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Abstract
As large language models are increasingly uti-
lized in real-world applications, guarantees of
task-specific metrics are essential for their re-
liable deployment. Previous studies have in-
troduced various criteria of conformal uncer-
tainty grounded in split conformal prediction,
which offer user-specified correctness cover-
age. However, existing frameworks often fail
to identify uncertainty data outliers that vio-
late the exchangeability assumption, leading
to unbounded miscoverage rates and unaction-
able prediction sets. In this paper, we propose
a novel approach termed Selective Conformal
Uncertainty (SConU), which, for the first time,
implements significance tests, by developing
two conformal p-values that are instrumental in
determining whether a given sample deviates
from the uncertainty distribution of the calibra-
tion set at a specific manageable risk level. Our
approach not only facilitates rigorous manage-
ment of miscoverage rates across both single-
domain and interdisciplinary contexts, but also
enhances the efficiency of predictions. Further-
more, we comprehensively analyze the compo-
nents of the conformal procedures, aiming to
approximate conditional coverage, particularly
in high-stakes question-answering tasks.1

1 Introduction

Large language models (LLMs) have been increas-
ingly deployed in real-world natural language gen-
eration (NLG) tasks, including question-answering
(QA) (Duan et al., 2024; Wang et al., 2025b). How-
ever, their generations often reveal deficiencies in
trustworthiness and robustness (Yao et al., 2024;
Yona et al., 2024; Farquhar et al., 2024; Kaur et al.,
2024; Hong et al., 2024). These issues have sparked
significant interest in developing guarantees for
task-specific performance metrics, such as correct-
ness miscoverage rate (Wang et al., 2024c; Quach
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1The code implementation for our experiments is available

at https://github.com/Zhiyuan-GG/SConU

et al., 2024; Wang et al., 2025a), factuality (Mohri
and Hashimoto, 2024; Cherian et al., 2024), and
disparities in generation quality across diverse user
populations (Deng et al., 2023; Zollo et al., 2024).

Split conformal prediction (SCP) (Papadopou-
los et al., 2002; Bates et al., 2021; Angelopoulos
and Bates, 2021) offers distribution-free and model-
agnostic coverage guarantees to new samples based
on a calibration set. Recent studies have introduced
various criteria of conformal uncertainty (ConU),
which allow user-specified risk levels (e.g., α) for
the coverage of acceptable responses in practical
NLG tasks, by correlating the nonconformity score
(NS) with the uncertainty state of ground-truth an-
swers (Quach et al., 2024; Su et al., 2024; Wang
et al., 2024c, 2025a; Kaur et al., 2024). However,
these frameworks are vulnerable to uncertainty out-
liers and sensitive to internal units, such as the un-
certainty notion and split ratio, compromising their
statistical rigor and operational efficiency (Cress-
well et al., 2024b; Plassier et al., 2024).

To conduct comprehensive research, we first re-
visit a crucial precondition for prior frameworks:
the combined sequence of the given test QA sam-
ple and all calibration data points should be ex-
changeable (Kumar et al., 2023). In practical QA
tasks, however, this condition is hard to character-
ize and verify specifically, often being violated due
to the conditional nature of language generation
approaches (Ulmer et al., 2024). More concerning,
we observe significant coverage anomalies within
single-domain contexts, as illustrated in Figure 1a,
which contradict the assumptions made in previous
studies (Ye et al., 2024; Quach et al., 2024; Su et al.,
2024; Wang et al., 2024c; Kaur et al., 2024; Wang
et al., 2025a). Furthermore, miscalibration issues
become even more pronounced in interdisciplinary
scenarios (Kumar et al., 2023), as demonstrated in
Figure 1b. The conceptual and fragile nature of ex-
changeability renders the prediction sets produced
by existing ConU frameworks unreliable and less
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(a) Single-domain Miscalibration.
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(b) Cross-domain Miscalibration.

Figure 1: (a) Empirical miscoverage rate (EMR) at various risk levels on the MMLU-Pro dataset utilizing 8 LLMs.
Results on the left are from the Health discipline, while results on the right are from the Economics discipline. Solid
lines give the mean over 100 trials and shaded regions show +/− the standard deviation (std). We set the split ratio
between the calibration and test set to 0.5 for all trials. The ⋆ indicates that even the mean miscoverage rate at
the corresponding risk level is higher than the upper bound, and the shaded regions exceeding the upper bound
reflect significant data point anomalies. (b) Significant violation in the management of EMR when we use data
points from different disciplines for the calibration set and the test set within the MMLU-Pro dataset employing the
LLaMA-3.1-8B-Instruct model at the risk level of 0.28. Note that we calculate the minimum reliable risk level on
each subject based on Eq. (5) and set α to the maximum. All data on the diagonal is manually set to equal α.

actionable (Cresswell et al., 2024a).

Within prior ConU frameworks, the NSs are de-
rived from various uncertainty notions linked with
reliable generations and then utilized to select re-
sponses by a user-specified quantile. As supported
by Figure 1, our key insight is that employing dif-
ferent models will affect how well the uncertainty
distribution of the calibration set covers test QA
samples at a specific risk level (Lin et al., 2024; Ye
et al., 2024), thus determining the exchangeabil-
ity among the NSs. For instance, if the deployed
model excels in health but struggles with math, the
NSs from the health dataset will significantly dif-
fer from (lower than) those from the math dataset,
thus leading to miscalibration, while a powerful
proprietary model with comprehensive knowledge
across both domains can yield an approximate un-
certainty distribution. Furthermore, ConU methods
manually remove calibration samples that fail to
contain acceptable answers within the sampling
space (Su et al., 2024; Kaur et al., 2024; Wang
et al., 2024c, 2025a), which constrains the quan-
tity of test QA samples that the calibration set can
handle, as demonstrated in Section 3.2. At this
point, our goal is to derive the minimum risk level
manageable by the original calibration set, and then
eliminate uncertainty data outliers undermining ex-
changeability. Subsequently, the remaining test

samples are expected to allow for user-specified
marginal coverage.

Inspired by prior work on outlier detection (OD)
and permutation test (Vovk et al., 2003; Angelopou-
los and Bates, 2021; Guan and Tibshirani, 2022;
Bates et al., 2023), we propose selective conformal
uncertainty (SConU), which gathers statistical evi-
dence for nonexchangeable data sequences via hy-
pothesis testing. Specifically, we construct a con-
formal p-value (Jin and Candès, 2023; Angelopou-
los et al., 2024a; Gui et al., 2024) for each test
data to identify whether its uncertainty state sig-
nificantly deviates from the calibration data distri-
bution, using it as a baseline for exchangeability
assessment. Furthermore, recognizing that uncer-
tainty data anomalies in the calibration set compro-
mise their reference value and statistical rigor, we
provide an optimized version by incorporating the
prediction status of each calibration data point at a
specific risk level into the counting criterion of the
conformal p-value. After filtering out uncertainty
data outliers within the test set, we achieve rigor-
ous management of the miscoverage rates in both
single-domain and cross-domain QA datasets.

Additionally, practical NLG applications focus
on conditional coverage for a particular input.
However, this property is infeasible in most NLG
cases (Angelopoulos and Bates, 2021; Plassier
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et al., 2024; Angelopoulos et al., 2024a). In this pa-
per, we investigate the impact of the exchangeabil-
ity condition, split ratio, and uncertainty measure-
ments on conditional performance, aiming to ap-
proximate conditional coverage in high-stakes QA
scenarios. Finally, we disclose significant semantic
redundancy within prediction sets in human-in-the-
loop QA applications (Cresswell et al., 2024b).

Our contributions can be summarized as follows:

• We propose selective conformal uncertainty
(SConU), which for the first time implements
significance tests to filter out uncertainty data
outliers that violate the exchangeability pre-
condition at a specific risk level.

• We maintain the integrity of the calibration
set and derive the minimum manageable risk
level after deploying the language model.

• We explore internal components of SConU to
enhance conditional performance and opera-
tional efficiency of the prediction sets.

2 Related Work

Split Conformal Prediction. SCP guarantees
ground-truth coverage on fresh test samples based
on a calibration set (Papadopoulos et al., 2002; An-
gelopoulos and Bates, 2021; Angelopoulos et al.,
2024b,a). We briefly outline the conformal proce-
dures of the SCP framework in Appendix A. De-
spite the statistical rigor, SCP assumes the NSs
of all the N calibration data points and the given
test sample to be exchangeable (Tibshirani et al.,
2019; Bates et al., 2021; Barber et al., 2023; Far-
inhas et al., 2024). Formally, the sequence of data
points Z1, Z2, · · · , ZN , ZN+1 is considered ex-
changeable if, for any permutation π, the sequence(
Zπ(1), Zπ(2), . . . , Zπ(N), Zπ(N+1)

)
has the same

joint distribution as (Z1, Z2, . . . , ZN , ZN+1). Intu-
itively, this condition is hard to represent and verify
concretely in NLG tasks (Campos et al., 2024).

Conformal Uncertainty in QA Tasks. Recently,
researchers have attempted to apply SCP to LLMs
for reliable language generation. In white-box set-
tings, several studies (Kumar et al., 2023; Ye et al.,
2024; Kostumov et al., 2024; Kaur et al., 2024;
Quach et al., 2024; Angelopoulos et al., 2024b) de-
velop ConU frameworks for multiple-choice query-
answering (MCQA) and open-ended QA tasks by
correlating the NS with a certain uncertainty no-
tion of reliable responses (e.g., normalized logit-

based probability of each option). Meanwhile, re-
searchers also establish criteria in black-box sce-
narios (Wang et al., 2024c; Su et al., 2024; Wang
et al., 2025a) based on self-consistency. Our work
SConU applies to both settings and retains existing
frameworks: We do not process calibration samples
manually but instead derive the minimum risk level,
which allows for handling more QA samples from
diverse subjects. Then, we perform the conformal
p-value to eliminate uncertainty data outliers vio-
lating the exchangeability precondition, and apply
ConU frameworks based on the type of problems.

Additionally, real-world QA applications often
focus on conditional coverage over a particular in-
put (Gibbs et al., 2023; Ding et al., 2023; Kim et al.,
2024; Cresswell et al., 2024a), while in the most
practical NLG case, this property is impossible to
achieve (Vovk, 2012; Plassier et al., 2024). This
paper examines internal factors of SConU, such as
the reliability measurements in the formulation of
the NS, seeking to approximate conditional cover-
age across various set sizes (Angelopoulos et al.,
2024a; Su et al., 2024; Wang et al., 2025a).

3 Method

3.1 Preliminaries
Formally, we have a held-out set of N calibration
data points, Dcal = {(xi, y∗i )}Ni=1, where xi and y∗i
denote the i-th question and ground-truth answer,
respectively. For each data point, we sample mul-
tiple (e.g., M ) responses from the output space of
the language model to construct a candidate set for

the corresponding question, denoted as
{
y
(i)
j

}M

j=1
.

We can calculate the reliability score of each gen-
eration or semantic cluster utilizing various uncer-
tainty measurements within the candidate set (Su
et al., 2024; Wang et al., 2024c; Kaur et al., 2024).
For instance, we can express the confidence score
of each option in MCQA task as wl · Fl

(
y
(i)
j

)
+

wf ·Ff

(
y
(i)
j

)
, where Fl

(
y
(i)
j

)
represents the prob-

ability derived from model logit, Ff

(
y
(i)
j

)
denotes

the frequency score of y(i)j within the candidate set,
and wl and wf are the respective weights assigned
to each score. Then, the NS of each MCQA sample
is 1− wl · Fl (y

∗
i )− wf · Ff (y

∗
i ) (wl + wf = 1).

Due to the randomness of sampling and potential
limitations in model capability, we may not always
obtain an acceptable response that aligns with the
ground-truth answer by sampling M times for each
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QA sample. Unlike prior work (Wang et al., 2024c;
Kaur et al., 2024; Wang et al., 2025a), we do not
demand that samples employed as the calibration
data must encompass acceptable responses within
their candidate sets. On one hand, given that SCP
is model-agnostic, we cannot guarantee that all em-
ployed language models in practical applications
will be capable of addressing the same questions.
Furthermore, we aim for the calibration set to cover
data distributions across various domains compre-
hensively. While the lower bound of the error rate
that the calibration set can control is constrained at
this point, we can accommodate a greater volume
of test QA samples by easing the risk level of α.

In the following section, (1) we first introduce
our two developed conformal p-values that assess
the exchangeability condition through significance
tests. Then, (2) we formally verify the necessity of
maintaining the integrity of the original calibration
set. Next, (3) we investigate the minimum risk level
manageable by the original calibration set. Finally,
(4) we present the workflow of our framework.

3.2 Selective Conformal Uncertainty

Inspired by prior research (Pitman, 1937; Jin and
Candès, 2023; Bates et al., 2023; Gui et al., 2024;
Angelopoulos et al., 2024a), we collect statistical
evidence for nonexchangeable sequences of NSs
arising from uncertainty data outliers via hypoth-
esis testing. Specifically, we define the null hy-
pothesis H0 for the test data point xN+1 with the
significance level of δ as follows: {(xi, y∗i )}Ni=1

can serve as the calibration set for xN+1 with cov-
erage guarantees. Rejecting H0 indicates sufficient
evidence of the prediction set with an unbounded
miscoverage rate when tackling xN+1 based on
{(xi, y∗i )}Ni=1. To this end, we construct a finite-
sample valid conformal p-value associating H0 as

pN+1 =
1 +

∑N
i=1 1 {ui ≥ uN+1}

N + 1
(1)

In the formulation, ui indicates the uncertainty
of the language model addressing the i-th question
xi, measured by an uncertainty notion U , and we
utilize the predictive entropy (PE) (Kadavath et al.,
2022; Duan et al., 2024; Wang et al., 2025b). Note
that the uncertainty corresponds to the output dis-
tribution of a particular QA sample, while the NS
reflects the model’s uncertainty regarding a specific
generation, representing the disagreement between
the current response and the query.

As mentioned, we consider that uncertainty data
anomalies may present in the calibration set and
compromise statistical rigor. To examine the ref-
erence quality of each calibration data point at a
specific risk level, we refine the conformal p-value:

p
′
N+1 =

1 +
∑N

i=1 1 {ui ≥ uN+1, y
∗
i ∈ E (xi,Dcal, α)}

N + 1
,

(2)

where y∗i ∈ E (xi,Dcal, α) determines whether the
prediction set established for xi, calibrated by all
data points in Dcal except for xi, contains y∗i at a
risk level of α. If not, we intuitively consider that
the model may encounter hallucination issues when
processing xi (Kuhn et al., 2023; Farquhar et al.,
2024), or that the uncertainty of its output distribu-
tion is abnormally high, which results in high NSs
of its reliable generations and miscoverage. At this
point, ui ≥ uN+1 lacks statistical validity at the
risk level of α, and 1 {·} does not count.

For simplicity, we refer to the conformal proce-
dure employing two conformal p-values as SConU
and SConU-Pro in the following text. We demon-
strate that the two conformal p-values adhere to the
statistical definition of p-values in Appendix C, and
present a more rigorous framework to detect when
test points do not come from the same distribution.

Maintenance of the calibration set. As men-
tioned, we do not remove calibration data that fail
to cover acceptable responses within their candi-
date sets. In this section, we demonstrate the practi-
cal significance by defining the minimum sampling
size of each calibration QA sample as

mi = inf

{
Mi : ∀M

′
i ≥ Mi, y

∗
i ∈

{
y
(i)
j

}M
′
i

j=1

}
,

(3)
which ensures that there is at least one correct an-
swer in the i-th candidate set of size mi. Then, we
sort the N minimum sampling sizes and calculate
their ⌈(1−β)(1+N)⌉

N quantile: m̂ = m⌈(1−β)(1+N)⌉,
where β represents the error rate (similar to α). If
the test sample is exchangeable with N calibration
data points, we have P (mN+1 ≤ mi) =

i
N+1 . We

then set the sampling size of the test QA sample to
m̂ and obtain the probability of covering at least
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one admissible response within m̂ sampling times

P
(
y∗N+1 ∈

{
y
(N+1)
j

}m̂

j=1

)
= P (mN+1 ≤ m̂)

=
⌈(1− β) (1 +N)⌉

N + 1
≥ 1− β

,

(4)

Following the requirement of previous research,
where at least one correct answer exists in the can-
didate set of fixed size M for each calibration data,
we have M ≥ max {mi}Ni=1 and β → 0. At this

point, y∗N+1 ∈
{
y
(N+1)
j

}M

j=1
is a certain event,

which is infeasible in practical NLG tasks. Addi-
tionally, removing calibration samples will narrow
the uncertainty distribution of the calibration set,
which diminishes its adaptability to new test QA
samples. Therefore, we explore the minimum risk
level controlled by the original calibration set.

Minimum risk level. Building on prior research
(Angelopoulos et al., 2024b; Farinhas et al., 2024),
we post-process the candidate set of each cali-
bration data point into a set of reliable responses
with sufficiently high confidence scores, Cλ (xi) ={
y
(i)
j : F

(
y
(i)
j

)
≥ 1− λ

}
(λ ∈ [0, 1]), where

F (·) can be any measurement that reflect the trust-
worthiness of each sampled response. Then, we
calculate the loss of miscoverage, l (Cλ (xi) , y∗i ) =
1 {y∗i /∈ Cλ (xi)}, abbreviated as li (λ), and set

LN (λ) = 1
N

N∑

i=1

li (λ). Suppose lN+1 (λ) follows

Uniform ({l1 (λ) , · · · , lN+1 (λ)}) by exchange-

ability, we have E [lN+1 (λ)] =
1

N+1

N+1∑

i=1

li (λ) =

NLN (λ) + lN+1 (λ)

N + 1
. Obviously, LN (λ) is non-

increasing in λ. Then, we set λ to its upper bound
(i.e., 1) and obtain the minimum value, LN (1).

When λ is set to 1, Cλ (xi) =
{
y
(i)
j

}M

j=1
, and

at this point, the problem simplifies to calculat-
ing the proportion of candidate sets in the cali-
bration set that do not contain an acceptable re-

sponse: LN (1) = 1
N

N∑

i=1

1

{
y∗i /∈

{
y
(i)
j

}M

j=1

}
.

Since E [lN+1 (λ)] should be controlled by a user-
specified risk level of α (i.e., E [lN+1 (λ)] ≤ α),
and lN+1 (λ) ∈ {0, 1}, we obtain E [lN+1 (λ)] ≥
NLN (1)
N+1 , and at this point,

αl = NLN (1) / (N + 1) (5)

Query ... Query Q&A ... Q&A
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... ... ... ... �
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               ������            �����
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� ∈ (�, �) � ∈ (��, �)

User-specified
risk level

Minimum risk level

Figure 2: Pipeline of the SConU framework. We achieve
rigorous coverage of correct generations on test samples
at various user-specified risk levels based on the calibra-
tion set after automatic outliers detection.

Finally, for any risk level of α ≥ αl, we can rig-
orously manage the correctness miscoverage rate
leveraging the given calibration set.

The concept of minimum risk level also aligns
with abstention (Yadkori et al., 2024; Shahrokhi
et al., 2025). Calibration methods operating with
finite-sampling are constrained by the LLM’s ca-
pacity to generate admissible outputs within this
finite horizon. For α < αl, we have to enumerate
the entire output space to maintain valid coverage
on some inputs, and in such cases, the prediction
set will not provide practical information.

Workflow of SConU. As illustrated in Figure 2,
after deploying the LLM and the maintained cal-
ibration set, we first calculate the minimum risk
level αl if we utilize the sampling set when formu-
lating NS; otherwise, we allow any user-specified
risk level α ∈ (0, 1). Then, given each test sample,
we conduct significance tests to identify whether it
aligns with the uncertainty distribution of the cali-
bration set at the risk level of α. A low conformal
p-value suggests a violation of the exchangeabil-
ity precondition, and we decline to respond. After
filtering out outliers, we conduct conformal proce-
dures for samples within the remaining test set with
finite-sample guarantees of correctness coverage.

4 Experiments

4.1 Experimental Settings

Datasets. We utilize 3 closed-ended QA datasets:
MMLU (Hendrycks et al., 2021) for multitask lan-
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Table 1: Results of the probability (mean ± std) of failing to obtain admissible responses through calibrating the
sampling size for each question within the test set across various values of β.

Dataset TriviaQA (open-ended) MedMCQA (closed-ended)

LLMs /β 0.1 0.2 0.3 0.1 0.2 0.3
LLaMA-3.2-3B-Instruct 0.0884 ± 0.0149 0.1767 ± 0.0109 0.2725 ± 0.0194 0.0896 ± 0.0078 0.1823 ± 0.0084 0.2423 ± 0.0072

OpenChat-3.5 0.0848 ± 0.0179 0.1551 ± 0.0391 0.1997 ± 0.0090 0.0911 ± 0.0119 0.1785 ± 0.0265 0.2676 ± 0.0074
LLaMA-3.1B-Instruct 0.0869 ± 0.0060 0.1770 ± 0.0378 0.1965 ± 0.0086 0.0861 ± 0.0067 0.1697 ± 0.0331 0.2771 ± 0.0078
Qwen2.5-14B-Instruct 0.0835 ± 0.0201 0.1731 ± 0.0075 0.1731 ± 0.0075 0.0815 ± 0.0047 0.0815 ± 0.0047 0.0815 ± 0.0047

Table 2: The EMR results obtained from 100 trials on the MMLU-Pro dataset. Note that the mean and median
metrics only need to be below the corresponding risk level, and they are not required to be as low as possible.
indicates using the basic ConU framework, and  represents utilizing our SConU criterion, eliminating uncertainty
data outliers within the test set. Red indicates violation of the risk level.

Disciplinary Metric OD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Qwen-2-7B-Instruct Model.

Health

Mean
 0.1019 0.1977 0.3001 0.4035 0.5004 0.5964 0.6888 0.7938 0.8788
 0.0938 0.1943 0.2972 0.3957 0.4937 0.5915 0.6819 0.7876 0.8754

Std ↓  0.0285 0.0372 0.0420 0.0434 0.0424 0.0441 0.0420 0.0323 0.0232
 0.0283 0.0362 0.0423 0.0425 0.0358 0.0429 0.0384 0.0323 0.0227

Median
 0.1080 0.1960 0.2960 0.4120 0.5080 0.5960 0.6760 0.7880 0.8760
 0.0960 0.1920 0.2920 0.3960 0.4920 0.5920 0.6800 0.7960 0.8800

Economics

Mean
 0.1001 0.2032 0.2951 0.3928 0.4916 0.5871 0.6838 0.7658 0.8783
 0.0965 0.1951 0.2950 0.3928 0.4877 0.5853 0.6820 0.7630 0.8767

Std ↓  0.0279 0.0338 0.0367 0.0408 0.0384 0.0366 0.0347 0.0352 0.0161
 0.0210 0.0281 0.0275 0.0395 0.0294 0.0253 0.0294 0.0272 0.0226

Median
 0.1040 0.2080 0.2880 0.3920 0.4960 0.5920 0.6880 0.7640 0.8760
 0.0960 0.1960 0.2920 0.3960 0.4880 0.5880 0.6840 0.7680 0.8720

LLaMA-3.1-8B-Instruct Model.

Health

Mean
 0.0961 0.1933 0.2922 0.3912 0.4957 0.5988 0.6936 0.8028 0.9015
 0.0975 0.1925 0.2926 0.3935 0.4978 0.5966 0.6883 0.7913 0.8941

Std ↓  0.0273 0.0364 0.0459 0.0447 0.0481 0.0459 0.0404 0.0362 0.0257
 0.0214 0.0300 0.0412 0.0431 0.0457 0.0420 0.0426 0.0357 0.0241

Median
 0.0960 0.1920 0.2960 0.3920 0.4960 0.5880 0.6920 0.7960 0.9040
 0.0960 0.1960 0.3000 0.3880 0.4840 0.5920 0.6960 0.7960 0.8920

Economics

Mean
 0.0947 0.1952 0.2997 0.4018 0.4985 0.5932 0.6936 0.7889 0.8867
 0.0916 0.1902 0.2913 0.3875 0.4855 0.5879 0.6855 0.7897 0.8863

Std ↓  0.0363 0.0373 0.0424 0.0443 0.0458 0.0447 0.0385 0.0326 0.0279
 0.0242 0.0368 0.0415 0.0427 0.0455 0.0388 0.0294 0.0285 0.0250

Median
 0.1000 0.1880 0.2920 0.4080 0.4880 0.5840 0.6800 0.7880 0.8840
 0.0920 0.1920 0.2920 0.3960 0.4880 0.5960 0.6920 0.7920 0.8880

guage understanding, more challenging MMLU-
Pro (Wang et al., 2024b), and MedMCQA (Pal
et al., 2022) for real-world medical entrance exam,
and 2 open-domain datasets: TriviaQA (Joshi et al.,
2017) for closed-book QA and CoQA (Reddy et al.,
2019) for open-book conversational QA. More de-
tails are presented in Appendix B.2.

Metrics. We utilize the Empirical Miscoverage
Rate (EMR) to assess whether conformal methods
produce prediction sets that meet statistical guar-
antees (Wang et al., 2025a; Quach et al., 2024)
after outlier elimination. For conditional cover-
age, we apply the Size-stratified Miscoverage Rate

(SMR) that evaluates error rates across various set
sizes (Angelopoulos and Bates, 2021; Kumar et al.,
2023; Su et al., 2024). We also explore the oper-
ational efficiency through the Average Prediction
Set Size (APSS) on the test set (Wang et al., 2024c,
2025a; Su et al., 2024; Angelopoulos et al., 2024a).

Our utilized LLMs and additional experimental
settings are presented in Appendix B.

4.2 Empirical Results

Calibration of Sampling Size. As theoretically
demonstrated in Section 3.2, we maintain the in-
tegrity of the calibration set to accommodate more
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Figure 3: Results of EMR after applying our two frameworks utilizing the LLaMA-3.1-8B-Instruct model on the
MMLU-Pro dataset. Note that all data on the diagonal is manually set to equal to α (αl = 0.2723).
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Figure 4: Results of APSS before and after performing SConU-Pro, utilizing the LLaMA-3.1-8B-Instruct model on
the MMLU-Pro dataset. Note that all data on the diagonal is manually set to 1.

test samples. Here, we empirically validate the
practicality of Eq. (4). We apply the sampling size
calibration procedures to both open-ended Triv-
iaQA and closed-ended MedMCQA tasks using
four LLMs. For each setting, we randomly split
the calibration and test sets 100 times with a 0.5
split ratio. We determine the minimum sampling
size for each test data point based on the calibration
set and a user-specified risk level, β. As presented
in Table 1, the average miscoverage rate is rigor-
ously bounded (i.e., ≤) by β, which underscores
the importance of maintaining the integrity of the
calibration set under exchangeable conditions.

Marginal Coverage. As illustrated in Figure 1a,
we apply ConU to single-domain datasets and ob-
serve that the mean EMR results exceed the user-
specified risk levels for some LLMs (e.g., Qwen-
2-7B-Instruct). Moreover, the shaded area signifi-
cantly surpassing the dashed line indicates substan-

tial issues unbounded EMR in 100 trials. Note that
we employ the typical conformal framework (Ku-
mar et al., 2023; Ye et al., 2024; Kostumov et al.,
2024; Campos et al., 2024) for MCQA tasks, de-
tailed in Appendix D. We implement our SConU
framework under the same settings using the Qwen-
2-7B-Instruct and LLaMa-3.1-8B-Instruct models
as examples. We also consider the median metric
as mentioned in several studies (Deng et al., 2023;
Snell et al., 2023; Zollo et al., 2024). As shown
in Table 2, both the mean and median of the EMR
results obtained from SConU are rigorously con-
fined within the risk level, and the variance metric
is significantly lower than that of the basic ConU
framework on the Health and Economics subsets,
highlighting the effectiveness of our approach.

In real-world QA tasks, LLMs often face queries
from diverse disciplines (Kumar et al., 2023). How-
ever, as shown in Figure 1b, considerable issues
of unbounded EMR emerge when the uncertainty
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Table 3: Results of the SSM metric obtained from 100 trials, under different settings on the MedMCQA dataset,
utilizing the Qwen-2.5-14B-Instruct model (Mean ± Std). Red indicates violation of the risk level.

wl (Logit) wf (Frequency) M (Sampling) OD Size = 1 Size = 2 Size = 3 SSM ↓
Split ratio is fix at 0.5 and α is set to 0.34 (αl = 0.3342).

1 0 10  0.3428 ± 0.0151 0.2800 ± 0.0277 0.1056 ± 0.1860 0.3579
1 0 10  0.3060 ± 0.0054 0.0348 ± 0.0047 0 0.3114

0.5 0.5 10  0.3428 ± 0.0144 0.2971 ± 0.0240 0.1487 ± 0.1594 0.3572
0 1 10  0.3391 ± 0.0149 0.2874 ± 0.0251 0.2177 ± 0.1027 0.3540
0 1 10  0.3025 ± 0.0067 0.2795 ± 0.0766 0 0.3092

Split ratio is fix at 0.7 and α is set to 0.34 (αl=0.3294).
1 0 10  0.3404 ± 0.0168 0.2764 ± 0.0395 0.1212 ± 0.2499 0.3711

0.5 0.5 10  0.3407 ± 0.0157 0.2955 ± 0.0378 0.1350 ± 0.2069 0.3564
0.5 0.5 20  0.3402 ± 0.0102 0.2916 ± 0.0337 0.1160 ± 0.1713 0.3504
0.5 0.5 20  0.3023 ± 0.0112 0.2665 ± 0.0293 0 0.3135
0 1 20  0.3382 ± 0.0154 0.2927 ± 0.0353 0.1287 ± 0.1156 0.3536
0 1 20  0.3006 ± 0.0121 0.2539 ± 0.0109 0 0.3127

Table 4: Mean of SSM results obtained from 100 trials
at the risk level of 0.3 on the Clinical Knowledge subject
of MMLU dataset. Note that we fix the split ratio to 0.5
and set wl = wf = 0.5 in the formulation of NS.

LLMs OD Size = 1 Size = 2 Size = 3

Vicuna-7B-v1.5  0.3233 0.3811 0.2113
(al = 0.2857)  0.3229 0.2971 0.0733

Vicuna-13B-v1.5  0.3045 0.2769 0.2811
(al = 0.2556)  0.2973 0.1813 0

distribution of test samples deviates from that of
the provided calibration set, compromising the reli-
ability of their prediction sets. For instance, when
utilizing calibration data from the Psychology do-
main to address test samples from 13 other subsets,
EMR values typically exceed the risk level of 0.28,
peaking at 0.83 in the Math subject. Moreover, we
may have no access to model logit. At this point,
we incorporate the frequency score into the NS for-
mulation and set wl = 0, wf = 1 following the
study (Wang et al., 2025a). Then, we employ our
SConU framework, which filters out uncertainty
data outliers within each test subset. As illustrated
in Figure 3a, the EMR metric for the Math disci-
pline decreases to 0.15, while the results for other
subjects remain confined by the minimum risk level
of 0.28. When subsets from other disciplines are
utilized as the calibration set, EMR results gener-
ally meet the guarantee of marginal coverage.

Despite the theoretical guarantee of SCP being
rigorous, there can be minor fluctuations in practice
due to finite-sample variability (Angelopoulos and
Bates, 2021; Ye et al., 2024; Angelopoulos et al.,
2024a). We notice EMR deviations in the results
of SConU. To address this, we apply SConU-Pro

by incorporating the prediction status of each cali-
bration data point into the counting criteria of the
conformal p-value, which evaluates the reference
values of the calibration samples across various risk
levels. As demonstrated in Figure 3b, we achieve
rigorous management of the EMR metric (i.e., ≤ α)
in cross-domain scenarios. Furthermore, we com-
pare the APSS metric before and after implement-
ing SConU-Pro. As illustrated in Figure 4, when
employing the Psychology or Biology subset as the
calibration set, we observe APSS being less than 1
in the test sets of other disciplines, indicating that
many test QA samples have empty prediction sets.
Following the application of SConU-Pro, we attain
an APSS metric of 1 for all selected test samples
with the majority of EMR metrics equal to 0, sug-
gesting that we accurately identify the correct an-
swer for each test QA sample. In other calibration
settings, the APSS results also exhibit a significant
decline, thereby enhancing prediction efficiency.

More details of our performed conformal proce-
dures can be found in Appendix D, and additional
experimental results are presented in Appendix E.

Conditional Coverage. Given the critical impor-
tance of correctness coverage for individual sam-
ples in high-stakes QA tasks, we explore four key
factors: exchangeability, the reliability of the NS in
representing disagreements between query-answer
pairs, split ratio, and model performance, and ex-
amine EMR across various set sizes. Our analysis
focuses on the MedMCQA task and the Clinical
Knowledge subset of the MMLU dataset. As pre-
sented in Table 3, when employing logit-based NSs,
EMR values exceed the risk threshold at set sizes of
1 and 3. By incorporating the frequency score into
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Table 5: Results of mean APSS before and after seman-
tic deduplication (SD) within prediction sets.

Dataset LLMs SD Mean APSS

TriviaQA

Qwen2.5-3B-Instruct
○ 8.07
○ 1.08

Qwen2.5-7B-Instruct
○ 8.77
○ 1.05

Qwen2.5-14B-Instruct
○ 9.18
○ 1.03

CoQA

Qwen2.5-3B-Instruct
○ 8.65
○ 1.12

Qwen2.5-7B-Instruct
○ 8.80
○ 1.04

Qwen2.5-14B-Instruct
○ 8.84
○ 1.03

the NS formulation and appropriately increasing
the sample size, we observe a reduction in the SSM
metric. Moreover, while more calibration samples
enhance conditional performance, the SSM metric
remains above the acceptable risk level. To address
this, we utilize the conformal p-value to eliminate
outliers, achieving approximate conditional cover-
age, with the SSM metric falling below the risk
threshold at both split ratios. For instance, with a
split ratio of 0.5, we attain an SSM value of 0.3092
using the frequency score derived from the candi-
date set of size 10. As shown in Table 4, model
performance also plays a significant role in influ-
encing conditional coverage, and our SConU-Pro
framework consistently enhances the SSM metric.

We conclude that we can design NS using more
reliable uncertainty measures based on the internal
model information and the true sampling distribu-
tion. Additionally, we can appropriately increase
the scale of the calibration data, although this will
increase computational costs. Most importantly, it
is essential to ensure exchangeability among QA
samples. Finally, deploying task-specific models
can further improve conditional performance.

Prediction Efficiency. In open-domain QA tasks,
we observe significant semantic redundancy in the
prediction sets generated by previous ConU frame-
works (Wang et al., 2024c; Su et al., 2024). As
shown in Table 5, the mean APSS from 100 trials
decreases markedly before and after semantic dedu-
plication, suggesting that there is considerable po-
tential for improving the action efficiency of these
prediction sets while maintaining the guarantee.

5 Conclusion

In this paper, we introduce SConU, a modular and
principled framework aimed at eliminating uncer-
tainty data outliers that violate the exchangeabil-
ity precondition inherent in existing conformal ap-
proaches. We develop two conformal p-values to
identify whether the given test QA sample signif-
icantly deviates from the uncertainty distribution
of the calibration set as a user-specified risk level.
Experimental results demonstrate the rigorous guar-
antees of marginal coverage and efficient prediction
of SConU. Additionally, we derive the minimum
risk level manageable by the calibration set with-
out manually handling calibration data points post-
deployment of the language model. Furthermore,
we approximate conditional coverage across vari-
ous sizes of the prediction set by analyzing several
internal components of the conformal procedures.
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Limitations

Our SConU framework excludes test QA samples
that significantly deviate from the uncertainty distri-
bution of the calibration set. In future work, we will
investigate strategies to address nonexchangeable
data sequences by analyzing the degree of uncer-
tainty distribution shift between the given test sam-
ple and the calibration set. Moreover, we achieve
approximate conditional coverage at various predic-
tion set sizes in high-stakes QA tasks, prompting
us to conduct more comprehensive studies on the
mechanisms influencing conditional performance
on particular data points in subsequent research.
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A An illustration of the SCP framework

SCP can transform any heuristic notion of uncer-
tainty from any model into a rigorous one (An-
gelopoulos and Bates, 2021). Let’s illustrate the ba-
sic SCP framework by classification problems (An-
gelopoulos et al., 2021): Given the calibration set
of size N , we define the NS of each sample as one
minus the softmax output for the true class. Then
we calculate the ⌈(N+1)(1−α)⌉

N quantile of the N
sorted (ascending) NSs and employ it as the thresh-
old to select possible classes for a new test sample.
If the softmax output of a certain class falls below
the threshold, by the exchangeability condition, we
consider it to have an approximate probability of
1−α to be the true label and add it to the prediction
set. Finally, we achieve marginal correctness cov-
erage on the finite-sample test set. The complete
framework is presented as follows:

1. Given the calibration data set {(Xi, Y
∗
i )}ni=1

(i.i.d.) and pretrained model f̂ (·) (f̂ (Xi) ∈
[0, 1](K)). The probability of each true class
(label) is denoted as f̂ (Xi)Y ∗

i
.

2. Define and sort the nonconformity scores (un-
certainty state associated with the true class of
each calibration sample): si = s (Xi, Y

∗
i ) =

1− f̂ (Xi)Y ∗
i

({s1 ≤ · · · ≤ sn}).

3. Obtain the ⌈(n+1)(1−α)⌉
n quantile of {si}ni=1:

q̂ = inf
{
q : |{i:si≤q}|

n ≥ ⌈(n+1)(1−α)⌉
n

}
=

s⌈(n+1)(1−α)⌉.

4. Create the prediction set for Xtest following:
C (Xtest) = {y ∈ [K] : s (Xtest, y) ≤ q̂}

5. The event Y ∗
test ∈ C (Xtest) is equiva-

lent to s (Xtest, Y
∗
test) ≤ q̂. As long as

s (Xtest, Y
∗
test) ≤ q̂ is satisfied, Y ∗

test is en-
compassed by C (Xtest), and then we obtain
the prediction set that contains the true label.

6. By the exchangeability of N + 1 data points,
we have P (stest ≤ si) =

i
n+1 .

7. Then we conclude: P (Y ∗
test ∈ C (Xtest)) =

P (stest ≤ q̂) = ⌈(n+1)(1−α)⌉
n+1 ≥ 1− α.

B Additional Experimental Settings

B.1 Base LLMs
We conduct experiments utilizing 4 popular se-
ries of “off-the-shelf” LLMs: OpenChat (Wang

et al., 2024a), LLaMA (Touvron et al., 2023;
AI@Meta, 2024), Vicuna (Zheng et al., 2023),
and Qwen (Yang et al., 2024), divided by model
size into: ① 3B: LLaMA-3.2-3B-Instruct and
Qwen-2.5-3B-Instruct. ② 7B: Qwen-2-7B-Instruct,
Qwen-2.5-7B-Instruct, and OpenChat-3.5. ③

8B: LLaMA-3-8B-Instruct and LLaMA-3.1-8B-
Instruct. ④ 13B: LLaMA-2-13B-Chat and Vicuna-
13B-v1.5. ⑤ 14B: Qwen-2.5-14B-Instruct. ⑥ 32B:
Qwen-2.5-32B-Instruct.

B.2 Details of Datasets

MMLU2 is a massive multi-task test consisting of
multiple-choice questions from 57 subjects such
as anatomy, astronomy, and business ethics. Fol-
lowing prior studies (Kumar et al., 2023; Su et al.,
2024), we consider a subset of 16 subjects: com-
puter security, high school computer science, col-
lege computer science, machine learning, formal
logic, high school biology, anatomy, clinical knowl-
edge, college medicine, professional medicine, col-
lege chemistry, marketing, public relations, man-
agement, business ethics, and professional account-
ing. Table 6 presents the number of samples em-
ployed for each subject from the MMLU dataset.
Note that there is a slight deviation in the actual
number of samples utilized for each model due to
a few individual samples that do not comply with
user instructions in all sampled responses (i.e., each
response is not among A, B, C, or D).

Table 6: The number of samples employed for each
subject from the MMLU dataset.

Subjects Number of Samples

computer security 100
high school computer science 100
college computer science 100
machine learning 112
formal logic 126

high school biology 310
anatomy 135
clinical knowledge 265
college medicine 173
professional medicine 272
college chemistry 100

marketing 234
public relations 110
management 103
business ethics 100
professional accounting 282

2https://huggingface.co/datasets/cais/mmlu
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MMLU-Pro3 is a more robust and challenging
multi-task understanding dataset. It expands sam-
ples from MMLU by increasing the 4 options for
each question to 10, and the subjects are enhanced
with questions from STEM Website, TheoremQA,
and SciBench. This dataset totally contains 12,000
complex questions across various disciplines. qIn
order for a balanced distribution of sample quan-
tities across different subjects, we employ a maxi-
mum of 500 samples for each subject. The detailed
sample quantities are shown in Table 7. Note that
the number of samples applied for each model may
have slight deviations (i.e., each response is not
among A, B, C, D, E, F, G, H, I, or J).

Table 7: The number of samples employed for each
subject from the MMLU-Pro dataset.

Subjects Number of Samples

computer science 410
math 500
chemistry 500
engineering 500
law 500
biology 500
health 500
physics 500
business 500
philosophy 499
economics 500
other 500
psychology 500
history 381

For both MMLU and MMLU-Pro datasets, we
utilize the test set of each subject, sourced from the
test-00000-of-00001.parquet file.

MedMCQA4 is designed to address real-world
medical entrance exam questions. We consider the
full validation set, 4,180 MCQA samples, sourced
from the validation-00000-of-00001.parquet
file. Note that several MCQA samples cannot be
correctly encoded by the tokenizer, specifically
non-ASCII characters. We exclude these samples,
remaining 3,967 samples.

TriviaQA5 is a reading comprehension dataset
containing over 650,000 high-quality query-answer
pairs. We utilize the validation set sourced from the
validation-00000-of-00001.parquet file and
randomly select 4,000 QA samples. In the experi-

3https://huggingface.co/datasets/TIGER-Lab/MMLU-
Pro

4https://huggingface.co/datasets/openlifescienceai/medmcqa
5https://huggingface.co/datasets/mandarjoshi/triviaqa

ments of sampling size calibration, we only employ
2,000 samples.

CoQA6 is a large-scale conversational QA task,
including 127,000 query-answer samples with their
corresponding evidence highlighted in the provided
context. We also utilize the validation set sourced
from the validation-00000-of-00001.parquet
file and randomly select 4,000 QA samples.

B.3 Prompt Engineering

For both the MMLU and MMLU-Pro tasks, we ran-
domly select 3 QA examples from the validation set
of each subject, to construct a 3-shot prompt, which
guides the language model in answering the cur-
rent question using the specified response format
(i.e., providing options like A, B, or C). Notably, all
questions within the same subject share the same
examples in the 3-shot prompt. For the MedMCQA
task, we randomly selected 3 samples from the val-
idation set as few-shot examples and exclude these
three samples from subsequent experiments. We
apply similar system prompts across the 3 MCQA
datasets. Note that each question in the MMLU-Pro
dataset generally includes 10 multiple-choice op-
tions, though some QA samples have fewer options
following a manual review process to eliminate
unreasonable choices. In the TriviaQA and CoQA
tasks, we develop few-shot prompts following prior
work (Duan et al., 2024; Wang et al., 2025b). We
provide complete prompt examples for 5 datasets,
as presented in Figures 10−14.

B.4 Hyperparameters

Following prior studies (Duan et al., 2024; Wang
et al., 2024c, 2025a), We employ multinominal
sampling to generate M candidate responses for
each data point. For both the MMLU and MedM-
CQA datasets with 4 options for each question,
we set the number of candidate responses, M ,
to 20, maintaining consistency with previous re-
search (Kuhn et al., 2023; Lin et al., 2024; Quach
et al., 2024). Since each sample in the MMLU-
Pro dataset includes 10 multiple-choice options,
we increase M to 50 to better approximate the dis-
tribution of model outputs. For the TriviaQA and
CoQA tasks, we generate 10 responses for each
question (Wang et al., 2024c). Considering that we
develop prompts to guide the language model in
responding with the most probable option letters
(e.g., A, B, or C), as detailed in Appendix B.3, we

6https://huggingface.co/datasets/stanfordnlp/coqa
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Hyperparameter Value

do_sample True
num_beams 1
top_p 0.9
temperature 1.0
max_length input_length + 1/36

Table 8: Hyperparameters for the generate function.
input_length is the embedding length of the input
prompt after being encoded by the tokenizer of the cur-
rent language model.

set the maximum generation length to 1 to acceler-
ate sampling in 3 MCQA tasks. For open-domain
QA, we examine the maximum length of answers
for all randomly selected samples, and set the max-
imum generation length for 2 tasks to 36. In the
generate function, we configure the hyperparam-
eters as presented in Table 8. Moreover, since the
conformal p-value detects when test points do not
come from the same distribution of the calibration
set, we guarantee that it does not return too many
false positives and set δ equal to the user-specified
risk level, following prior work (Angelopoulos and
Bates, 2021; Jin and Candès, 2023; Gui et al., 2024;
Huang et al., 2024).

C Conformal p-value

In this section, we first demonstrate that the con-
formal p-value formulated in Eq. (1) adheres to the
statistical definition of p-values. As mentioned, ui
represents the uncertainty of the LLM addressing
the i-th question. At this point, we can denotes
pN+1 as

pN+1 =

1 +
N∑

i=1

1 {ui ≥ uN+1}

N + 1

=
1 + k

N + 1

, (6)

where 1 + k is the position of uN+1 in the sorted
(i.e., ascending) sequence of N + 1 uncertainty
scores, and we have

P (pN+1 ≤ δ) = P
(

1 + k

N + 1
≤ δ

)

= P (1 + k ≤ ⌊(N + 1) δ⌋)
. (7)

Since we apply the consistent uncertainty measure
for each QA sample, the N + 1 uncertainty scores

are exchangeable. Then, we obtain

P (pN+1 ≤ δ) =
⌊(N + 1) δ⌋

N + 1

≤ (N + 1) δ

N + 1

≤ δ

. (8)

As mentioned in section 4.2, we observe minor
fluctuations in the results of SConU under cross-
domain scenarios. This arises from the hallucina-
tion issues of LLMs. For example, consider two
questions with similar sampling distribution. How-
ever, in one question’s candidate set, nearly all the
answers are incorrect, while in the other question’s
sampling set, most answers are correct. In this case,
the scores obtained from the uncertainty measure
for the two samples may be the same, but in fact,
the answering situations of the two QA samples are
opposite, which can affect the exchangeability of
the uncertainty scores, leading to slight variations
in the performance of outlier detection.

To check whether the uncertainty score of each
calibration data point is referenceable at different
risk levels, we incorporate their prediction status
into the counting criterion. At this point, we denote
the count of calibration samples that satisfy both
ui ≥ uN+1 and y∗i ∈ E (xi,Dcal, α). Thus the
conformal p-value can be expressed as p

′
N+1 =

1+k
N+1 . Here, k can take values from 0 to N , so the

range of p
′
N+1 is

[
1

N+1 , 1
]
. Similar to Eq. (7), we

have

P
(

1 + k

N + 1
≤ δ

)
= P (k ≤ (N + 1) δ − 1) . (9)

Let m = ⌊(N + 1) δ − 1⌋. Since k can be at most
N , if M < 0, then pN+1 will always be greater
than any negative value, so P

(
p
′
N+1 ≤ δ

)
= 0 ≤

δ. If 0 ≤ m ≤ N , we have

P (k ≤ m) ≤ m+ 1

N + 1
. (10)

Therefore,

P
(
p
′
N+1 ≤ δ

)
≤ m+ 1

N + 1

≤ δ
. (11)

In summary, we have demonstrated that our devel-
oped two conformal p-values satisfy the statistical
definition of p-values.
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Table 9: The minimum risk level manageable by each subject of the calibration set in the MMLU dataset utilizing
the Qwen2.5-32B-Instruct model.

Subjects (Computer Science) al Subjects (Medicine) al Subjects (Business) al

computer security 0 high school biology 0.007 marketing 0
high school computer science 0 anatomy 0.009 public relations 0
college computer science 0 clinical knowledge 0.004 management 0
machine learning 0 college medicine 0.014 business ethics 0.011
formal logic 0.019 professional medicine 0.008 professional accounting 0.018

college chemistry 0.051

computer_security

high_school_computer_science

college_computer_science

machine_learning
formal_logic

high_school_biology
anatomy

clinical_knowledge

college_medicine

professional_medicine

college_chemistry
marketing

public_relations
management

business_ethics

professional_accounting

computer_se
curity

high_school_computer_science

college_computer_science

machine_learning

formal_logic

high_school_biology

anatomy

clinical_knowledge

college_medicine

professional_medicine

college_chemistry

marketing

public_relations

management

business_e
thics

professional_accounting

0.10 0.08 0.06 0.03 0.05 0.08 0.08 0.08 0.07 0.08 0.01 0.08 0.06 0.08 0.06 0.07

0.07 0.10 0.05 0.03 0.03 0.07 0.07 0.07 0.05 0.07 0.00 0.07 0.05 0.07 0.05 0.05

0.10 0.12 0.10 0.06 0.06 0.12 0.12 0.12 0.08 0.12 0.01 0.12 0.06 0.12 0.06 0.08

0.17 0.18 0.11 0.10 0.10 0.18 0.18 0.18 0.12 0.18 0.00 0.18 0.11 0.18 0.11 0.11

0.13 0.14 0.10 0.07 0.10 0.14 0.14 0.14 0.13 0.14 0.03 0.14 0.10 0.14 0.10 0.11

0.03 0.04 0.02 0.02 0.02 0.10 0.04 0.04 0.03 0.04 0.01 0.04 0.02 0.04 0.02 0.02

0.07 0.07 0.06 0.02 0.02 0.07 0.10 0.07 0.06 0.07 0.01 0.07 0.06 0.07 0.06 0.06

0.07 0.07 0.04 0.03 0.03 0.07 0.07 0.10 0.06 0.07 0.00 0.07 0.04 0.07 0.04 0.05

0.10 0.10 0.07 0.04 0.04 0.10 0.10 0.10 0.10 0.10 0.02 0.10 0.06 0.10 0.06 0.07

0.06 0.06 0.03 0.02 0.02 0.06 0.06 0.06 0.05 0.10 0.01 0.06 0.03 0.06 0.03 0.04

0.22 0.25 0.19 0.14 0.14 0.25 0.25 0.25 0.21 0.25 0.10 0.25 0.19 0.25 0.19 0.19

0.02 0.02 0.01 0.00 0.00 0.02 0.02 0.02 0.01 0.02 0.00 0.10 0.01 0.02 0.01 0.01

0.09 0.09 0.08 0.02 0.02 0.09 0.09 0.09 0.08 0.09 0.00 0.09 0.10 0.09 0.06 0.08
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(b) APSS results of the basic ConU framework.

Figure 5: Results of the EMR and APSS metrics obtained from the basic ConU framework on the MMLU dataset
utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.1.
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(a) EMR results of our SConU framework.
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(b) APSS results of our SConU framework.

Figure 6: Results of the EMR and APSS metrics obtained from our SConU framework on the MMLU dataset
utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.1.

Considering that a single uncertainty notion can-
not fully represent the exchangeability among QA
samples, we can perform multiple hypothesis test-
ing to identify uncertainty data outliers in practical
high-stakes QA applications. As mentioned in Sec-
tion 3.2, we utilize PE as the uncertainty measure,
formulated as ui = PE (xi) =

∑Oi
o=1−po log po,

where po denotes the logit-based confidence score
of the o-th option and Oi denotes the number of
options for the i-th question (e.g., 4 or 10). Here,

for each QA sample, we define B notions of uncer-

tainty:
{
u
(i)
b

}B

b=1
, such as the number of seman-

tics within the candidate set (Lin et al., 2024) and
the frequency-based PE. At this point, we check
whether its B types of uncertainty significantly de-
viate from the calibration set for each test data point.
If any one of them does not meet the criterion, we
consider that the exchangeability condition is vio-
lated and decline to provide a prediction set.

We determine the significance level for the p-
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value associated with each uncertainty notion by
the Benjamini-Hochberg (BH) procedure (Ben-
jamini and Hochberg, 1995; Benjamini and Yeku-
tieli, 2001). More details can be referred to the
study (Jin and Candès, 2023). Finally, for each test
QA sample, if a certain conformal p-value associ-
ated with one uncertainty notion is lower than the
significance level calculated by the BH procedure,
we reject the null hypothesis and decline to provide
an answer. Conversely, when multiple hypothesis
testing indicates that the N +1 QA samples are ex-
changeable, we select task-specific ConU methods.
Next, we present several typical frameworks.

D Details of Conformal Procedures

Similar to Prompt Risk Control (PRC) (Zollo et al.,
2024), our approach is orthogonal to some existing
conformal frameworks. For MCQA tasks within
the same discipline or dataset, we apply the basic
procedures in prior studies (Kumar et al., 2023; Ye
et al., 2024; Kostumov et al., 2024) and evaluate
the EMR metric before and after implementing our
developed conformal p-value. In formulation, the
NS of each option can be expressed as 1 − wl ·
Fl (y

∗
i ) − wf · Ff (y

∗
i ) as defined in Section 3.1.

Here, we only utilize the confidence score obtained
from the model logit and set wl = 1 and wf = 0.
At this point, we calculate the uncertainty score
based on the logit-based PE method.

In more practical cross-domain settings, we in-
vestigate employing the black-box frequency score
to formulate the NS following the research (Wang
et al., 2025a), assuming no access to model internal
information, and set wl = 0 and wf = 1. We use
the frequency score of each option obtained from
the candidate set of size 20 (or 50) to characterize
the probability of po and calculate frequency-based
PE to implement uncertainty data outlier detection.
Note that the performance of uncertainty quantifi-
cation methods to differentiate between correct and
incorrect answers affects the effectiveness of con-
formal p-values in identifying outliers. This is be-
cause a single notion of uncertainty cannot fully
characterize the exchangeability among data points.
Therefore, by applying more efficient uncertainty
measures (Lin et al., 2024; Duan et al., 2024; Wang
et al., 2025b), we can enhance the capability of the
NS to represent the disagreement between the cur-
rent question and response while also improving
the statistical rigor of significance tests.

In open-domain QA tasks, we employ the similar

Table 10: The minimum risk level manageable by each
subject of the calibration set in the MMLU-Pro dataset
utilizing the Qwen2.5-32B-Instruct model.

Subjects al

computer science 0.075
math 0.123
chemistry 0.164
engineering 0.126
law 0.109
biology 0.032
health 0.047
physics 0.161
business 0.112
philosophy 0.045
economics 0.030
other 0.092
psychology 0.015
history 0.031

ConU framework applicable to black-box settings
introduced in the study (Wang et al., 2024c). The
NS of each calibration data is formulated as 1−0.5·
F
(
y
(i)
ref

)
−0.5 · 1

M

∑M
j=1 S

(
y
(i)
ref , y

(i)
j

)
F
(
y
(i)
j

)
,

where y
(i)
ref represent the response in the candidate

set that have equivalent semantics to the ground-
truth y∗i , F

(
y
(i)
ref

)
measures the number of gen-

erations that is semantically equivalent to y
(i)
ref

(i.e., the frequency score of correct semantic), and
S
(
y
(i)
ref , y

(i)
j

)
measures the semantic similarity

score between y
(i)
ref and y

(i)
j in the candidate set.

Refer to the studies (Wang et al., 2024c, 2025a; Su
et al., 2024) for more details. We also link the NS
with the uncertainty state of acceptable semantics.

E Additional Experimental Results

Note that in all experimental results within the in-
terdisciplinary scenarios, the discipline from the
horizontal axis represents the calibration set, while
the discipline from the vertical axis represents the
test set. When the calibration set and test set belong
to the same discipline along the diagonal, all EMR
results are directly set equal to the corresponding
risk level of α, and the APSS results are set to 1.

In this section, we also evaluate our SConU
framework in cross-domain settings utilizing the
MMLU dataset with the Qwen2.5-32B-Instruct
model employed as the generator. Firstly, we cal-
culate the minimum risk level manageable by each
subject of the calibration set based on Eq. (5), as
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(a) EMR results of the basic ConU framework.
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(b) APSS results of the basic ConU framework.

Figure 7: Results of the EMR and APSS metrics obtained from the basic ConU framework on the MMLU-Pro
dataset utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.2.
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(a) EMR results of our SConU framework.
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(b) APSS results of our SConU framework.

Figure 8: Results of the EMR and APSS metrics obtained from our SConU framework on the MMLU-Pro dataset
utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.2.

business law
psychology

biology
chemistry history other

health
economics math

physics

computer science
philosophy

engineering

business

law

psychology

biology

chemistry

history

other

health

economics

math

physics

computer science

philosophy

engineering

0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.03

0.02 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.04

0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01

0.02 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.04

0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02

0.01 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.01 0.02 0.00 0.00 0.03

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.01 0.01 0.00 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.01 0.00 0.00 0.01

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.01 0.00 0.00 0.02

0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.20 0.00 0.00 0.03

0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.20 0.00 0.02

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.20 0.02

0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.20
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) EMR results of our SConU-Pro framework.

business law
psychology

biology
chemistry history other

health
economics math

physics

computer science
philosophy

engineering

business

law

psychology

biology

chemistry

history

other

health

economics

math

physics

computer science

philosophy

engineering

1.00 1.00 1.00 1.00 1.13 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.03

1.00 1.00 1.00 1.00 1.15 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.07

1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00 1.02

1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.02

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.05

1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.03

1.00 1.00 1.00 1.00 1.09 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.05

1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.00 1.00 1.00 1.03 1.00 1.00 1.02

1.00 1.00 1.00 1.00 1.15 1.00 1.00 1.00 1.00 1.00 1.06 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.14 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.04

1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.03

1.00 1.00 1.00 1.00 1.16 1.00 1.00 1.00 1.00 1.00 1.08 1.00 1.00 1.00
1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

(b) APSS results of our SConU-Pro framework.

Figure 9: Results of the EMR and APSS metrics obtained from our SConU-Pro framework on the MMLU-Pro
dataset utilizing the Qwen2.5-32B-Instruct model at the risk level of 0.2.

presented in Table 9. Then, we specify the risk
level to 0.1 (α = δ = 0.1) and evaluate the results
of the EMR metric on each subject of the test set
before and after performing our SConU framework.

As shown in Figures 5 and 6, before conducting out-
liers detection and elimination within the test set,
significant issues arise: the EMR exceeds the risk
level (i.e., ≥ 0.1) in testing datasets such as college
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chemistry, and many datasets report an APSS met-
ric below 1, indicating that a substantial number of
QA samples resulted in empty predictions. After
filtering out test samples that significantly deviate
from the calibration set, our foundational SConU
framework achieves strict EMR control, with the
APSS metrics of the test set nearly all at 1, high-
lighting that our method accurately identifies the
correct answers.

On the more robust and challenging MMLU-Pro
task with 10 options for each query, the minimum
manageable risk level of each calibration set sig-
nificantly increases, as presented in Table 10. We
set the risk level of α to 0.2 and present the re-
sults of the EMR metric utilizing the basic ConU
framework in Figure 7. The phenomenon of EMR
surpassing the risk level is both frequent and severe.
For example, when utilizing the Biology subset as
the calibration to address queries from the Chem-
istry subject, the EMR metric is 0.56, significantly
exceeding 0.2. Similarly, there are numerous QA
samples where the prediction sets are empty, re-
sulting in several subjects of the test sets having
APSS scores below 1. Our SConU framework con-
sistently maintains strict control over the EMR met-
ric across all calibration-test set pairs, while also
achieving higher prediction efficiency, as shown
in Figure 8. Furthermore, as demonstrated in Fig-
ure 9, SConU-Pro achieves lower EMR and APSS
metrics across all calibration and test sets by as-
sessing the reliability of the uncertainty scores of
each calibration sample at a specific risk level.

19070



MMLU

### System:
Answer the following multiple-choice question by giving the most appropriate response. Answer
should be one among [A, B, C, D].

### User:
What is penetration testing?
A: A procedure for testing libraries or other program components for vulnerabilities; B:
Whole-system testing for security flaws and bugs; C: A security-minded form of unit testing that
applies early in the development process; D: All of the above
### Assistant:
B

### User:
Suppose a user has an iPhone (running iOS) and downloads an app called Innocent from the Apple
App Store and installs it. The user unlocks the phone and runs Innocent. Innocent exploits a bug in
the iOS kernel which allows Innocent to redirect execution inside the kernel to code that Innocent
controls. Now Innocent can execute any instructions it likes inside the iOS kernel. Innocent is
not able to exploit any bugs in the phone’s secure enclave. Can Innocent read the user’s private
information stored in the phone’s flash (e.g. Contacts and messages), or will the security measures
described in the paper keep the data private? If Innocent is only able to see encrypted data, then
the phone has successfully kept the data private. Circle the security features of the phone (if any)
that will prevent Innocent from reading information from the flash on the phone.
A: Secure boot chain; B: System software authorization; C: The secure enclave’s ephemeral key;
D: None of the above
### Assistant:
D

### User:
Why is it that anti-virus scanners would not have found an exploitation of Heartbleed?
A: It’s a vacuous question: Heartbleed only reads outside a buffer, so there is no possible exploit;
B: Anti-virus scanners tend to look for viruses and other malicious; C: Heartbleed attacks the
anti-virus scanner itself; D: Anti-virus scanners tend to look for viruses and other malicious code,
but Heartbleed exploits steal secrets without injecting any code
### Assistant:
D

### User:
Which of the following styles of fuzzer is more likely to explore paths covering every line of code
in the following program?
A: Generational; B: Blackbox; C: Whitebox; D: Mutation-based
### Assistant:

Figure 10: An example of the prompt in the MMLU task.
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MMLU-Pro

### System:
Answer the following multiple-choice question by giving the most appropriate response. Answer
should be one among [A, B, C, D, E, F, G, H, I, J].

### User:
In contrast to , aim to reward favourable behaviour by companies. The success of such
campaigns have been heightened through the use of , which allow campaigns to facilitate the
company in achieving .
A: Boycotts, Buyalls, Blockchain technology, Increased Sales; B: Buycotts, Boycotts, Digital
technology, Decreased Sales; C: Boycotts, Buycotts, Digital technology, Decreased Sales;
D: Buycotts, Boycotts, Blockchain technology, Charitable donations; E: Boycotts, Buyalls,
Blockchain technology, Charitable donations; F: Boycotts, Buycotts, Digital technology, Increased
Sales; G: Buycotts, Boycotts, Digital technology, Increased Sales; H: Boycotts, Buycotts, Physical
technology, Increased Sales; I: Buycotts, Buyalls, Blockchain technology, Charitable donations; J:
Boycotts, Buycotts, Blockchain technology, Decreased Sales
### Assistant:
F

### User:
is the direct attempt to formally or informally manage ethical issues or problems, through

specific policies, practices and programmes.
A: Operational management; B: Corporate governance; C: Environmental management; D:
Business ethics management; E: Sustainability; F: Stakeholder management; G: Social marketing;
H: Human resource management; I: N/A; J: N/A
### Assistant:
D

### User:
How can organisational structures that are characterised by democratic and inclusive styles of
management be described?
A: Flat; B: Bureaucratic; C: Autocratic; D: Hierarchical; E: Functional; F: Decentralized; G:
Matrix; H: Network; I: Divisional; J: Centralized
### Assistant:
A

### User:
Typical advertising regulatory bodies suggest, for example that adverts must not: encourage ,
cause unnecessary or , and must not cause offence.
A: Safe practices, Fear, Jealousy, Trivial; B: Unsafe practices, Distress, Joy, Trivial; C: Safe
practices, Wants, Jealousy, Trivial; D: Safe practices, Distress, Fear, Trivial; E: Unsafe practices,
Wants, Jealousy, Serious; F: Safe practices, Distress, Jealousy, Serious; G: Safe practices, Wants,
Fear, Serious; H: Unsafe practices, Wants, Fear, Trivial; I: Unsafe practices, Distress, Fear, Serious
### Assistant:

Figure 11: An example of the prompt in the MMLU-Pro task. Note that the current question has 9 options.
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MedMCQA

### System:
Answer the following multiple-choice question by giving the most appropriate response. Answer
should be one among [A, B, C, D].

### User:
Kamlesh, a 2 year old girl, has Down’s syndrome. Her karyotype is 21/21 translocation. What is
the risk ofrecurrence in subsequent pregnancies if the father is a balanced translocation carrier :
A: 100%; B: 50%; C: 25%; D: 0%
### Assistant:
A

### User:
Not a part of ethmoid bone is
A: Inferior turbinate; B: Agar nasi cells; C: Uncinate process; D: Crista galli
### Assistant:
A

### User:
Haddon matrix is related to:
A: Injury prevention; B: Communicable diseases; C: Maternal and child moality; D: Hypeensive
disorders
### Assistant:
B

### User:
Which of the following is not true for myelinated nerve fibers:
A: Impulse through myelinated fibers is slower than non-myelinated fibers; B: Membrane currents
are generated at nodes of Ranvier; C: Saltatory conduction of impulses is seen; D: Local anesthesia
is effective only when the nerve is not covered by myelin sheath
### Assistant:

Figure 12: An example of the prompt in the MedMCQA task.

19073



TriviaQA

### System:
This is a bot that correctly answers questions.

### User:
In 1968, who did radical feminist Valerie Solanas shoot and wound as he entered his New York
studio?
### Assistant:
Andy Warhol

### User:
What lake can be found on the border of Vermont and New York?
### Assistant:
Lake Champlain

### User:
Which competition was won by Nadiya Hussain in 2015?
### Assistant:
The Great British Bake-Off

### User:
Who was the man behind The Chipmunks?
### Assistant:

Figure 13: An example of the prompt in the TriviaQA task.
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CoQA

### System: This is a bot that correctly answers questions.
Once upon a time, in a barn near a farm house, there lived a little white kitten named Cotton.
Cotton lived high up in a nice warm place above the barn where all of the farmer’s horses slept.
But Cotton wasn’t alone in her little home above the barn, oh no. She shared her hay bed with
her mommy and 5 other sisters. All of her sisters were cute and fluffy, like Cotton. But she was
the only white one in the bunch. The rest of her sisters were all orange with beautiful white
tiger stripes like Cotton’s mommy. Being different made Cotton quite sad. She often wished she
looked like the rest of her family. So one day, when Cotton found a can of the old farmer’s orange
paint, she used it to paint herself like them. When her mommy and sisters found her they started
laughing. “What are you doing, Cotton?!” “I only wanted to be more like you”. Cotton’s mommy
rubbed her face on Cotton’s and said “Oh Cotton, but your fur is so pretty and special, like you.
We would never want you to be any other way”. And with that, Cotton’s mommy picked her up
and dropped her into a big bucket of water. When Cotton came out she was herself again. Her
sisters licked her face until Cotton’s fur was all all dry. “Don’t ever do that again, Cotton!” they all
cried. “Next time you might mess up that pretty white fur of yours and we wouldn’t want that!”
Then Cotton thought, “I change my mind. I like being special”.

### User:
What color was Cotton?
### Assistant:
white

### User:
Where did she live?
### Assistant:
in a barn

### User:
Did she live alone?
### Assistant:
no

### User:
Who did she live with?
### Assistant:

Figure 14: An example of the prompt in the CoQA task.
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