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Abstract

Automatic N-gram based metrics such as
ROUGE are widely used for evaluating gen-
erative tasks such as summarization. While
these metrics are considered indicative (even
if imperfect), of human evaluation for English,
their suitability for other languages remains
unclear. To address this, in this paper we sys-
tematically assess evaluation metrics for gener-
ation — both n-gram-based and neural-based
— to assess their effectiveness across languages
and tasks. Specifically, we design a large-scale
evaluation suite across eight languages from
four typological families — agglutinative, iso-
lating, low-fusional, and high-fusional — from
both low- and high-resource languages, to ana-
lyze their correlations with human judgments.
Our findings highlight the sensitivity of the
evaluation metric to the language type at hand.
For example, for fusional languages, n-gram-
based metrics demonstrate a lower correlation
with human assessments, compared to isolating
and agglutinative languages. We also demon-
strate that tokenization considerations can sig-
nificantly mitigate this for fusional languages
with rich morphology, up to reversing such
negative correlations. Additionally, we show
that neural-based metrics specifically trained
for evaluation, such as COMET, consistently
outperform other neural metrics and correlate
better than n-grams metrics with human judg-
ments in low-resource languages. Overall, our
analysis highlights the limitations of n-gram
metrics for fusional languages and advocates
for investment in neural-based metrics trained
for evaluation tasks.1

1 Introduction

The development of multilingual LLMs (MLLMs)
such as BLOOM (Le Scao et al., 2023) and XGLM
(Lin et al., 2021), along with the current trend of
extending English-centric generative LLMS (e.g.,

1Our human annotation data and the evaluation framework
code are publicly available at https://github.com/
itaimondshine/Beyond_ngrams.

OpenAI GPT-4o (Hurst et al., 2024), Gemini 1.5
(Team et al., 2024) and LLaMA3 (Dubey et al.,
2024)) to other languages (Alexandrov et al., 2024),
reflects the growing interest in prompting such gen-
erative models in languages other than English.
This interest highlights the need for robust eval-
uation of the generation capabilities of LLMs in
multilingual settings. However, assessing these
models on non-English generative tasks, particu-
larly in summarization, remains challenging due to
the lack of clear evaluation methodologies.

Current evaluation metrics for summarization,
both n-gram-based and neural-based, face signifi-
cant limitations. N-gram-based evaluation metrics,
such as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee and Lavie,
2004), are commonly used to assess summarization
quality in English, however, these metrics rely on
complete word units. This creates challenges for fu-
sional languages with flexible word order where in-
flectional patterns are embedded within word forms.
Moreover, they present difficulties for agglutina-
tive languages, where words have complex inter-
nal structures, consisting of multiple morphemes
that n-gram-based metrics struggle to capture effec-
tively (Abudouwaili et al., 2023). Additionally, the
problem of ambiguity — where a single form can
have multiple meanings — is amplified in morpho-
logically rich languages (MRLs) as variations in
prefixes, suffixes, and root conjugations complicate
both comprehension and generation tasks. More-
over, many languages require different tokeniza-
tion schemes, which poses a challenge for n-gram-
based metrics that were originally developed pri-
marily for space-delimited languages, potentially
affecting the comparability of evaluations across
languages with different scripts and morphological
systems. These factors can lead to n-gram-based
metrics failing to recognize grammatically correct
sentences in generated summaries that convey the
intended meaning despite surface-level differences.
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Neural network-based approaches for generation
evaluation compared against gold references, such
as BERTScore (Zhang et al., 2019), depend on
the availability of large models trained on large
amounts of data and may exhibit poor performance
for lower-resourced languages (Yousuf et al., 2024;
Kaster et al., 2021). Languages with greater mor-
phological complexity are particularly challenging,
as MRLs often produce a large number of infre-
quent word forms produced by combinations of
morphemes, resulting in data sparsity (Botev et al.,
2022).

Despite such bits of empirical evidence, while
summarization metrics have been extensively stud-
ied in English, their applicability to other languages
remains understudied. More concretely, existing
campaigns for assessing evaluation metrics for gen-
eration face three key limitations: (i) lack of lan-
guage diversity, resulting in insufficient typological
representation—for instance, Koto et al. (2021) ex-
cluded languages with high-fusional morphology,
and Forde et al. (2024) evaluated only three lan-
guages, highlighting scalability concerns; (ii) lack
of metrics diversity, primarily focusing on n-gram-
based approaches and excluding neural-based ones,
particularly those specifically trained for evalua-
tion, and insufficient evaluation of metric adapta-
tion for non-English; and (iii) lack of reliable statis-
tical evidence on the correlation between automatic
metrics and human judgments, omitting statisti-
cal significance values of the correlation analysis.
(Koto et al., 2021; Han et al., 2024)

To address these gaps, we deliver a large re-
source for summarization in non-English lan-
guages, manually annotated with human judgments,
comprising ~20,000 human annotations. We high-
light three upshots of this resources. First, the se-
lection of representative languages, covering eight
languages from four typological types (isolating,
agglutinative, and languages with minimal or high
fusional morphology). Within each group, we rep-
resent both high- and low-resource languages. Sec-
ond, we assess diverse Metrics, both n-gram and
neural-based metrics, including ones particularly
trained for evaluation. Additionally, we evaluate
the different methodologies to assess the quality
of generation, for example, the use of different to-
kenizers and various transformed versions of the
original text, including lemmatized forms, to as-
sess their impact on the evaluation metrics. Finally,
our analysis takes care to provide statistically suf-

ficient data size. Our multilingual annotation task
measures correlation with both n-gram and neural
metrics while reporting the statistical significance
of the factors found to affect the results.

Our study demonstrates that evaluation metrics
perform differently depending on linguistic typol-
ogy. For instance, n-gram metrics as ROUGE
align less reliably with human assessments in fu-
sional languages than in isolating or agglutinative
languages. Conversely, neural-based metrics like
COMET, trained explicitly for assessing genera-
tive task, achieve stronger correlations with human
judgments and consistently surpass both n-gram
and neural-based approaches. These findings high-
light the limitations of n-gram metrics for fusional
languages and emphasize the need for specialized
neural metrics trained for multilingual evaluation.

2 Limitations of Current Generation
Evaluation in Diverse Languages

2.1 The Limitations and Shortcomings of
Current Generation Evaluation

The rise of generative large language models
(LLMs), and massive prompting thereof to gener-
ate high-quality online responses, has underscored
the importance of properly evaluating such mod-
els with automatic metrics (Manduchi et al., 2024)
that allow effective and efficient hill-climbing in
the course of model development and assessment.
Since the introduction of ROUGE (Lin, 2004), n-
gram-based metrics have been commonly used for
evaluating English tasks as well as for multilingual
purposes. However, these metrics face severe is-
sues with languages that differ from English, specif-
ically those with different tokenization schemes
that not align with the common practice of space-
delimited metrics. For example, metrics such as
BLEU face challenges in languages like Chinese
and Japanese due to the lack of explicit word bound-
aries (Denoual and Lepage, 2005), and implemen-
tations of metrics like ROUGE, often struggle with
segmentation issues, including filtering out non-
alphanumeric Latin characters, making them less
effective for non-Latin scripts (Kumar and Solanki,
2023). Additionally, these limitations lead to poor
correlations with human judgments, especially for
high fusional languages. For instance, Bouamor
et al. (2014) observed weak correlations for BLEU
and METEOR in Arabic, while Paz-Argaman et al.
(2024) found negative correlations for ROUGE in
Hebrew.
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To address the limitations of n-gram-based met-
rics, researchers proposed to utilize neural-based
metrics, which fall into three categories: encoder-
based models like BERTScore (Zhang et al., 2019),
which compare text representations; LLM-as-a-
judge methods, such as the prompting of Gem-
ini (Team et al., 2023) to assess quality without
any parameter updates; and neural methods specif-
ically trained for evaluating generation such as
COMET (Rei et al., 2020), fine-tuned to predict
quality scores for machine translation (MT). These
metrics, while remaining data-driven and agnostic
to the language type at hand, are prone to suffer
from resource-level effects with varying qualities
that depend on the model exposure to such data.
All in all, both n-gram and neural based metrics
(including those specifically trained for evaluation)
have not been systematically evaluated for non-
English languages. To the best of our knowledge,
this is the first work to provide a systematic multi-
lingual assessment of metrics for generation.

2.2 Generation Evaluation in the Face of
Language Diversity

Despite their shortcomings, the effectiveness of
n-gram-based as well as neural based metrics for
evaluation of generation has not been systemati-
cally studied across language families with vary-
ing word complexity and boundary characteristics.
This raises concerns, as the linguistic properties of
words may well affect the usability of n-gram met-
rics, but the effects remain unclear. Let’s elaborate.

In terms of their linguistic properties, language
families can be placed on a scale. On the one
hand, there are Isolating Languages, in which
words typically consist of a single morpheme, e.g.,
Yoruba and Chinese (Okanlawon, 2016; Arcodia
et al., 2007). On the other hand, words in Fusional
Languages contain multiple morphemes fused to-
gether, often with unclear boundaries, where a sin-
gle space-delimited token may serve multiple func-
tions. For example, in the Spanish word habló,
the suffix ó simultaneously indicates past tense
and third-person singular (Kambarami et al., 2021).
This category can be further divided into low-
fusional (e.g. Spanish (Bergmann et al., 2007)
and Ukrainian (Budzhak-Jones, 1998)) and high-
fusional (e.g. Arabic (Smrž, 2007) and Hebrew
(Tsarfaty et al., 2019)) based on the degree of
morphological fusion. Additionally, in an orthog-
onal dimension we can recognize Agglutinative

Languages that also consist of words made up
of multiple morphemes, albeit with clear bound-
aries and distinct functions. For instance, in Shona,
vakaenda (va-ka-end-a) means “they went”
where va (plural subject), ka (remote past), and a
(final vowel) modify the root end (“to go”) (Kam-
barami et al., 2021). Examples include Turkish
and Japanese (Istek and Cicekli, 2007; Shibatani
and Kageyama, 2015). To our knowledge, no non-
English evaluation has comprehensively covered
languages from all these typological groups.

Two primary strategies have been suggested to
adapt previously used metrics to different types
of languages. First, for instance, is data transfor-
mation, the adaptation of n-gram metrics, where
a different tokenizer or lemmatizer is applied to
the data prior to using the n-gram-based metrics.
Specifically, converting Chinese text into numer-
ical IDs before applying ROUGE (Wang et al.,
2021), or using ROUGE with language-specific
tokenizers as Alhamadani et al. (2022) did for Ara-
bic. Alternatively, researchers suggested the use
of language-specific encoders, encoders trained on
the target language for similarity-based evaluation
against a gold reference text. For example, using
BERTScore with language-specific models (Vetrov
and Gorn, 2022). However, these approaches have
not been systematically evaluated across languages.

In addition to the lack of coverage in languages
and metrics, correlations between multilingual au-
tomatic metrics and human judgments lack suffi-
cient evidence to be considered reliable due to the
absence of reported p-values (Koto et al., 2021;
Forde et al., 2024; Han et al., 2024). In repro-
duced experiments (Ernst et al., 2023), the statis-
tical significance was low to substantiate the find-
ings. Additionally, power analysis indicates that
~400 samples per language are needed to detect
significant effects at p ≤ 0.05.2 However, existing
non-English evaluations fall short of this threshold,
with Koto et al. (2021) using 150 samples and Han
et al. (2024) evaluating 90 summaries per language.

3 Our Approach: Systematic Evaluation
of Summarization Across Languages

In this work we set out to systematically evaluate
automatic metrics for text generation, assessing
their effectiveness and reliability for non-English
languages by assessing the correlation with human
scores. We do so via a comprehensive and con-

2See Appendix A.2 for more details on the t-test.
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trolled protocol, comprising ~20,000 human an-
notations while addressing the various diversity
dimensions and previously attested weaknesses.

Concretely, in this work we evaluate eight lan-
guages from four typological families, covering
both low resource (L) and high resource (H) lan-
guage in each group, including: Isolating (Chinese,
zh (H); Yoruba, yo (L)), Agglutinative (Japanese,
ja (H); Turkish, tr (L)), Low Fusional (Spanish,
es (H) and Ukrainian, ukr (L)) and High Fusional
(Arabic, ar (H); Hebrew, he (L)). We followed Lai
et al. (2023)’s method in classifying H/L languages
using a threshold, and classified languages by token
percentage based on GPT-3’s pre-trained data distri-
bution, relying on its broad multilingual coverage
and reported data mix.3 Specifically, we classified
languages into low- (< 0.1%) and high-resource
(≥ 0.1%).4 For language selection within each ty-
pological family, we followed Gerz et al. (2018)
(see Section 2.2 for additional justifications).

For each language-metric combination we per-
form a correlation analysis with both general pur-
pose metrics, as well as metrics tailored for mul-
tilingual settings, e.g., BERTScore applied with
mBERT, or with BERT models trained monolin-
gually. Also, we have utilized COMET (Rei et al.,
2020) — a neural framework for machine transla-
tion evaluation with a model trained multilingually.
Additionally, we have used the ROUGE score with
different definitions of wordhood.5 Finally, to sub-
stantiate our results, we included at least 400 sam-
ples per language and reported p-values for each
evaluated dimension. For all experiments, we re-
port inter-annotator agreement to assess the credi-
bility of our annotations.

4 Data Collection

To systematically assess the correlation between
evaluation metrics and human rankings for abstrac-
tive summarization, we engage human annotators
to evaluate summaries generated by large language
models (LLMs). Our data collection evaluates doc-
ument summaries in eight languages, chosen to rep-
resent four typological families with both low- and
high-resource languages within each group. The

3https://github.com/openai/gpt-3/blob/
master/dataset_statistics

4Arabic, with less than 0.1% of tokens, was chosen as a
high-resource language due its worker availability and higher
pre-trained representation than Hebrew. See Appendix A.1 for
the full language proportions.

5See Appendix B.1 for all models and tokenizers we used.

Resource/Type Isolating Agglutinative High Fusion Low Fusion
High Resource Simplified Chinese (zh) Japanese (jp) Arabic (ar) Spanish (es)
Low Resource Yoruba (yor) Turkish (tr) Hebrew (he) Ukraine (ukr)

Table 1: Categorization of languages based on morpho-
logical typology and resource availability. ISO 639-1
language codes are provided in parentheses.

annotators rank the summaries along two quality
dimensions: coherence, which assesses the sum-
maries’ grammaticality and readability, and com-
pleteness, which measures the degree to which they
capture the text’s main ideas.

4.1 The Generated Summaries
We used the XL-Sum dataset (Hasan et al., 2021),
which provides news articles along with their
human-generated summaries in various languages.
For Hebrew, we used HeSum (Paz-Argaman et al.,
2024). See Table 1 for categorization details.

First, we generated two parallel sum-
maries—produced by GPT-3.5-Turbo (0125)
(Ouyang et al., 2022) and Gemini 1.0 Pro (Team
et al., 2023) on 400 random samples from each
language’s test split.

Secondly, to achieve a diverse distribution of
scores, we artificially corrupted one-third of the
data by randomly degrading one quality criterion.6

For coherence, we replaced nouns and verbs with
their lemma forms, creating ungrammatical sen-
tences. Additionally, we reordered non-adjacent
sentences to disrupt the flow. For completeness,
we replaced named entities in the summary with
others from the original text and inserted a random,
unrelated sentence.7

4.2 The Task: Ranking the Generated
Summaries

The task involves annotating two parallel sum-
maries by comparing their content to the source
article. The evaluation procedure is as follows:
(i) The annotator reads the source article and the
two summaries. (ii) The annotator answers a ques-
tion on the article to prove language comprehen-
sion. (iii) The annotator evaluates each summary
using 1-4 Likert scale (Likert, 1932) based on two
quality criteria (QC): coherence, and completeness.
The evaluation page was set up to include the full
source article, instructions, definitions of the qual-
ity criteria, and two generated summaries. For each

6We adopted this approach following a previous data col-
lection experiment without such corruption, which revealed
scores that were too clustered and displayed low dispersion.

7See Appendix A.5 for complete details on the corruption.
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Family Language (L/H) Novel n-grams Redundancy Compression Mean Token Length

1-gram 2-gram 3-gram 4-gram n=1 n=2

Isolating ZH (H) 27.52 67.23 83.82 91.29 14.86 2.34 83.71 53.56
YOR (L) 38.90 60.85 69.38 73.84 32.85 8.03 62.17 105.29

Agglutinative JP (H) 24.29 54.12 69.62 78.23 49.08 15.93 79.22 188.37
TR (L) 41.76 71.44 84.56 90.76 18.41 2.37 72.71 69.95

Low Fusional ES (H) 28.00 63.15 81.16 89.11 26.28 2.83 81.94 83.17
UKR (L) 42.01 73.49 86.72 92.39 18.53 2.21 74.85 66.22

High Fusional AR (H) 47.73 78.72 89.75 94.59 15.05 1.62 77.36 62.32
HE (L) 45.06 75.14 86.75 92.01 20.83 3.49 84.28 80.85

Table 2: Model-Generated Summaries Intrinsic Evaluation per language.

Country of Residence Total Workers Percentage (%)

United States 5 13.9
Nigeria 2 5.6
West Africa 2 5.6
Turkey 3 8.3
Egypt 1 2.8
Jordan 1 2.8
mibya 2 5.6
Ukraine 5 13.9
Israel 5 13.9
Spain 4 11.1
Mexico 1 2.8
Argentina 2 5.6
Venezuela 2 5.6
Japan 1 2.8

Total 36 100.0

Table 3: Distribution of Workers by Country of Birth.

summary and criterion, there is a scale with four
rating options. Appendix A.3 presents the UI in-
terface we designed and built for the assignment
as displayed to the annotators in Arabic and Span-
ish. Appendix A.4 gives more details about the
collection protocol.

4.3 Ensuring High Annotation Consistency

To ensure annotation reliability, we hired anno-
tators through Amazon Mechanical Turk (MTurk)
(100+ approved HITs, 90%+ approval rate) with ge-
ographic constraints aligned to the target languages.
For Yoruba and Japanese, we were unable to recruit
native speakers in their country of birth due to var-
ious restrictions and sourcing difficulties; in such
cases, we hired native speakers residing in other
countries.8 Additionally, we recruited qualified
students who passed a matching questionnaire. In
total, we recruited 36 raters across 13 locales.9 To
improve annotation quality, each model-generated
summary was ranked by three different participants.
For correlation analysis, we used the average score.

8In these cases, we used the qualification question to assess
the participant’s language skills.

9See Table 3 for participants’ demographics.

To verify understanding of the source content,
we created a Gemini-generated qualification ques-
tion based on the article to filter annotations from
disqualified workers.10 To measure the consis-
tency of the annotators’ scores, we calculated for
each language the Krippendorff’s α (Krippendorff,
2011) for an interval scale.

5 Correlation Analysis Settings

Based on the collected data, including both the
generated summaries and human annotations, we
present our data analysis in Section 5.1. The com-
plete list of evaluation metrics used is detailed in
Section 5.2.

5.1 Data Analysis

Generated Summaries Analysis To empirically
quantify the properties of the model-generated sum-
maries we use 4 established metrics: (i) Abstact-
ness (novel n-grams) – the percentage of summary
n-grams absent in the article (Narayan et al., 2018).
(ii) Redundancy (RED) – measures repetitive n-
grams within a summary (S) using the formula:
RED(S) =

∑m
i=1(fi−1)∑m

i=1 fi
where m is the number of

unique n-grams in the summary and fi represents a
frequency of specific n-gram within the summary.
(iii) Compression Ratio (CMP) – the word counts in
summary (S) divided by the corresponding article
(A): CMPw(S,A) = 1− |S|

|A| . Higher compression
ratios result in greater reduction at the word level,
which can make the summarization task more dif-
ficult (Bommasani and Cardie, 2020). (iv) Mean
Token Length – The average token count per sum-
mary by a word-delimited tokenizer.

Table 2 presents a quantitative analysis of
the characteristics of model-generated summaries,
highlighting the challenges in evaluating our data.

10See Appendix A.6 for details on the qualification task.
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We hypothesize that languages with a high level of
abstractness (>35 novel 1-grams) are more difficult
to evaluate using n-gram-based metrics, which rely
on overlap matching, due to their novel, distilled,
and non-redundant nature. This challenge is partic-
ularly pronounced in high-fusion languages, which
often exhibit more complex linguistic structures in
addition to their abstractness.

Human Annotations Analysis Table 4 presents
the statistics of the collected human annotations
across languages. The average agreement rate, mea-
sured using Krippendorff’s α, is 0.4 for coherence
and 0.47 for completeness, indicating moderate
inter-annotator agreement. In Table 4, we observe
that the mean absolute gap between the scores as-
signed to Gemini- and GPT-generated summaries
is ∼ 1 across all languages, for both coherence
and completeness. This gap demonstrates the effec-
tiveness of the applied corruption in diversifying
the quality of the summaries. Additionally, the
data analysis helps identify languages with higher
levels of human disagreement on the generated
summaries. We hypothesize that languages with
a low agreement rate (e.g., Arabic) will exhibit
weaker correlations with automatic metrics, while
those with high agreement rates (e.g., Japanese)
will show stronger correlations.

Additionally, we used Elo rankings (Elo and
Sloan, 1978) to compare the performance of the
two models (Gemini and GPT, including the man-
ually corrupted summaries). Following the imple-
mentation of Gong et al. (2024), we treat each pair-
wise human annotation as a comparison between
the two models, where each model is represented
by its generated summary. After each comparison,
we update the models’ Elo scores: the model whose
summary is preferred gains points, while the other
loses points. This iterative process, based on the
standard Elo update rule, yields a relative ranking
of the models for each quality criterion and lan-
guage, as shown in Figure 1. For all languages, the
best-performing model is ranked higher on both
criteria, which may be attributed to the halo effect,
where an overall positive impression influences
judgments across multiple aspects (Draws et al.,
2021). Interestingly, we observe that summaries
generated by Gemini (overall with and without cor-
ruption) generally rank higher for high-fusional
and low-resource languages, while GPT summaries
(with and without corruption) are ranked higher for
high-resource languages.

Lang. Agreement Avg. Score (Std) Avg. Gap (Std) # Ann.

Coh. Com. Coh. Com. Coh. Com.

ZH 0.35 0.35 3.2 (0.8) 3.2 (0.8) 1.0 (0.7) 1.0 (0.8) 1504
YOR 0.40 0.49 3.0 (0.9) 3.1 (0.8) 1.0 (0.8) 0.9 (0.7) 1296
JA 0.61 0.40 3.5 (0.7) 3.4 (0.7) 0.8 (0.8) 0.7 (0.6) 188
TR 0.32 0.40 3.2 (0.9) 2.9 (1.0) 1.0 (0.9) 1.3 (0.9) 2200
AR 0.32 0.35 2.6 (0.8) 2.7 (0.7) 0.8 (0.8) 0.9 (0.7) 1352
HE 0.71 0.65 3.8 (1.1) 3.5 (1.2) 0.9 (0.9) 0.9 (0.9) 1284
ES 0.42 0.42 3.2 (0.9) 3.1 (0.7) 1.0 (1.0) 0.7 (0.7) 1464
UKR 0.46 0.62 3.3 (0.8) 3.2 (0.8) 0.8 (0.9) 0.9 (0.8) 2212

Table 4: Human Annotation Statistics: Krippendorff’s α
(agreement), average score, mean absolute gap between
Gemini and GPT annotations, and annotation count per
language. Coh. = Coherence, Com. = Completeness.

Figure 1: Elo score distribution of human annotations
for Gemini- and GPT-generated summaries across all
criteria. Coh. = Coherence, Com. = Completeness.

5.2 Assessed Metrics for Summarization

We assess a total of 10 evaluation metrics that are
common in evaluating abstractive summarization:

N-Gram Metrics: measure the lexical over-
lap between the system and reference summaries.
For this evaluation, we used ROUGE (Lin,
2004), considering four variants: ROUGE-1 (uni-
gram), ROUGE-2 (bigram), ROUGE-3 (trigram),
ROUGE-L (longest common subsequence). We
also use CHRF (Popović, 2015) measuring the
character n-gram F-score; and BLEU (Papineni
et al., 2002). We also utilized n-grams metrics
adapted for multilingual use by means of pre-
tokenization: ROUGE + an mBERT Tokenizer
leverages Byte-Pair Encoding (BPE) tokenization
from BERT-multilingual (Kenton and Toutanova,
2019), and ROUGE + a Monolingual tokenizer
is equipped with a language-specific tokenizer en-
abling the adaptability to specific languages.11

Neural-Based Metrics: MoverScore (Zhao
et al., 2019) measures the Euclidean distance be-
tween two contextualized BERT representations
of the paragraphs and finds an optimal soft align-

11See Appendix B.1 for the full list of the tokenizers used.
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Criteria Coherence Completeness

Typological Family Isolating Agglutinative Low Fusional High Fusional Isolating Agglutinative Low Fusional High Fusional

N-Gram Metrics

1 ROUGE1 0.20** 0.27** 0.11* -0.25** 0.15** 0.11** 0.08* -0.20**
2 ROUGE2 0.20** 0.28** 0.11* -0.07** 0.14** 0.14** 0.08* -0.03
3 ROUGE3 0.16** 0.27** 0.09* -0.01** 0.12** 0.10* 0.01* 0.02
5 ROUGEL 0.19** 0.23** 0.11* -0.23** 0.15** 0.10* 0.08* -0.18**
6 BLEU 0.03** 0.03 0.11** -0.30** 0.02 0.05* 0.07* -0.10**
7 CHRF 0.02** 0.09 0.16** -0.46** 0.01* 0.01* 0.14* -0.38**
8 ROUGE1 (mBERT Tokenizer) 0.14** 0.18** 0.15** 0.10** 0.10* 0.09* 0.14** 0.15**
9 ROUGE2 (mBERT Tokenizer) 0.14** 0.20** 0.15** 0.11* 0.10* 0.09* 0.19** 0.15**

10 ROUGE3 (mBERT Tokenizer) 0.12** 0.22** 0.12** 0.11* 0.10* 0.07* 0.15** 0.14**
11 ROUGEL (mBERT Tokenizer) 0.14** 0.17** 0.13** 0.08* 0.11* 0.05* 0.13** 0.12**
12 ROUGE1 (Monolingual) 0.17** 0.23** 0.11** 0.02* 0.07 0.13* 0.06* 0.07**
13 ROUGE2 (Monolingual) 0.12** 0.25** 0.12** 0.09 0.12* 0.13* 0.07* 0.14**
14 ROUGE3 (Monolingual) 0.07** 0.24** 0.13** 0.07 0.07 0.08* 0.02* 0.09*
15 ROUGEL (Monolingual) 0.10** 0.22** 0.11** 0.03 0.08 0.12* 0.07* 0.11*
16 BLEU (Lemmatized Form) N.A N.A 0.15** 0.30** N.A N.A* 0.08* 0.40*

Neural-Based Metrics

17 Gemini as a Judge 0.15** 0.03 0.15* 0.05* 0.14** 0.16** 0.10** 0.09**

18 MoverScore 0.07** 0.15* 0.18* 0.02 0.08 0.10* 0.17** 0.08*
19 BERTScore (mBERT) 0.09** 0.15** 0.19** 0.15* 0.13** 0.07* 0.16** 0.13**
20 BERTScore (Monolingual) 0.13** 0.32** 0.20** 0.17* 0.12** 0.21** -0.03* 0.15**

21 COMET 0.07** 0.23** 0.23** 0.35* 0.16** 0.18** 0.24** 0.24**

Table 5: Pearson correlation between resource types and evaluation metrics. Significance: * p < 0.05, ** p < 0.01.
The dashed line separates English-based from multilingual metrics. The highest correlation per column is in bold.

ment through an optimization process. We uti-
lized this metric with mBERT to support adap-
tation across all languages. BERTScore (Zhang
et al., 2019) computes the similarity between BERT
token embeddings of the system and reference
summaries. For multilingual evaluation, we used
two variants: BERTScore (mBERT) which was
trained on 104 languages (Kenton and Toutanova,
2019), and BERTScore (Monolingual) based on
a language-specific BERT model. We also used
Gemini as a Judge (Team et al., 2023) — with
the Gemini model 1.0-pro as an evaluator, in
which the given prompt was in the same format
as the one given to the annotators. Finally, we
utilized COMET (Rei et al., 2020), a framework
for machine translation evaluation (MT) using a
regression-based objective to minimize the mean
squared error (MSE) between predicted quality
scores and human-annotated scores. Specifically,
we used the pre-trained model wmt22-comet-da,
built on the XLM-R model (Conneau et al., 2019)
and trained for machine translation evaluation as
mentioned above. We adapt COMET for summa-
rization evaluation by excluding the source input,
as summarization assessment focuses on compar-
ing the generated summary to a human-written
reference. While COMET has been designed ex-
clusively for MT, we extended its applicability to
summarization evaluation, as both tasks involve
evaluating a generated output against a gold refer-
ence. To the best of our knowledge, this is the first
work to suggest COMET for evaluating a non-MT

task.

6 Results and Analysis

Goal Based on the human annotations of gener-
ated summaries, we are now ready to examine the
Pearson correlation between the human annotations
with both n-gram and neural metrics. We aim to
investigate what influences the correlation and to
systematically assess the ways that have been pro-
posed to mitigate poor correlations. To achieve this,
we analyze several aspects, including language ty-
pology family, resource availability, and metrics
that are adapted to multilingual evaluation. Table 5
shows the correlation from a language type perspec-
tive, while Table 6 presents the correlation from a
resource-type perspective. See the Appendix B.2
for the particular correlations per language.12

The Impact of Typological Family Table 5 ex-
amines the Pearson correlations from the typolog-
ical family perspective. The correlations for each
family were measured across all the languages
within the respective linguistic family. Overall,
it appears that n-gram metrics are sensitive to the
typological family of the language, while neural
metrics have not shown this tendency. For exam-
ple, for both criteria, fusional languages exhibit
weaker correlations with human judgments, with
low correlations for Low-Fusional languages and
even negative correlations for High-Fusional lan-
guages, due to their rich morphology (lines 1-7).

12Also for correlations using Spearman’s rank correlation.
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However, for neural-based metrics, the typological
family appears to play a less critical role. For in-
stance, low-fusional languages achieve the highest
correlation for BERTScore (mBERT) (line 19) in
both criteria. Interestingly, COMET exhibits an
inverse trend compared to n-gram metrics, consis-
tently showing a better correlation with fusional
languages (line 21). Additionally, the results for
n-gram metrics not adapted to multilingual settings
(lines 1-7) show that agglutinative languages dis-
played better correlations with human scores than
Isolating languages in coherence, while Isolating
languages show a better correlation in complete-
ness. The advantage of agglutinative languages
over Isolating languages is surprising, given that
these families tend to have more complex morpho-
logical structures due to longer morphemes, which
may be more challenging for tokenizers.13 Overall,
neural-based metrics show a stronger correlation
than n-gram-based metrics.

The Impact of Resource Level Table 6 presents
the Pearson correlation between human annota-
tions (by resource type) and neural metrics, eval-
uating coherence and completeness for high- and
low-resource languages. The results indicate that
Gemini-as-a-judge exhibits the lowest correlations
with human scores among other multilingual neu-
ral metrics for both criteria, regardless of language
resource level, indicating that LLMs as judges still
lag behind other metrics. Furthermore, the table
presents an advantage for language-specific BERT
models over multilingual BERT, suggesting that a
dedicated monolingual model improves correlation
more than training on larger, non-specific datasets
maybe due to the data size it was trained on.14

Notably, COMET shows the strongest correla-
tion with human scores for coherence across both
high- and low-resource types, and for complete-
ness in the low-resource setting. This can be at-
tributed to COMET’s targetted training of evalua-
tion for generative tasks, enabling it to better cap-
ture human-like evaluation. This is particularly use-
ful in challenging scenarios such as low resource
setting. Its performance underscores the potential

13We acknowledge that the disparity may stem from the
poor quality of generated summaries in Yoruba, a low-resource
language compared to Turkish. We hypothesize that the low
generation quality contributed to the weak performance of
automatic metrics, despite the relatively high human scores in
Table 4, which may explain the low correlation observed.

14A comprehensive list of the BERT models employed in
this study is provided in Appendix B.1.

Criteria Coherence Completeness

Resource Type High Low High Low

Gemini as a Judge 0.19* 0.13** 0.08** 0.12**

MoverScore 0.16** 0.13** 0.10* 0.06*
BERTScore (mBERT) 0.23** 0.16** 0.16** 0.15**
BERTScore (Monolingual) 0.27** 0.16** 0.17** 0.21**

COMET 0.32** 0.18** 0.13** 0.24**

Table 6: Pearson correlation between low- and high-
resource human annotations and neural-based metrics.
significance levels denoted by: * p < 0.05, ** p < 0.01.

of task-specific training to bridge the gap between
automated metrics and human evaluation, particu-
larly for low-resource languages. We hypothesize
that a metric trained specifically for summarization
evaluation could perform even better.

The Impact of Metrics Adapted to non-English
Languages The results in Table 5 highlight the
importance of adequate tokenizers for fusional lan-
guages and in particular for isolating and aggluti-
native languages in completeness evaluation (lines
1-7 vs. 8-15). For example, ROUGE with mBERT
tokenizer or a language-specific tokenizer (lines
8–15) improves correlation and can even reverse a
negative correlation to a positive one in languages
with highly morphological grammar, such as He-
brew and Arabic (e.g., ROUGE-L in high-fusional
languages improves from -0.23 to 0.08, lines 5 &
11). Also, applying BLEU to the lemmatized text
shows a significant improvement for fusional lan-
guages, with the correlation increasing from -0.10
to 0.40 for high-fusional languages (line 6 vs. 16).

Notably, for isolating and agglutinative, cor-
relations decrease, favoring the space-delimited
ROUGE variation. We hypothesize that tokenizers
struggle with the long morphological sequences
in agglutinative languages, making it difficult to
split morphemes correctly. As a result, tokeniza-
tion with space delimitation may be more effective.
However, for completeness, the adapted variations
have shown better performance. The inverse corre-
lation is also observed, with positive correlations
for BERTScore variations and MoverScore in high-
fusional languages (lines 18-20). Additionally, us-
ing models not trained on non-English languages
is suboptimal, as shown in Table 6, where Mover-
Score—untrained on non-English—performs worst
for both coherence and completeness.
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7 Conclusion

In this work, we systematically evaluate the reli-
ability of automatic metrics of evaluation for text
generation in non-English languages, through a
comprehensive correlation analysis with human
annotations. We aim to identify the factors that
influence these correlations and asses new metrics
variants and approaches designed for the multilin-
gual summarization evaluation task.

Our annotation protocol addresses previous
weaknesses, including limited typological family
and resource type coverage, insufficient evalua-
tion of diverse metrics (particularly neural-network-
based models trained for evaluation), and adapta-
tion of general-purpose metrics to non-English lan-
guages. Also, unlike prior non-English evaluations,
we provide statistical significance reports of the
results. We crowd-sourced rank annotations for
eight languages representing diverse typological
families, each with different word boundaries, a
key factor for n-gram-based metrics. We further
included both high- and low-resource languages
within each typological group, as resource levels
potentially affect the reliability of neural metrics.

Our analyses highlight the limited ability of n-
gram-based metrics to handle complex linguistic
structures—particularly those found in fusional lan-
guages—compared to neural network-based met-
rics, especially ones trained for multilingual eval-
uation of generative models. Based on these find-
ings, we recommend transitioning from n-gram
metrics to neural models specifically trained for
multilingual summarization. As a possible mitiga-
tion during this transition, when using n-gram met-
rics for fusional languages, we suggest employing
tokenization techniques that break down complex
linguistic units.

Limitations

Evaluation Criteria Although we have used co-
herence and consistency as evaluation criteria, com-
patible with the settings of Han et al. (2024); Forde
et al. (2024), we acknowledge that another common
approach, based on SummEval (Fabbri et al., 2021),
incorporates fluency, coherence, consistency, and
relevance. However, our previous experiments re-
vealed an extremely low inter-annotator agreement
rate (~0) on this schema, and suggested that an-
notators struggled to distinguish subtle differences
between all four criteria. To mitigate this , we fo-
cus on coherence and consistency, as they offer a

more straightforward and reliable basis for evalu-
ation. We leave the question of how reliable are
human and automatic metrics on those fine-grained
aspects for future follow-up research.

Number of Annotations To cover diverse typo-
logical groups and resource levels while relying on
available crowd workers, the number of annotations
varies across languages. For example, Japanese had
only one worker, leading to a smaller number of
human annotations than other languages.
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A Data Collection

A.1 Language Selection

Table 8 displays the full resource-type categoriza-
tion per language we have defined using GPT-3
pre-trained data.

A.2 Power Analysis for Sample Size

To ensure the reliability of our statistical tests, we
conducted a power analysis to determine the mini-
mum required sample size for detecting a statistical
correlation (p− value ≤ 0.05). we applied a t-test
power analysis and computed the required sample
size per group to achieve these conditions. The
analysis revealed that a minimum of ~400 sam-
ples per language is necessary for a well-powered
correlation.

A.3 Participant Interface

The tasks are performed using a custom-built ap-
plication displayed via mTurk, as shown in Figures
2-5. The task is in Arabic, for example; see Figure
6 for a Spanish example.

A.4 Data Collection Details

We utilized Amazon Mechanical Turk (MTurk) to
distribute the task to various workers. For the stu-
dent participants, all were undergraduate students
from the linguistics field. To provide a custom user
interface (UI) for our evaluation, we developed a
JavaScript application and deployed it as a service
using Google Cloud Run.15. Subsequently, we con-
nected the MTurk participants to this service.

All participants were compensated in full, re-
gardless of whether they correctly completed the
task. The payment was set at $2.5 for rating 5 pairs
of summaries, which we estimated would take ap-
proximately 10–15 minutes to complete.

From lessoned learned from previous studies, we
decided to invest significant effort into enhancing
the user experience (UX) and the visual design
of the application. This focus ensured that the
interface was both intuitive and visually appealing,
thereby improving participant engagement and task
performance.

15https://cloud.google.com/run

A.5 Data Corruption

We experimented with the following corruption
strategies on the generated summaries, addressing
each of the quality criteria. Coherence: All verbs
were replaced with their lemma forms, resulting
in ungrammatical sentences. We removed random
words from each sentence and replaced conjunc-
tions with alternatives for languages without a lem-
matizer (e.g., Chinese, Japanese, and Yoruba). In
addition, we reorder pairs of sentences that are not
adjacent. This corruption is inspired by the Shuffle
Test Barzilay and Lapata (2008) used to evaluate
whether models can detect incoherent text. Com-
pletness: Named entities with the same labels (e.g.,
PERSON and LOCATION) were shuffled within
the summary. This is a common factual mistake
of models (Pagnoni et al., 2021). Additionally, a
random sentence from another article was inserted
into the summary. Table 9 provides an example for
a clean sentence and it’s corrupted version.

A.6 Qualification Task

To filter out unqualified annotators, each was
required to answer a generated question about
the article in their native language. The model
was prompted as follows: Given the text:
<TEXT> in <LANGUAGE>, generate a
single-sentence question whose
answer is found in the text.

B Correlation Analysis

B.1 Implementation Details

Language-Specific BERT Models See Table 7
for the list of Bert models we used for each lan-
guage.

Python Libraries To use BERTScore (mBERT),
we employed the official implementation. For
ROUGE (mBERT) and BPE tokenization, we used
Multilingual-Rouge-Scorer.20 For ROUGE (Lan-
guage Tokenizer), we used the standard ROUGE
package commonly applied in non-English pa-
pers.21 For other metrics, we used the implementa-
tion from SummEval (Fabbri et al., 2021).22. We
have used ChatGPT for assistance in coding the
evaluation framework.

20https://github.com/faisaltareque/
Multilingual-Rouge-Scorer/tree/main

21https://github.com/csebuetnlp/xl-sum/
tree/master/multilingual_rouge_scoring

22https://github.com/Yale-LILY/SummEval
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Language BERT Model NER Model Lemmatizer

Turkish bert-base-turkish-cased bert-base-turkish-cased-ner 16 zeyrek 17

Hebrew DiktaBERT DiktaBERT Shmidman et al. (2023) DiktaBERT
Arabic bert-base-arabic CAMeL-Lab/bert-base-arabic-camelbert-msa-ner 18 qalsadi 19

Chinese bert-base-chinese zh_core_web_sm (spacy) N.A
Japanese bert-base-japanese-v3 ja_core_news_sm (spacy) N.A
Spanish bert-base-spanish-wwm-cased es_core_news_sm (spacy) es_core_news_md
Ukrainian bert-base-multilingual-cased uk_core_news_sm (spacy) uk_core_news_sm
Yoruba bert-base-multilingual-cased N.A N.A

Table 7: Language-specific BERT models, NER models, and lemmatizers.

Language Lang Code Number of Tokens Percentage of Tokens (p%) Class

English en 181,015 92.64% A+

Spanish es 1,510 0.77289% A
Japanese ja 217 0.11109% A
Chinese zh 194 0.09905% A

Turkish tr 116 0.05944% B
Arabic ar 61 0.03114% A
Hebrew he 15 0.00769% B

Ukrainian ukr 14 0.00763% B
Yoruba yor 0 0.00000% B

Table 8: List of languages, language codes, number of tokens in pre-trained GPT-3 data, data ratios. The languages
are grouped into two classes based on their data ratios in the GPT-3 pre-trained data: High Resource (p > 0.1%),
Low Resource (p < 0.1%)

B.2 Results
See Table 11 for the full correlation for each lan-
guage and metric. Also, Table 10 shows the cor-
relation measured by Spearman’s rank correlation
coefficient.

19031



Criterion Rule Example

Coherence
Replace with lemmas Clean: The athletes are preparing for the championship.Corrupt: The athlete be prepare for the championship.
Replace conjunctions Clean: Policies address rising inflation.Corrupt: Policies however address rising inflation.

Reorder non-adjacent sentences Clean: The center is hosting a charity event. Volunteers are needed.Corrupt: Volunteers are needed. The center is hosting a charity event.

Completness Replace named entities Clean: Joe Biden met Britney Spears at a charity event.Corrupt: Britney Spears, former president, met Joe Biden.
Insert irrelevant sentence Clean: Scientists found a new fish species in the Amazon.Corrupt: Scientists found a new fish species. A bakery is giving free cake samples.

Table 9: Examples of clean and corrupt sentences based on coherence and completeness criteria.

Figure 2: Participant Interface in a closed mode: The interface includes three drop-down sections: Instructions,
Qualification and the Annotation task.
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Figure 3: The Participant Instructions Interface: The participant has general steps and a detailed explanation and
examples of each tested criteria.
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Figure 4: The Participant Qualification Interface: The human summary is displayed at the top (the example is
in Arabic), while the Qualification section below requires the participant to fill in their home state and answer
a question generated by Gemini based on the human summary, designed to assess basic comprehension of the
provided summary.

Figure 5: The Participant Annotation Interface: Two summaries are displayed side by side. Each criterion includes
a slider ranging from 1 to 4, along with an info hover feature providing a reminder of the criterion’s definition.
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Figure 6: The Participant Annotation Interface: displayed in Spanish

Coherence Completeness

Typological Family Isolating Agglutinative High Fusional Low Fusional Isolating Agglutinative High Fusional Low Fusional
Language Code ZH YOR JA TR AR HE ES UKR ZH YOR JA TR AR HE ES UKR

N-Gram Metrics

1 ROUGE1 0.06 0.06 0.25** 0.28* 0.14* -0.31** 0.16** 0.13* 0.11** 0.06 0.20* 0.08 0.19** -0.26** 0.11* 0.16*
2 ROUGE2 0.07 0.08* 0.23* 0.31* 0.13* -0.14* 0.15* 0.08 0.12** 0.10 0.21* 0.13* 0.17* 0.06 0.10 0.08
3 ROUGE3 0.08 0.06* 0.23* 0.28* 0.14* -0.07 0.08* 0.10* 0.12** 0.06* 0.19* 0.06 0.13* 0.18** 0.07 -0.02
4 ROUGEL 0.06 0.08 0.28* 0.28* 0.10* -0.26** 0.17** 0.09 0.10 0.10* 0.25* 0.09* 0.16* -0.26** 0.12* 0.13*
5 CHRF 0.08 0.02 0.27* 0.25* 0.12* -0.21** 0.15** 0.17** 0.10* 0.02 0.23** 0.19* 0.18* -0.41** 0.13* 0.17**
6 BLEU 0.08 0.10* N.A 0.24* 0.14* -0.16* 0.11** 0.15* -0.05 0.11* 0.24** 0.05 0.12* -0.38** 0.06 0.04
7 ROUGEL (mBERT Tokenizer) 0.10** 0.07* 0.13* 0.21* 0.03 0.36** 0.13** 0.04 0.08 0.09* 0.09* 0.03 0.12* 0.40** 0.09* 0.12*
8 ROUGEL (Language Tokenizer) 0.07 -0.02 0.10* 0.20* 0.04 0.30* 0.13* 0.11* 0.04 -0.02 0.12* 0.06 0.17* 0.40** 0.11* 0.12*

Neural-Based Metrics

11 BERTScore Monolingual 0.10* -0.02 0.30 0.33* 0.10* 0.0 0.24** 0.12* 0.16 0.01 0.26* 0.11** 0.14* 0.13 0.15* 0.21**
12 BERTScore (mBERT) 0.12* 0.02 0.27* 0.25* 0.08* -0.15* 0.22** 0.11* 0.21 0.03 0.24* 0.10* 0.12* -0.06 0.15* 0.15*
13 COMET 0.13* 0.00 0.27* 0.23* 0.00 0.38 0.27** 0.16 0.23** 0.02 0.24* 0.11* 0.25** 0.49** 0.09 0.25*
14 Gemini Model 0.07* 0.11* 0.27 0.08* 0.03 -0.10 0.16** 0.16** 0.05 0.16* 0.23* 0.19** 0.19** 0.12 0.06 0.06

Table 10: Spearman correlation between language and evaluation metrics. Significance levels are denoted by: *
p < 0.05, ** p < 0.01. The dashed line separates the English-based metrics from the multilingual metrics.

Coherence Completeness

Typological Family Isolating Agglutinative High Fusional Low Fusional Isolating Agglutinative High Fusional Low Fusional
Language Code ZH YOR JA TR AR HE ES UKR ZH YOR JA TR AR HE ES UKR

N-Gram Metrics

1 ROUGE1 0.09* 0.12* 0.25** 0.33* 0.10* -0.31** 0.18** 0.09* 0.10** 0.11** 0.15* 0.08** 0.14** -0.23** 0.13* 0.15*
2 ROUGE2 0.11* 0.14* 0.20* 0.45* 0.10* -0.14* 0.14* 0.06* 0.10** 0.11** 0.16* 0.12* 0.13* -0.06 0.11* 0.10*
3 ROUGE3 0.11* 0.08 0.20* 0.36* 0.12* -0.07 0.08* 0.08* 0.10** 0.08** 0.16* 0.07 0.11* -0.01 0.07 0.00
4 ROUGEL 0.10* 0.14** 0.23* 0.34* 0.06* -0.26** 0.19** 0.06* 0.10 0.12** 0.19* 0.09* 0.10* -0.21** 0.13* 0.11**
5 CHRF 0.10* 0.11 0.22* 0.31* 0.09* -0.21** 0.18** 0.12* 0.10* -0.16** 0.18* 0.11* 0.14* -0.12* 0.14* 0.15**
6 BLEU -0.03 0.13* N.A 0.36* 0.06* -0.16* 0.10** 0.10* -0.03 -0.38** 0.10 0.05 0.09( -0.08 0.10* 0.00*
7 ROUGEL (mBERT Tokenizer) -0.05* 0.10* 0.30* 0.28* 0.09* 0.46** 0.18** 0.12* 0.11* 0.10* 0.21* 0.05 0.12* 0.49** 0.09 0.10
8 ROUGEL (Language Tokenizer) -0.06* 0.14** 0.25* 0.32* 0.11* 0.3* 0.17* 0.10* 0.08* 0.00 0.21* 0.08 0.17* 0.47** 0.09 0.09
9 ROUGEL (Llema Form) N.A N.A N.A 0.29* 0.09 0.42* 0.15* 0.14** N.A N.A N.A 0.10* 0.12* 0.46* 0.10 0.09*

Neural-Based Metrics

10 BERTScore 0.02 0.16* 0.16* 0.07 0.10* -0.01 0.19** 0.09* 0.20** 0.25** 0.17* 0.12* 0.14* 0.17* 0.17* 0.13*
11 BERTScore Monolingual 0.12* 0.04 0.09 0.31* 0.09* 0.0 0.27** 0.07* 0.09 0.07 0.19* 0.11** 0.15* 0.11 0.17* 0.15**
12 BERTScore (mBERT) 0.11* 0.09* 0.22* 0.23* 0.05* -0.15* 0.23** 0.08* 0.10 0.15* 0.17* 0.09* 0.09* -0.07 0.16* 0.21**
13 COMET 0.08* 0.01 0.21* 0.21* 0.10 0.38 0.32** 0.11* 0.24** 0.06** 0.18* 0.09* 0.23** 0.17** 0.14* 0.25*
14 Gemini Model 0.16** 0.01 0.23* 0.08* 0.03 -0.10 0.19** 0.16** 0.11* 0.16** 0.20* 0.16** 0.16** 0.00 0.09 0.10*

Table 11: Pearson correlation between language and evaluation metrics. Significance levels are denoted by: *
p < 0.05, ** p < 0.01. The dashed line separates the English-based metrics from the multilingual metrics.
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