7 12.7 8.9 24.5 28.0 63.2 73.3
A-OKVQA 3.8 3.3 1.5 3.2 2.9 5.9 10.6 11.6 50.2 56.7
DocVQA 4.0 5.3 4.2 2.6 3.0 1.7 5.6 12.6 78.4 78.5
InfographicsVQA 4.6 4.6 2.7 2.0 5.9 2.3 5.0 10.6 40.8 39.3
ChartQA 1.4 1.5 3.0 0.5 0.9 2.4 1.8 2.4 59.0 41.7
Visual7W 4.0 2.6 1.2 1.3 2.5 5.8 12.3 9.0 47.7 49.5
ScienceQA 9.4 10.2 7.9 6.8 5.2 3.6 11.6 23.3 43.4 45.2
VizWiz 8.2 6.6 2.3 4.0 1.7 2.6 19.2 25.9 39.2 51.7
GQA 41.3 52.5 57.5 9.7 43.5 7.8 49.3 41.3 60.7 59.0
TextVQA 7.0 10.9 1.0 3.3 4.6 3.2 10.6 18.9 66.1 79.0
All VQA 9.1 10.9 8.4 4.2 8.3 4.9 15.0 18.4 54.9 57.4

Retrieval (12 tasks)
VisDial 30.7 25.4 21.5 18.0 24.8 9.2 37.6 62.6 73.3 83.0
CIRR 12.6 15.4 15.1 9.8 39.1 6.1 53.2 65.7 47.8 61.4
VisualNews_t2i 78.9 74.0 51.0 48.1 50.7 13.5 63.6 45.7 67.2 74.2
VisualNews_i2t 79.6 78.0 52.4 13.5 21.1 8.1 68.8 53.4 70.7 78.1
MSCOCO_t2i 59.5 63.6 58.3 53.7 54.1 20.7 72.0 68.7 70.6 78.6
MSCOCO_i2t 57.7 62.1 55.0 20.3 40.0 14.0 74.1 56.7 66.5 72.4
NIGHTS 60.4 66.1 62.9 56.5 58.1 4.2 69.7 59.4 66.1 68.3
WebQA 67.5 62.1 58.1 55.4 43.0 17.7 86.3 76.3 88.1 90.2
FashionIQ 11.4 13.8 20.1 9.3 11.2 2.8 39.3 31.5 12.9 54.9
Wiki-SS-NQ 55.0 44.6 55.1 28.7 18.7 8.6 11.3 25.4 56.6 24.9
OVEN 41.1 45.0 56.0 39.5 1.6 5.9 66.6 73.0 47.3 87.5
EDIS 81.0 77.5 23.6 54.4 62.6 26.8 78.2 59.9 79.9 65.6
All Retrieval 53.0 52.3 31.6 33.9 35.4 11.5 60.1 56.5 62.3 69.9

Visual Grounding (4 tasks)
MSCOCO 33.8 34.5 46.4 28.9 22.1 10.8 46.6 42.7 67.3 76.8
RefCOCO 56.9 54.2 70.8 47.4 22.8 11.9 67.8 69.3 84.7 89.8
RefCOCO-matching 61.3 68.3 50.8 59.5 35.6 38.9 62.9 63.2 79.2 90.6
Visual7W-pointing 55.1 56.3 70.1 52.0 23.4 14.3 71.3 73.5 86.8 77.0
All Visual Grounding 51.8 53.3 59.5 47.0 26.0 19.0 62.2 62.2 79.5 83.6

Final Score (36 tasks)
All 37.8 39.7 34.8 25.2 27.8 13.3 42.8 44.0 60.1 64.1
All IND 37.1 39.3 32.3 25.3 31.0 14.9 44.7 43.5 66.5 59.1
All OOD 38.7 40.2 38.0 25.1 23.7 11.5 40.4 44.3 52.0 68.0

Table 10: The detailed results on the MMEB benchmark (Jiang et al., 2024b). We report the performance of our
MMRet under both zero-shot and fine-tuning settings.
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Figure 5: The visualized examples of MegaPairs. Each row represents a single example, with the query item
highlighted in a blue rectangle and the target items enclosed within a dashed box.
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Find a picture that also two 
people wearing a suit and a 
tie in the foreground, but 
wear blue ties and the 
photo is shot indoor.
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Find a picture that also a 
sweet and a beverage, but 
has boats and the sky in the 
background.

Find a picture that also two 
people sitting on a bench, 
but shows no bike and is 
taken from the top.
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Find a picture that also a 
man surfing, but is shirtless, 
the photo has a darker 
background and is shot from 
a closer distance.

Find a person riding a racing 
motorbike seen from the 
front, but is on a track and 
has the front wheel in the air.
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Figure 6: Top-5 retrieved images of MMRet and MagicLens on zero-shot CIR tasks, both using the CLIP-L
backbone. Queries are shown with a blue background, and the most correct retrieved images are marked with green
outlines.
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