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Abstract

Current large language models (LLMs) often
exhibit imbalanced multilingual capabilities
due to their English-centric training corpora.
To address this, existing fine-tuning approaches
operating at the data-level (e.g., through data
augmentation or distillation) typically intro-
duce implicit cross-lingual alignment, over-
looking the potential for more profound, latent-
level1 cross-lingual interactions. In this work,
we propose CC-TUNING, a novel multilingual
fine-tuning paradigm that explicitly establishes
a cross-lingual connection mechanism at the la-
tent level. During training, CC-TUNING fuses
the feed forward activations from both English
and non-English inputs, enabling the model to
benefit from both linguistic resources. This
process is facilitated with a trainable Decision
Maker that identifies beneficial activations. Fur-
thermore, during inference, a Transform Matrix
is utilized to simulate the cross-lingual connec-
tion under monolingual setting through repre-
sentation transformation. Our experiments on
six benchmarks covering 22 languages show
that CC-TUNING outperforms vanilla SFT and
offers a strong latent-level alternative to data-
level augmentation methods. Further analysis
also highlights the practicality of CC-TUNING
and the potential of latent-level cross-lingual
interactions in advancing the multilingual per-
formance of LLMs. (Code link: CC-Tuning)

1 Introduction

Recent advancements in large language models
(LLMs) have demonstrated exceptional capabili-
ties in handling diverse tasks (Dong et al., 2023;
Wei et al., 2022a,b; Shanahan, 2022; Zhao et al.,
2023; Liu et al., 2023; Huang et al., 2025) while ex-
hibiting promising generalizability across diverse
languages (Ye et al., 2023; Qin et al., 2024; Huo
et al., 2025). However, significant performance
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1latent-level: referring to direct manipulation of the

model’s internal representations (e.g., FFN activations)
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Figure 1: Comparison between vanilla supervised fine-
tuning with data augmentation at data level (implicit)
and our method at latent activation level (explicit).

disparities persist across languages due to the over-
whelming dominance of English in training cor-
pora, making balanced multilingual proficiency an
ongoing research challenge (Touvron et al., 2023;
Zhang et al., 2023; Ye et al., 2024a).

One of the prevailing approaches towards these
challenges focuses on joint multilingual supervised
fine-tuning (SFT) (Ouyang et al., 2022), which
refers to fine-tuning the model with supervised
data spanning multiple languages. While effective
in principle, these methods encounter the “curse
of multilinguality” – a paradoxical phenomenon
where expanding language coverage during joint
training leads to performance degradation across
both high- and low-resource languages (Conneau
et al., 2020; Wang et al., 2020).

To address this, current studies primarily focus
on data-level interventions through parallel corpus
utilization. Common strategies include: multilin-
gual data augmentation with English-aligned paral-
lel examples (Aharoni et al., 2019; Shaham et al.,
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2024), explicit translation task formulation (John-
son et al., 2017; Tang et al., 2020), and response
distillation from resource-rich languages (Zhang
et al., 2024). While these methods demonstrate par-
tial success, their reliance on implicitly introducing
data-level text alignment overlooks the potential
for deeper, latent-level cross-lingual interactions.

We propose CC-TUNING, a novel multilingual
fine-tuning paradigm that introduces explicit cross-
lingual connections at the latent activation level by
fusing feed-forward activations from English and
non-English languages (Figure 1). This approach is
grounded in recent empirical findings highlighting
the significant potential of feed-forward activations
in improving model’s multilingual performance (Ye
et al., 2024b). During training, our method lever-
ages parallel bilingual inputs and incorporates a
trainable Decision Maker to identify linguistically
beneficial signals from auxiliary English activa-
tions, integrating them into the forward propaga-
tion of non-English inputs. Additionally, during
inference, an “easy-to-learn” Transform Matrix is
utilized to simulate the cross-lingual connection
without the parallel bilingual inputs, ensuring the
practicality of our approach. This latent-level inter-
action mechanism fundamentally differs from con-
ventional data-level approaches, as it establishes di-
rect interlingual activation connections rather than
relying on statistical correlations in training data.

To validate our approach, we conduct extensive
experiments across six benchmarks encompassing
both natural language understanding and genera-
tion tasks, spanning 22 languages using two repre-
sentative LLMs. Our results highlight the superi-
ority of CC-TUNING over vanilla SFT in multilin-
gual joint learning scenarios. Besides, compared to
data-level augmentation or distillation methods that
leverage parallel data, CC-TUNING offers a highly
effective alternative for facilitating cross-lingual in-
teraction. Additionally, our further ablation studies
and analysis also provide strong evidence of the
practicality and robustness of CC-TUNING.

2 Related Work

Multilingual Large Language Models. Re-
cently, larger models such as Bloom (Scao et al.,
2022), Mala-500 (Lin et al., 2024) and Aya
Model (Üstün et al., 2024) have pushed multilin-
gual performance further by leveraging the bene-
fits of greater scale. Generally, multilingual pre-
training and fine-tuning are now the two main-

stream methods for improving multilingual capa-
bilities. Models such as Sabia (Pires et al., 2023),
ChineseLLaMA (Cui et al., 2023), ChineseMix-
tral (HIT-SCIR, 2024), PolyLM (Wei et al., 2023)
and PaLM2 (Anil et al., 2023) have been developed
through (continuous) pretraining with large multi-
lingual corpora or language-specific data. Other
models like BLOOMz (Muennighoff et al., 2022),
m-LLaMA (Zhu et al., 2023), Camoscio (Santilli
and Rodolà, 2023), Phoenix (Chen et al., 2023) and
Bode (Garcia et al., 2024) have opted for leverag-
ing multilingual or language-specific data directly
during SFT stage to foster cross-lingual alignment.

Multilingual Supervised Fine-Tuning. Multi-
lingual SFT is an effective way to enhance the
multilingual performance of LLMs. Current re-
search often focuses on data augmentation or distil-
lation techniques to enrich training data and im-
prove model generalization across multiple lan-
guages. For instance, Pan et al. (2024) highlighted
the importance of diverse, high-quality data for ma-
chine translation fine-tuning, while Li et al. (2023)
addressed "translationese" by using Google Trans-
late and ChatGPT for multilingual response gen-
eration. In terms of instruction tuning, Shaham
et al. (2024) showed that adding multilingual ex-
amples to English-centric fine-tuning significantly
boosts multilingual instruction-following, while
Chen et al. (2024) demonstrated the superiority of
multilingual tuning over language-specific training.
Translation-based fine-tuning has been shown to
enhance semantic alignment, as argued by Ranaldi
et al. (2024). Similarly, Zhu et al. (2023) combined
translation data, cross-lingual tasks, and scaling
laws to optimize multilingual performance. Ad-
ditionally, Zhang et al. (2024) proposed a self-
distillation approach leveraging LLMs’ internal
capabilities in resource-rich languages to enhance
multilingual performance.

The above methods primarily focus on enrich-
ing training data with parallel data to foster im-
plicit cross-lingual alignment. In contrast, our
CC-TUNING emphasizes improving the training
paradigm by explicitly incorporating cross-lingual
latent interactions into the training process.

3 Method

In this section, we first revisit the vanilla multilin-
gual supervised fine-tuning paradigm, then present
the training implementation of CC-TUNING and its
specialized configurations during inference stage.
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Figure 2: Overview of the cross-lingual connection mechanism in CC-TUNING. In the training stage, CC-TUNING
leverages an auxiliary English input alongside the non-English input, while retaining the vanilla loss computation
without introducing additional training objectives. In the inference stage, a transform matrix is used to simulate
cross-lingual connection in monolingual input scenarios, eliminating the dependence on bilingual parallel input.

3.1 Multilingual Supervised Fine-Tuning

Multilingual supervised fine-tuning enables pre-
trained models to better perform downstream
tasks across diverse languages through training
on annotated multilingual instruction dataset D =
{(xi, yi)}Ni=1, where N represents the size of the
dataset, xi denotes the input question or instruc-
tion, and yi is the corresponding expected output
or response. The training process is required to
minimize the following objective of negative log-
likelihood of the predicted output with respect to
the ground-truth response. θ denotes the parame-
ters of the model.

LSFT (θ) =
1

N

N∑

i=1

− logP (yi|xi, θ) (1)

Data Augmentation with Parallel Data. For
the multilingual instruction dataset D, we define
its corresponding English parallel data as Den.
Several previous studies have explored enriching
the original training data by merging these two
datasets, incorporating additional translation task
form data constructed from parallel pairs, or uti-
lizing techniques such as distillation. We collec-
tively refer to these augmented datasets as Daug =
{(xaugi , yaugi )}Mj=1. These approaches, in essence,
do not alter the SFT process; rather, they introduce
additional supervised data, as illustrated below:

LSFTaug(θ) =
1

N

N∑

i=1

− logP (yi|xi, θ)

+
1

M

M∑

j=1

− logP (yaugi |xaugi , θ)

(2)

3.2 CC-TUNING

We will introduce cross-lingual connection mecha-
nism in CC-TUNING in detail, focusing on its im-
plementation during training and inference stages.

3.2.1 Training with Cross-lingual Connection

Motivated by the findings in Ye et al. (2024b),
which empirically demonstrate that feed-forward
activations from English hold the potential to sig-
nificantly enhance a model’s performance in non-
English languages. The cross-lingual connection
mechanism in CC-TUNING aims to incorporate
the above latent interactions into the multilingual
fine-tuning process, enabling the model to benefit
from both English and non-English resources as
the parameters are updated.

We denote D = {(xi, yi)}Ni=1 as a multilingual
supervised instruction dataset, where xi represents
the input question for the i-th data point and yi de-
notes the corresponding ground-truth response. Be-
sides, CC-TUNING requires auxiliary parallel data,
Den = {(xi, xeni , yi)}Ni=1, where xeni is the En-
glish translation of xi. Generally, the cross-lingual
connection mechanism consists of two key opera-
tions: (1) adaptive decision maker and (2) latent
feed forward connection. Notably, these opera-
tions are executed just before the Response Start
Token (RST), which marks the beginning of the
model’s response in the training template. This
ensures that our operations can smoothly introduce
the intervention into the response generation pro-
cess. Assuming the training template is structured
as “ [Input] {question} [output] {answer} ”, these
operations are executed at the position that is right
before the [output] token.
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Adaptive Decision Maker. Given an auxiliary
input xeni , we first pass it through the model to ex-
tract its feed-forward activations F en

i ∈ RL×d =
{fen

i,l }Ll=1 from L decoder layers, where d is the
dimensionality of the hidden states. Notably, prior
research has shown that not all feed-forward ac-
tivations contribute equally and some may de-
grade performance (Ye et al., 2024b). To mitigate
this issue, we introduce a trainable linear layer
WDM ∈ Rd×L, referred to as the Decision Maker,
which adaptively selects the most beneficial layer.
By combining F en

i with the embedding activations
ei ∈ Rd of xi, we integrate features from both En-
glish and non-English inputs. The resulting com-
bined features are then fed into the Decision Maker
along with Gumbel-Softmax (Jang et al., 2016) to
achieve the identification as follows:

Hi =
1

L

L∑

l=1

(fen
i,l + ei) ·WDM (3)

fen
i,s =

L∑

l=1

Gumbel-Softmax(Hi)l · fen
i,l (4)

where fen
i,s ∈ Rd represents the selected activation

from the s-th layer among the L decoder layers.

Latent Feed Forward Connection. The second
step aims to transfer the beneficial activation fen

i,s

identified in the previous step into the forward prop-
agation process of non-English input. When the
input xi is fed into the model, let the output of all
L decoders be denoted as Oi = {oi,l}Ll=1, where
each oi,l should have been obtained by combining
the feed-forward activations fi,l and self-attention
activations ai,l through a residual connection. How-
ever, the incorporation of fen

i,s refines this process
by connecting itself with the feed-forward activa-
tion fi,1 from the first decoder layer. Formally, this
modification can be expressed as:

f̃i,1 = fi,1 + fen
i,s (5)

The forward propagation of the input xi then con-
tinues with this modification. Consequently, the
original decoder outputs {oi,l}Ll=j will be altered to
{õi,l}Ll=j due to the update of fi,1 → f̃i,1, leading
to new final prediction outcomes õi,L.

And within CC-TUNING, the training objective
remains the same as the vanilla loss objective in
Equation 1. During the tuning process, the model it-
self, along with the Decision Maker, learns to lever-
age the benefits of both English and non-English
resources, improving its multilingual capabilities.

3.2.2 Inference with Transform Matrix
Unlike the training stage, our inference process
is conducted without the need for parallel inputs.
Instead, we leverages a training-free Transform
Matrix to simulate the cross-lingual connection.

The role of the Transform Matrix WT here is to
achieve the transformation of Fi = {fi,l}Ll=1 →
F en
i = {fen

i,l }Ll=1 in the absence of parallel English
input xeni . Specifically, after training, we firstly
sample 1,000 parallel pairs (xi, x

en
i ) from the

datasets D and Den, and collect their feed-forward
activations, Fi and F en

i , respectively. These ac-
tivations are then stacked and denoted as A =
{fi,l | i = 1, ..., N ; l = 1, ..., L} and B = {fen

i,l |
i = 1, ..., N ; l = 1, ..., L}. Therefore, A can be
mapped into B as follows through WT :

A ·WT = B (6)

To minimize the difference A and B, our objective
is defined as follows (Least-Squares optimization):

W ∗
T = argmin

WT

N∑

i=1

L∑

l=1

∥∥fi,lWT − fen
i,l

∥∥2 (7)

This problem seeks the optimal W ∗
T that minimizes

the distance between the source and target repre-
sentations. Hence, the closed-form solution to this
optimization problem is:

W ∗
T =

(
N∑

i=1

L∑

i=l

(fi,l)
T fi,l

)−1( N∑

i=1

L∑

i=l

(fi,l)
T fen

i,l

)

(8)

Once the optimal WT has been learned, it can
be applied to the non-English representation to
map it to the corresponding English representa-
tion. This resulting mapped representation Fi ·WT ,
then substitutes F en

i = {fen
i,l }Ll=1 in equations 3, 4,

5, thereby simulating the cross-lingual connection.
This alignment effectively eliminates the depen-
dence for bilingual parallel data and enables the
simulation of cross-lingual connection in a mono-
lingual scenario.

4 Experiments

4.1 Setup
Models. We selected two representative LLMs:
(1) LLaMA-3.1-8B (Dubey et al., 2024) and (2)
Qwen2.5-7B (Yang et al., 2024).

Training Corpus. We totally select 20,236 mul-
tilingual instruction pairs from aya dataset (Singh
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Method

Multilingual Understanding Multilingual Generation

XNLI XStoryCloze MMMLU MKQA XQuAD XLSum

LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen. LLaMA. Qwen.

Baselines

ML-SFT 31.88 48.23 65.23 70.06 40.20 50.05 14.64 14.73 60.42 63.61 12.27 12.40

+EN 35.02 50.76 65.13 71.63 39.62 48.80 13.28 13.05 57.40 62.34 12.04 12.20
+MT 35.90 47.05 69.90 70.50 40.68 47.49 13.56 13.54 58.40 64.03 12.89 12.48
+SDRRL 29.74 52.36 55.82 80.67 28.06 47.28 – – – – – –

Ours

CC-TUNING 38.42 51.00 70.60 71.43 40.74 49.65 15.94 14.84 61.85 63.72 12.88 12.50
(+6.54) (+2.77) (+5.37) (+1.37) (+0.54) (-0.40) (+1.30) (+0.11) (+1.21) (+0.11) (+0.61) (+0.10)

+EN 32.72 49.48 60.94 64.69 38.73 47.35 14.61 13.56 60.89 62.69 12.78 12.63
(-2.30) (-1.28) (-4.19) (-6.94) (-0.89) (-1.45) (+1.33) (+0.51) (+3.40) (+0.35) (+0.74) (+0.43)

+MT 36.44 48.13 73.54 71.39 38.87 49.39 15.59 13.77 61.55 64.26 13.05 12.87
(+0.54) (+1.08) (+3.64) (+0.89) (-1.81) (+1.90) (+2.03) (+0.23) (+3.10) (+0.23) (+0.16) (+0.39)

+SDRRL 29.84 53.06 69.19 80.93 37.77 47.87 – – – – – –
(+0.10) (+0.70) (+13.37) (+0.26) (+9.71) (+0.59) – – – – – –

Table 1: Main results that are the averages of the performance across all languages involved for each dataset.
Blue cell indicates better performance than the vanilla ML-SFT under the same training data setting, while
Gray cell indicates the opposite. Bold numbers indicate the best performance. LLaMA. and Qwen. respectively

represent LLaMA-3.1-8B and Qwen2.5-7B.

et al., 2024) as our training corpus and the multi-
lingual training corpus covers more than 60 lan-
guages, ensuring extensive multilingual coverage.
Our training processes are conducted on 8 * A800-
SXM4-80GB with the following settings: batch
size=16, epochs=3, learning rate=1.0e-5, warmup
ratio=0.1, and bf16=true. The implementation is
based on LLaMA-Factory (Zheng et al., 2024).

Baselines. More details are in Appendix A.1.

• ML-SFT represents vanilla supervised instruc-
tion tuning (Ouyang et al., 2022) with original
multilingual instruction dataset (data size=N ).

• ML-SFT+EN incorporates the full parallel En-
glish version of the dataset for training, followed
by vanilla supervised fine-tuning (data size=2N ).

• ML-SFT+MT constructs additional translation
task form data by pairing the original multilin-
gual instruction dataset with its parallel English
version and then applies supervised instruction
tuning (data size=2N ).

• ML-SFT+SDRRL (Zhang et al., 2024) is a
self-distillation-based method that integrates En-
glish instruction tuning data and its multilingual
code-switched extensions. Additionally, it in-
corporates partially translated data and comple-
tion data for fine-tuning (LLaMA-3.1-8B: data
size≈1.2N , Qwen2.5-7B: data size≈1.6N ).

And CC-TUNING (+EN, +MT, +SDRRL) refers
to our method applying the cross-lingual connec-

tion mechanism and its combination with different
above mentioned training data settings.

Evaluation Datasets. We conduct experiments
on 6 benchmarks, which can be categorized into:

• Multilingual Understanding: (1) XNLI (Con-
neau et al., 2018), a multilingual natural language
inference (NLI) dataset, (2) XStoryCloze (Lin
et al., 2022), a multilingual commonsense rea-
soning dataset for evaluating story understand-
ing and (3) MMMLU, the multilingual version
of MMLU (Hendrycks et al., 2020), designed to
evaluate models’ general knowledge.

• Multilingual Generation: (1) MKQA (Long-
pre et al., 2021), an open-domain multilin-
gual question answering evaluation dataset, (2)
XQuAD (Artetxe et al., 2020), a question answer-
ing dataset and (3) XLSum (Hasan et al., 2021),
a multilingual abstractive summarization bench-
mark comprising professionally annotated article-
summary pairs.

For each of the above datasets, we conduct experi-
ments on 10 language subsets, covering a total of
22 languages. For XNLI, XStoryCloze, MMMLU,
MKQA and XQuAD datasets, Accuracy metric
is used for evaluation. And for XLSum dataset,
ROUGE-L scores are reported. We use greedy
decoding with a max of 40 new tokens for each
model. Detailed information on the datasets and
evaluations can be found in Appendix A.2.
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4.2 Main Results
The average results across the different languages
involved in each dataset are presented in Table 1.
The detailed results for different languages can be
found in Table 7, 8. Note that the results of apply-
ing +SDRRL to NLG tasks are not reported, as it
may lead to deviations from the prompt language
in model responses, as shown in Appendix A.3.

(1) CC-TUNING outperforms vanilla SFT in
joint multilingual learning scenarios. The re-
sults in Table 1 demonstrate that under the same
multilingual training data settings of original data,
+MT and +SDRRL, CC-TUNING significantly
outperforms vanilla SFT in both multilingual under-
standing and multilingual generation tasks. How-
ever, under the +EN setting, where more than half
of the training data is in English, the cross-lingual
connection becomes an EN2EN connection. This
shift undermines the core goal of CC-TUNING—to
promote cross-lingual latent interaction—leading
to a notable decline in performance, which also
emphasizes CC-TUNING’s alignment with its mo-
tivation and use case in joint multilingual learning
scenarios.

(2) CC-TUNING with original training data out-
performs data augmentation and distillation
methods on LLaMA-3.1-8B. As observed on
LLaMA-3.1-8B, CC-TUNING, even when trained
solely with the original dataset (data size = N ),
outperforms the data augmentation and distilla-
tion approaches of ML-SFT+EN (data size = 2N ),
+MT (data size = 2N ), and +SDRRL (data size ≈
1.2N ), which utilize larger training set. This sug-
gests that, compared to implicitly introducing cross-
lingual alignment information at the data level, the
explicit latent-level cross-lingual connection mech-
anism in CC-TUNING provides a compelling alter-
native for facilitating cross-lingual interaction.

4.3 Ablation Studies
We perform ablation studies to assess the following
aspects: (1) the effectiveness of the Transform Ma-
trix, (2) the necessity of the Decision Maker, and
(3) the advantages of feed-forward activations in
facilitating cross-lingual interactions.

(1) The Transform Matrix aligns well with the
effect of using parallel bilingual inputs. We
verify whether the Transform Matrix WT can ef-
fectively achieve the alignment by evaluating the
mean squared error (MSE) between fi,l ·WT and

Method
(|M | = 1000)

XNLI XStoryCloze MMMLU MKQA XQuAD XLSum

Model: LLaMA-3.1-8B

MSE value MSE = 1
N×L

∑N
i=1

∑L
l=1(

1
d
∥fi,l ·WT − fen

i,l ∥22)

CC-TUNING 0.012427 0.013256 0.013196 0.021572 0.015428 0.014314
+EN 0.014215 0.012734 0.012917 0.018137 0.015919 0.014046
+MT 0.020413 0.021251 0.023016 0.027770 0.021769 0.025639
+SDRRL 0.017896 0.019859 0.017098 – – –

AVG.MSE 0.016238 0.016775 0.016557 0.022493 0.017705 0.018000

|∆| value |∆| = | Result(Parallel Bilingual Input) - Result(Transform Matrix) |

CC-TUNING 0.16 0.60 0.03 0.01 0.21 0.28
+EN 0.08 0.31 0.25 0.01 0.08 0.16
+MT 0.01 0.23 0.36 0.12 0.07 0.10
+SDRRL 0.06 0.56 0.11 – – –

AVG.|∆| 0.08 0.43 0.19 0.05 0.12 0.18

Table 2: The results of mean squared error between feed-
forward representations in English and the transformed
representations after applying the Transform Matrix, as
well as the performance difference |∆| between using
parallel bilingual inputs and applying Transform Matrix.
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Figure 3: Performance comparisons of using Decision
Maker, Mean Pooling and Random Pooling strategy on
XNLI and MKQA datasets.

fen
i,l as well as the performance difference |∆| be-

tween using parallel bilingual inputs during infer-
ence and applying the Transform Matrix. The re-
sults in Table 2 show that the MSE value reaches
the order of magnitude as low as 10−2, indicating
that the Transform Matrix effectively transforms
fi,l into fen

i,l . Additionally, the small performance
difference |∆| further suggests that the Transform
Matrix serves as an effective substitute for parallel
bilingual inputs, achieving great alignment.

(2) The Decision Maker plays a crucial role. To
verify the necessity of the Decision Maker, we
replaced it with two alternative strategies—Mean
Pooling and Random Pooling—during both training
and inference, and compared their performance in
Figure 3. In Mean Pooling, the feed-forward activa-
tions from all layers are averaged, while in Random
Pooling, a single activation is randomly selected
from the set of feed-forward activations across all
layers. The results demonstrate that the perfor-
mance with the Decision Maker significantly out-
performs the other two strategies, confirming that
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Figure 4: Performance comparisons of utilizing feed
forward activations, self-attention activations and whole
decoder block activations for cross-lingual connection
on XNLI and MKQA datasets.

the Decision Maker effectively serves its role in
beneficial activation identification and contributes
to the overall training paradigm of CC-TUNING.

(3) Feed-forward activations contribute the most
in cross-lingual connection. In addition to in-
vestigating cross-lingual connections at the feed-
forward activation level, we also explored the po-
tential contributions of self-attention activations
and whole decoder block activations. Our results,
as shown in Figure 4, indicate that feed-forward
activations have the most pronounced impact on
cross-lingual connections within the CC-Tuning
paradigm. This finding highlights the crucial role
of feed-forward activations in facilitating cross-
lingual latent interactions, which well match the
findings presented in Dai et al. (2022), where FFN
stores factual knowledge, as well as the motiva-
tion of cross-lingual feed forward transplantation
operation in Ye et al. (2024b).

5 Further Analysis

5.1 Practicality Analysis
(1) Is the Transform Matrix difficult to learn?
Figure 5 presents the variation in MSE values be-
tween fi,l ·WT and fen

i,l as the amount of parallel
data, |M |, used to acquire the Transform Matrix
increases. We observe that when |M | = 1000, the
MSE value starts to converge between 0.01 and
0.02, and subsequently exhibits a stable trend. This
indicates that only a thousand of parallel data are
sufficient to effectively align fi,l with fen

i,l through
the Transform Matrix, suggesting that the Trans-
form Matrix is relatively easy to learn.

(2) Does incorporating cross-lingual connection
substantially interfere with model training and
model inference? During training, as shown in
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Figure 5: The curves of mean squared error between
feed-forward representations in English and the trans-
formed representations after applying the Transform
Matrix, as the amount of parallel data used to acquire
the Transform Matrix increases.

Figure 6: The training loss curves of vanilla supervised
fine-tuning and CC-TUNING under different training
settings (models and training data).

Figure 6, the loss curves of vanilla SFT and CC-
TUNING are closely aligned, suggesting that the
incorporation of cross-lingual connection on top of
vanilla SFT introduces only negligible interference
to the overall training process. This is primarily
because no additional training objectives are intro-
duced. In terms of training overhead, our statistics
show that the training time for CC-TUNING is ap-
proximately 1.12∼1.16 times that of vanilla SFT
(Table 4). Moreover, the additional linear layer
Decision Maker accounts for only 0.0016% and
0.0013% of the total parameter count in LLaMA-
3.1-8B and Qwen2.5-7B, respectively—proportions
so small that they are practically negligible. Dur-
ing inference, the time cost for inference with the
Transform Matrix is also approximately 1.1 times
that of vanilla inference (Table 5).
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(b) After Vanilla SFT (c) After CC-Tuning
(with Cross-lingual Connection)(a) Before SFT

Figure 7: t-SNE visualizations of output representations
by LLaMA-3.1-8B before fine-tuning, after vanilla su-
pervised fine-tuning and after CC-TUNING.

5.2 Multilingual Representation Analysis

To analyze the impact of CC-TUNING on multilin-
gual representations, we employ t-SNE (Van der
Maaten and Hinton, 2008) to visualize the repre-
sentations of 200 sentences sampled from XNLI in
parallel across English, Arabic, and Chinese.

As depicted in Figure 7 (c), after applying CC-
TUNING, the multilingual representations show a
significantly more compact clustering. This indi-
cates that CC-TUNING has already facilitated a
certain level of cross-lingual interaction through
the cross-lingual connection mechanism, allowing
the multilingual representations after CC-TUNING

require less extensive sharing with representations
from other languages in high-dimensional space.
And the boundaries between different language
representations become more distinct, suggesting
that CC-TUNING alleviates the mutual dependency
between representations of different languages, en-
abling the model to exhibit clearer and more dis-
tinct multilingual modeling capabilities.

5.3 Beneficial Layer Distribution Analysis

In this section, we present the distribution of the
layer with the highest probability of being selected
by the Decision Maker across NLU and NLG tasks,
as shown in Figure 8. This analysis explores layer-
wise effectiveness within the cross-lingual connec-
tion. The distribution results indicate that LLMs
tend to predominantly utilize the middle layers for
both NLU and NLG tasks (LLaMA-3.1-8B: 19;
Qwen2.5-7B: 17), which suggests that the middle
layers may capture more valuable and generalized
knowledge, potentially acting as a bridge between
representations in different languages. Addition-
ally, we observe that the beneficial layers identified
in NLG tasks are more diverse, likely due to the in-
herent complexity of generation tasks. In contrast,
NLU tasks—primarily focused on selecting from
predefined options (e.g., A, B, C, or D)—are less
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Figure 8: The distribution of the layer with the highest
probability of being selected after the Decision Maker
over NLU and NLG tasks.

complex, and thus, the layer distribution tend to be
more concentrated.

5.4 Performance on Cross-lingual Task

We further conduct additional experiments eval-
uating the performance of CC-TUNING in cross-
lingual scenarios on XQuAD under following set-
tings: (1) “X-to-English”: the question is given in
language X, and the model is explicitly prompted
to respond in English. (2) “English-to-X”: the ques-
tion is given in English, and the model is explicitly
prompted to respond in language X.

The results in Table 3 show that CC-TUNING

outperforms vanilla ML-SFT in both settings, high-
lighting its effectiveness in cross-lingual scenarios.
The advantage is more pronounced in the X-to-
English” setting, where the model is given non-
English questions. This aligns with the motivation
behind CC-TUNING: the models can benefit more
when processing non-English inputs by leverag-
ing the latent activations from English. Moreover,
the performance gains on English questions under
“English-to-X” setting are relatively smaller, which
is also consistent with the observations under +EN

setting in Table 1.
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XQuAD (Ask in X, Answer in English) en ar de el hi ru th tr vi zh AVG

ML-SFT 72.61 15.29 30.84 21.60 12.18 15.21 18.82 25.38 33.87 13.95 25.97
CC-TUNING 74.62 18.82 35.71 24.54 12.27 17.14 25.29 27.23 35.21 17.90 28.87

XQuAD (Ask in English, Answer in X) en ar de el hi ru th tr vi zh AVG

ML-SFT 72.61 20.34 40.50 18.91 21.09 20.08 17.48 29.24 31.93 27.48 29.97
CC-TUNING 75.29 18.99 40.34 20.67 23.36 20.34 19.41 29.33 33.45 28.49 30.97

Table 3: Results on the cross-lingual QA task with LLaMA-3.1-8B. The symbol X refers to either the input prompt
language or the required response language, as specified by the corresponding configuration.

5.5 Language Confusion Analysis

Language confusion refers to the cases where the
model fails to consistently response in the user’s
desired language, or the appropriate language given
the context. Here we employ the lid.176.bin model
from fastText, which can identify 176 languages, to
evaluate the alignment between model responses
and input languages.

The results in Table 6 show that language con-
fusion phenomenon frequently occured in baseline
SDRRL. Since SDRRL is designed to facilitate
knowledge distillation from resource-rich to low-
resource languages, the training data under this
setup often contains inconsistencies between input
and output languages. While this issue is partially
mitigated through code-switching and the integra-
tion of external parallel corpora, we observed that
it still frequently causes deviations from the prompt
language in model responses, making SDRRL less
suitable for generation tasks. In contrast, CC-
TUNING, along with other baselines, do not exhibit
significant language confusions.

6 Conclusion

In this paper, we propose CC-TUNING, a novel
multilingual fine-tuning paradigm that establishes a
cross-lingual connection mechanism at latent level
to address the imbalanced multilingual capabilities
of current LLMs. During training, CC-TUNING

fuses the feed forward activations from both En-
glish and non-English inputs, enabling the model to
benefit from both languages. During inference, we
simulate the cross-lingual connection using only
monolingual input through representation transfor-
mation techniques. Extensive experiments across
six benchmarks covering 22 languages demonstrate
that CC-TUNING outperforms vanilla supervised
fine-tuning and serves as a strong latent-level alter-
native to data-level augmentation approaches. Our
results also highlight the importance of rethinking
multilingual training paradigms beyond superficial

data manipulation, suggesting that deeper architec-
tural interventions may unlock greater potential in
LLMs’ multilingual capabilities.

Limitations

This work exhibits several limitations worth not-
ing. Firstly, though several ablation experiments
are conducted to validate the benefits of our train-
ing paradigm, we believe there is much more to
explore and investigate in latent cross-lingual inter-
actions. Such interactions should not only be lim-
ited to the form discussed in our work. Secondly,
our experiments were conducted on LLaMA-3.1-
8B and Qwen2.5-7B. While these models represent
important milestones in open-source LLM devel-
opment, the evaluation across more LLMs would
improve the generalizability of our findings across
the broader LLM ecosystem. Thirdly, due to the
computational constraints, we did not conduct com-
parisons between LLMs of different model sizes
(particularly larger models), resulting in a lack of
insights into the impact of model capacity on per-
formance.
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A Experiment Details

A.1 Baselines Settings

This section introduces the details of different train-
ing data settings.

• +EN combines the original multilingual dataset
D with its translated parallel English dataset Den,
resulting in a total training dataset size of N +
N = 2N .

• +MT constructs additional translation task form
data by pairing the original multilingual dataset
D with its translated parallel English dataset Den

as follows:

{
"instruction": "Translate the following sentence from
English to Spanish.\n The category corresponds to poli-
tics.",
"output": "La categoría corresponde a política. "
}

N pairs of parallel data from D and Den can be
constructed into N additional samples of trans-
lation task form data, resulting in a total training
dataset size of N +N = 2N .

• +SDRRL (Zhang et al., 2024) is a self-
distillation-based method that integrates English
instruction tuning data and its multilingual code-
switched extensions. Additionally, it incor-
porates partially translated data and comple-
tion data for fine-tuning (LLaMA-3.1-8B: data
size≈1.2N , Qwen2.5-7B: data size≈1.6N ).

A.2 Datasets and Evaluations

A.2.1 Datasets

The language subsets used in the 6 evaluation
datasets involved in our experiments and the data
size used for each language subset are as follows:

Involved Languages (10 languages each dataset)

XNLI: en, ar, el, hi, ru, sw, th, tr, ur, zh

XStoryCloze: en, ar, es, eu, hi, id, ru, sw, te, zh

MMMLU: en, ar, bn, es, hi, id, ko, pt, sw, yo

XQuAD: en, ar, de, el, hi, ru, th, tr, vi, zh

MKQA: en, ar, de, ja, ko, pt, ru, tr, vi, zh

XLSum: en, ar, fr, hi, id, ru, sw, tr, ur, vi

A total of 22 unique languages are involved

1. "...\n问题： ⿊豹队的防守丢了多少分？\n\n您的答案：
2. "...\n问题： 贾⾥德在职业⽣涯中有多少次擒杀？\n\n您的答案："
3. "...\n问题： 卢克·坎克利贡献了多少次擒抱？\n\n您的答案："
4. "...\n问题： 约什·诺曼拦截了多少球？\n\n您的答案："
5. "...\n问题： 本赛季谁为球队贡献的擒杀最多？\n\n您的答案："
6. "...\n问题： 2015年⿊豹队的防守有多少次拦截记录？\n\n您的答案："
7. "...\n问题： 谁带领⿊豹队擒杀？\n\n您的答案："
8. "...\n问题： 有多少名⿊豹队防守球员⼊选了职业碗？\n\n您的答案："
9. "...\n问题： 托⻢斯·戴维斯有多少次迫使掉球？\n\n您的答案："
10. "...\n问题： 本赛季哪个球员拦截次数最多？\n\n您的答案："
11. ...

1. "The answer is 308 points."
2. "Jared Allen has 136 career sacks."
3. "在他们⾝后，⿊豹队的三名⾸发线卫中有两⼈⼊选了职业碗：托⻢斯·戴维斯和卢克·坎克"
4. "四次"
5. "Jared Allen"
6. "The answer is 24."
7. "Jared Allen"
8. "11⼈"
9. "Thomas Davis forced four fumbles."
10. "The answer is: Josh Norman"
11. ...

Questions (ask in Chinese)

Answers

Figure 9: Examples of the deviations from the prompt
language in model responses when applying +SDRRL.

Sample Size

XNLI: 1000× 10 = 10000 (parallel)
XStoryCloze: 1511× 10 = 15110 (parallel)
MMMLU: 1000× 10 = 10000 (parallel)
MKQA: 1000× 10 = 10000 (parallel)
XQuAD: 1190× 10 = 11900 (parallel)
XLSum: 100× 10 = 1000 (non-parallel)

A.2.2 Evaluations
XNLI, XStoryCloze, and MMMLU all belong to
the multiple-choice category. For these datasets,
a model’s response is considered correct only if it
contains the correct option and excludes all other
options. For the short QA generative dataset MKQA
and XQuAD, a model’s answer is deemed correct
if the gold answer appears in the model’s response.

A.3 Model Responses with +SDRRL
The results of applying +SDRRL to NLG tasks
are not reported in the main body, as it may lead to
deviations from the prompt language in model re-
sponses. Since +SDRRL aims to achieve distilla-
tion from resource-rich languages to low-resource
languages, many of the training data’s input and
output languages under this setup are inconsistent.
Although this issue is partially mitigated through
code-switching and the incorporation of external
parallel corpora, we still observed that it easily
leads to deviations from the prompt language in
model responses, making it unsuitable for NLG
tasks. As in the examples shown in Figure 9, only
3 of the 10 questions given are correctly answered
in Chinese, while the rest are all answered in En-
glish.
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Training Time Cost (h:m:s) LLaMA-3.1-8B Qwen2.5-7B

ML-SFT 01:36:43 01:33:10
CC-TUNING 01:51:58 01:45:15

Time Cost Ratio 1.16 1.13

ML-SFT+EN 03:08:25 03:03:02
CC-TUNING+EN 03:34:28 03:25:30

Time Cost Ratio 1.14 1.12

ML-SFT+MT 03:08:24 03:04:13
CC-TUNING+MT 03:34:19 03:25:59

Time Cost Ratio 1.14 1.12

ML-SFT+SDRRL 01:52:17 02:23:00
CC-TUNING+SDRRL 02:08:52 02:41:20

Time Cost Ratio 1.15 1.13

Table 4: Comparisons of training time cost.

Inference Time Cost (s) LLaMA-3.1-8B Qwen2.5-7B

vanilla inference 2012.26 1898.89
inference w/ Transform Matrix 2209.90 2064.50

Time Cost Ratio 1.10 1.09

Table 5: Comparisons of inference time cost on the
Arabic subset of XNLI dataset.

Consistency MKQA XQuAD XLSum

LLaMA-3.1-8B

Base Model 0.880 0.988 0.879
ML-SFT 0.879 0.901 0.983
ML-SFT+EN 0.911 0.888 0.988
ML-SFT+MT 0.827 0.888 0.986
ML-SFT+SDRRL 0.360 0.447 0.352
CC-TUNING 0.972 0.967 0.993

Qwen2.5-7B

Base Model 0.963 0.915 0.955
ML-SFT 0.996 0.999 0.999
ML-SFT+EN 0.994 0.998 0.998
ML-SFT+MT 0.995 0.998 0.981
ML-SFT+SDRRL 0.541 0.642 0.582
CC-TUNING 0.996 0.997 0.997

Table 6: Input and output language consistency results.
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Models Dataset: XNLI

en ar el hi ru sw th tr ur zh Avg

Vanilla Model (LLaMA-3.1-8B) 36.20 15.20 23.90 31.80 29.70 28.20 29.70 28.10 24.50 8.90 25.62

ML-SFT (LLaMA-3.1-8B) 12.90 35.50 35.80 31.10 34.50 31.20 31.60 37.70 33.10 35.40 31.88
+EN 46.60 38.70 24.40 32.20 32.70 31.90 32.00 37.60 38.90 35.20 35.02
+MT 47.20 35.10 22.10 35.80 40.90 31.00 32.90 39.20 36.90 37.90 35.90
+SDRRL 29.80 29.70 29.70 29.80 29.70 29.80 29.70 29.70 29.80 29.70 29.74

CC-TUNING (LLaMA-3.1-8B) 51.10 40.50 38.90 33.20 42.50 30.70 37.10 39.00 35.10 36.10 38.42
+EN 39.50 32.00 33.40 29.20 34.50 30.00 31.20 31.70 34.50 31.20 32.72
+MT 48.70 36.20 37.30 30.40 39.70 31.10 32.50 38.00 33.00 37.50 36.44
+SDRRL 29.70 29.60 29.70 31.00 29.50 29.00 29.70 29.70 30.70 29.80 29.84

Vanilla Model (Qwen2.5-7B) 90.20 43.60 40.40 41.80 58.70 11.60 46.90 42.50 33.60 49.00 45.83

ML-SFT (Qwen2.5-7B) 60.60 52.60 44.80 45.90 56.60 29.70 51.20 48.10 36.30 56.50 48.23
+EN 81.70 54.10 39.70 43.30 59.60 30.50 50.70 49.30 39.70 59.00 50.76
+MT 61.60 49.60 36.70 45.80 56.80 29.70 51.60 48.10 42.00 48.60 47.05
+SDRRL 81.60 56.60 34.00 51.00 60.20 33.10 55.20 54.10 38.90 58.90 52.36

CC-TUNING (Qwen2.5-7B) 78.90 51.80 41.70 44.00 60.10 30.70 52.30 50.60 40.50 59.40 51.00
+EN 72.00 54.30 43.10 47.00 56.50 28.60 51.70 48.40 35.90 57.30 49.48
+MT 64.40 51.40 36.70 43.70 57.70 29.70 52.50 49.40 37.90 57.90 48.13
+SDRRL 83.80 56.30 33.40 46.00 60.00 32.20 58.00 58.30 42.30 60.30 53.06

Models Dataset: XStoryCloze

en ar es eu hi id ru sw te zh Avg

Vanilla Model (LLaMA-3.1-8B) 49.70 41.69 14.89 28.72 48.44 60.03 36.47 49.70 6.02 19.72 35.54

ML-SFT (LLaMA-3.1-8B) 88.62 65.32 21.91 64.86 70.81 83.39 43.61 62.54 63.40 87.82 65.23
+EN 77.04 40.44 65.45 59.36 77.10 79.62 49.44 60.49 55.46 86.90 65.13
+MT 91.73 77.70 85.04 60.82 75.78 80.48 62.14 57.84 20.91 86.57 69.90
+SDRRL 72.93 65.32 45.80 20.32 68.63 64.13 66.05 45.14 49.64 60.29 55.82

CC-TUNING (LLaMA-3.1-8B) 89.34 73.73 64.26 51.09 79.48 79.81 70.22 58.24 55.33 84.45 70.60
+EN 69.36 66.71 75.38 25.74 62.48 75.78 49.77 50.36 49.24 84.58 60.94
+MT 87.43 73.99 87.62 57.91 82.06 82.86 76.44 59.43 38.65 89.01 73.54
+SDRRL 86.96 71.67 70.42 34.61 80.61 77.17 77.63 50.56 66.18 76.04 69.19

Vanilla Model (Qwen2.5-7B) 85.97 85.84 91.40 18.07 78.76 69.89 91.33 17.94 55.92 75.84 67.09

ML-SFT (Qwen2.5-7B) 92.12 78.89 93.51 52.95 79.48 79.48 71.21 37.06 28.92 86.96 70.06
+EN 78.23 54.27 91.00 56.25 81.80 87.36 71.34 44.74 61.02 90.27 71.63
+MT 82.06 56.12 92.19 57.64 82.20 88.15 73.92 29.52 57.78 85.44 70.50
+SDRRL 93.85 88.42 94.51 62.61 82.00 89.15 93.05 52.88 62.01 88.22 80.67

CC-TUNING (Qwen2.5-7B) 91.59 81.60 91.00 54.86 77.96 80.68 78.82 35.94 37.59 84.25 71.43
+EN 39.38 37.46 90.40 55.26 79.55 86.70 85.24 45.00 42.55 85.31 64.69
+MT 65.32 66.64 91.66 55.06 81.67 86.43 75.12 52.75 53.47 85.77 71.39
+SDRRL 93.45 90.87 92.26 57.58 82.26 88.68 94.51 57.25 59.03 93.45 80.93

Models Dataset: MMMLU

en ar bn es hi id ko pt sw yo Avg

Vanilla Model (LLaMA-3.1-8B) 45.40 28.20 17.70 11.30 25.10 26.40 25.00 11.70 16.20 0.60 20.76

ML-SFT (LLaMA-3.1-8B) 57.40 41.60 31.70 51.20 37.60 44.70 39.40 51.70 20.70 26.00 40.20
+EN 56.80 35.90 32.00 50.90 36.00 40.80 40.50 48.10 29.80 25.40 39.62
+MT 59.20 37.80 33.10 51.50 37.60 42.80 42.50 48.10 28.30 25.90 40.68
+SDRRL 53.70 32.20 23.00 27.80 35.30 30.50 27.20 36.70 12.80 1.40 28.06

CC-TUNING (LLaMA-3.1-8B) 57.50 41.30 33.40 51.70 37.60 43.30 41.70 46.80 27.00 27.10 40.74
+EN 56.50 38.10 30.80 49.90 37.00 40.70 39.00 47.30 26.80 21.20 38.73
+MT 55.70 36.80 30.70 49.60 36.10 39.90 38.70 48.40 26.70 26.10 38.87
+SDRRL 53.10 38.60 33.40 46.40 36.50 41.10 35.70 47.20 31.70 14.00 37.77

Vanilla Model (Qwen2.5-7B) 68.20 53.50 43.70 64.00 47.40 60.90 46.00 62.40 17.90 1.30 46.53

ML-SFT (Qwen2.5-7B) 69.80 53.30 42.00 65.60 41.10 59.50 55.70 62.60 28.60 22.30 50.05
+EN 65.90 53.20 37.90 64.60 40.30 56.80 55.70 62.10 28.20 23.30 48.80
+MT 60.50 51.40 40.00 63.90 39.50 58.30 49.00 63.00 28.80 20.50 47.49
+SDRRL 66.00 46.00 38.30 60.70 41.50 56.90 52.10 58.60 29.90 22.80 47.28

CC-TUNING (Qwen2.5-7B) 69.10 52.80 40.50 65.10 41.20 59.10 54.90 62.30 30.90 20.60 49.65
+EN 67.10 54.50 38.10 64.20 41.90 55.50 53.90 61.30 24.10 12.90 47.35
+MT 66.60 53.10 40.30 64.70 41.70 60.50 53.60 63.10 29.90 20.40 49.39
+SDRRL 66.30 50.60 39.30 60.30 41.60 56.30 52.30 57.50 28.10 26.40 47.87

Table 7: The detailed performance results of different language subsets on NLU tasks (XNLI, XStoryCloze,
MMMLU) across all involved models and baselines.
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Models Dataset: MKQA

en ar de ja ko pt ru tr vi zh Avg

Vanilla Model (LLaMA-3.1-8B) 22.50 5.20 3.50 3.50 3.00 4.80 4.90 15.70 6.80 5.70 7.56

ML-SFT (LLaMA-3.1-8B) 33.60 4.90 23.30 9.10 6.00 20.70 10.00 15.60 14.30 8.90 14.64
+EN 26.00 6.30 18.80 9.70 5.70 19.40 10.00 15.60 13.00 8.30 13.28
+MT 29.20 5.80 19.50 9.10 5.70 17.10 10.70 15.50 14.40 8.60 13.56
+SDRRL – – – – – – – – – – –

CC-TUNING (LLaMA-3.1-8B) 32.00 6.00 24.10 10.90 6.30 22.40 10.50 17.80 18.20 11.20 15.94
+EN 27.70 6.40 20.20 11.10 7.30 20.50 9.50 17.20 15.50 10.70 14.61
+MT 32.10 6.90 21.90 10.70 7.30 21.10 10.10 17.70 17.30 10.80 15.59
+SDRRL – – – – – – – – – – –

Vanilla Model (Qwen2.5-7B) 1.00 6.60 8.50 10.40 8.30 7.20 7.50 10.10 15.70 15.20 9.05

ML-SFT (Qwen2.5-7B) 30.30 6.60 19.10 11.20 8.90 19.70 9.40 12.10 15.80 14.20 14.73
+EN 27.80 6.90 14.80 10.80 7.40 17.50 8.10 10.10 14.70 12.40 13.05
+MT 27.10 6.90 16.10 9.60 7.90 19.40 8.60 11.00 14.70 14.10 13.54
+SDRRL – – – – – – – – – – –

CC-TUNING (Qwen2.5-7B) 30.3 7.2 18.60 11.6 8.5 20.5 8.3 12.9 15.80 14.7 14.84
+EN 27.60 5.90 15.10 10.80 7.60 19.20 9.60 12.90 13.60 13.30 13.56
+MT 29.30 6.50 16.10 11.20 7.90 18.30 8.50 12.50 13.30 14.10 13.77
+SDRRL – – – – – – – – – – –

Models Dataset: XQuAD

en ar bn es hi id ko pt sw yo Avg

Vanilla Model (LLaMA-3.1-8B) 72.18 52.86 58.07 47.73 61.26 43.87 46.97 51.93 53.53 68.32 55.67

ML-SFT (LLaMA-3.1-8B) 72.61 56.13 64.62 52.18 60.00 47.73 58.49 53.70 64.87 73.87 60.42
+EN 63.28 53.45 62.02 51.09 57.73 46.39 58.40 50.84 61.18 69.66 57.40
+MT 71.76 53.78 60.84 50.84 58.99 49.33 54.03 47.73 65.21 71.51 58.40
+SDRRL – – – – – – – – – – –

CC-TUNING (LLaMA-3.1-8B) 75.29 55.29 64.96 51.34 62.27 52.10 60.42 54.20 67.82 74.79 61.85
+EN 69.08 58.32 64.03 52.77 60.59 51.51 60.25 52.69 66.64 73.03 60.89
+MT 77.73 55.29 63.45 53.61 61.34 52.18 56.72 53.11 68.24 73.78 61.55
+SDRRL – – – – – – – – – – –

Vanilla Model (Qwen2.5-7B) 53.19 71.26 71.01 50.17 49.92 56.39 64.62 57.98 77.31 89.24 64.11

ML-SFT (Qwen2.5-7B) 79.92 66.97 70.08 40.00 46.39 53.95 64.96 56.05 72.77 85.04 63.61
+EN 74.29 64.54 69.41 36.13 47.39 54.37 64.03 59.41 73.19 80.59 62.34
+MT 79.33 65.13 69.33 41.01 50.67 52.61 67.56 58.24 72.69 83.70 64.03
+SDRRL – – – – – – – – – – –

CC-TUNING (Qwen2.5-7B) 79.24 64.12 71.34 39.75 47.06 53.61 65.71 57.73 74.03 84.62 63.72
+EN 72.18 64.45 68.40 41.01 47.31 54.37 66.30 58.99 72.94 80.92 62.69
+MT 77.98 67.31 71.26 39.75 49.41 52.86 69.33 57.82 72.27 84.62 64.26
+SDRRL – – – – – – – – – – –

Models Dataset: XLSum

en ar fr hi id ru sw tr ur vi Avg

Vanilla Model (LLaMA-3.1-8B) 6.60 3.88 11.91 1.02 5.63 7.62 3.53 5.74 1.54 9.59 5.71

ML-SFT (LLaMA-3.1-8B) 24.36 9.67 18.66 1.94 13.72 14.47 8.05 11.07 6.64 14.14 12.27
+EN 22.46 10.62 19.66 2.97 13.72 14.02 6.76 7.14 5.77 17.27 12.04
+MT 25.74 11.06 19.50 3.97 14.78 14.74 7.56 9.58 7.16 14.78 12.89
+SDRRL – – – – – – – – – – –

CC-TUNING (LLaMA-3.1-8B) 25.00 10.87 19.46 3.02 13.46 15.55 8.63 10.01 7.20 15.63 12.88
+EN 23.76 10.26 21.45 3.67 14.30 14.45 8.94 9.94 6.15 14.92 12.78
+MT 27.57 11.38 21.08 3.23 13.34 15.71 9.14 10.88 4.41 13.73 13.05
+SDRRL – – – – – – – – – – –

Vanilla Model (Qwen2.5-7B) 10.45 3.59 10.86 0.00 5.43 6.89 2.73 3.54 3.09 4.21 5.08

ML-SFT (Qwen2.5-7B) 24.13 12.20 22.10 0.33 14.89 16.10 5.95 8.04 5.47 14.74 12.40
+EN 23.75 11.70 20.14 0.33 14.97 15.61 6.90 8.51 5.78 14.36 12.20
+MT 26.72 12.32 21.47 0.67 14.00 15.29 5.66 8.73 5.12 14.78 12.48
+SDRRL – – – – – – – – – – –

CC-TUNING (Qwen2.5-7B) 23.22 10.75 22.21 0.62 14.47 17.61 6.47 8.37 5.43 15.84 12.50
+EN 25.06 12.79 19.58 0.33 14.71 15.63 7.12 10.62 5.39 15.01 12.63
+MT 25.84 11.46 22.62 1.00 15.77 16.43 5.69 9.37 5.06 15.46 12.87
+SDRRL – – – – – – – – – – –

Table 8: The detailed performance results of different language subsets on NLG tasks (MKQA, XQuAD, XLSum)
across all involved models and baselines.
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