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Abstract

In real-world services such as ChatGPT, align-
ing models based on user feedback is crucial
for improving model performance. However,
due to the simplicity and convenience of provid-
ing feedback, users typically offer only basic
binary signals, such as ’thumbs-up’ or ’thumbs-
down’. Most existing alignment research, on
the other hand, relies on preference-based ap-
proaches that require both positive and negative
responses as a pair. We propose Binary Clas-
sifier Optimization (BCO), a technique that ef-
fectively aligns LLMs using only binary feed-
back. BCO trains a binary classifier, where the
logit serves as an implicit reward, effectively
minimizing the Direct Preference Optimization
(DPO) loss. We demonstrate that the binary
cross-entropy loss employed in classifier train-
ing acts as an upper bound for the DPO loss.
Additionally, a novel reward shift technique
further minimizes the gap between the losses.
We validate our methodology in two settings:
first, on a paired preference dataset, where our
method performs on par with DPO; and second,
on a Likert-5 scale annotation dataset which
stems from real users’ queries. Our model
consistently demonstrates effective and robust
alignment across four base LLMs and three dif-
ferent datasets, showcasing the strength of our
approach to learning from binary signals.

1 Introduction

Aligning Large Language Models (LLMs) has been
a crucial ingredient in the deployment of LLMs in
production, as pretrained LLMs are prone to gen-
erating undesirable outputs. Ouyang et al. (2022)
introduced Reinforcement Learning with Human
Feedback (RLHF), that involves training a reward
model based on various completions and their com-
parisons for a single prompt and then optimizing
the LLM to maximize those rewards. Subsequently,
Direct Preference Optimization (DPO) (Rafailov
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et al., 2023) was proposed as an alternative that
circumvents the need for training a reward model
by directly optimizing the model based on the pref-
erences between chosen and rejected completions.
Both RLHF and DPO have emerged as the standard
choices for LLM alignment, but they still require a
comparison dataset with chosen and rejected text
completions, which is labor-intensive to collect.

In reality, when it comes to serving LLMs to
users, it is much easier to collect binary feedback
rather than comparison between two completions.
Popular LLM services such as ChatGPT (OpenAI,
2022), Gemini (Pichai and Hassabis, 2023), or
Claude (Anthropic, 2023) ask users for "thumbs-
up" or "thumbs-down" feedbacks. On the other
hand, most existing alignment research relies on
preference-base methodologies that require at least
two responses and their relative goodness.

Counter to this trend, a recent work called
Kahneman-Tversky Optimization (KTO) has been
proposed (Ethayarajh et al., 2024). KTO, inspired
by the Prospect Theory (Tversky and Kahneman,
1992) in economics, offers a promising approach
to alignment that requires only a single comple-
tion per prompt, accompanied by a binary signal
of preference, such as a "thumbs-up" or "thumbs-
down". This development increases the possibility
of eliminating the laborious process of comparing
completions to create preference datasets, making
the alignment process more agile and accessible.

Nevertheless, the theoretical connection between
alignment from binary signals and DPO has not
been thoroughly explored. Understanding this con-
nection could provide opportunities to further en-
hance the performance of alignment from binary
signals.

In this paper, we present a theoretical foundation
for the efficacy of alignment from the binary signals
as a binary classification problem. Our analysis re-
veals that training a binary classifier, where the
logit serves as a reward, effectively maps {prompt,
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thumbs-up completion} pairs to 1 and {prompt,
thumbs-down completion} pairs to 0, implicitly
minimizes the DPO loss. Specifically, the binary
cross-entropy (BCE) loss used in the classifier train-
ing serves as an upper bound for minimizing the
DPO loss. Furthermore, we devise a novel reward
shift technique that further decreases the gap be-
tween the BCE loss and the DPO loss, leading to
improved alignment. Our analysis theoretically and
empirically uncovers potential flaws in the refer-
ence point used in KTO that can be rectified using
our reward shift technique. Integrating the reward
shift technique to the BCE loss, we propose a novel
framework for aligning language models using bi-
nary signals which we name Binary Classifier Op-
timization (BCO).

We validate our methodology in two type
of datasets: paired preference dataset and real-
world Likert-5 scale annotation dataset. On the
paired preference datasets we demonstrate that our
method surpasses KTO and performs on par with
DPO. On the real-world Likert-5 scale annotation
dataset, empirical results confirm the superiority
of BCO over DPO and KTO across four configu-
rations of base LLMs, including Qwen and Llama
(Team, 2024; Dubey et al., 2024), in both small and
medium model sizes.

2 Related Work

Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Stiennon et al., 2020;
Glaese et al., 2022; Ziegler et al., 2019) has gar-
nered significant attention as a promising approach
for aligning LLMs with human preferences. While
RLHF is effective, it is burdensome as it requires
going through three stages: supervised fine-tuning
(SFT), reward modeling, and reinforcement learn-
ing (RL). The RL stage is particularly memory-
intensive, as it requires loading the policy, refer-
ence, reward model, and value function into mem-
ory. The introduction of DPO (Rafailov et al.,
2023) has improved the accessibility of LLM align-
ment by eliminating the reward modeling stage.
DPO directly optimizes the policy to satisfy hu-
man preferences using a loss function derived from
the Bradley-Terry (BT) model (Bradley and Terry,
1952).

One potential drawback of DPO is its suscepti-
bility to overfitting the preference dataset. To ad-
dress this issue, Identity Preference Optimization
(IPO) (Azar et al., 2023) introduces a regularization

term to mitigate overfitting. Rejection Sampling
Optimization (Liu et al., 2023) employs rejection
sampling to generate preference pairs from the es-
timated optimal policy. Although these methodolo-
gies share commonalities with our work, as they
offer theoretical insights into the BT model and
propose enhanced alignment approaches, they still
depend on preference datasets, which sets them
apart from our work.

To reduce the effort required to collect prefer-
ence datasets, methodologies have been proposed
that either let the LLM itself perform comparisons
of completions (Yuan et al., 2024) or treat the
LLM’s completions as rejected completions (Chen
et al., 2024b) . However, none of them utilized
binary signals for LLM alignment.

In contrast, KTO (Ethayarajh et al., 2024), which
is inspired by prospect theory (Tversky and Kah-
neman, 1992), is designed to align LLMs using
only thumbs-up and thumbs-down datasets with-
out the need to construct a preference dataset. In
terms of aligning LLMs from binary signals, KTO
is the most similar work to ours. Unlike KTO, we
theoretically demonstrate the connection between
alignment from binary signals and preference op-
timization. Based on this, we present an effective
algorithm for robust alignment in real-world scenar-
ios. The detailed differences between our approach,
BCO, and KTO are illustrated in Section 4.3.

Chen et al. (2024a) proposed Noise Contrastive
Alignment (NCA), which enables alignment from
explicit rewards. While NCA allows alignment
from binary signals, it requires multiple comple-
tions per prompt, differing from BCO/KTO in the
scope of problems it can address. The distinctions
between our approach, BCO, and NCA are further
elaborated in subsection 4.3.

3 Preliminaries

Aligning LLMs to human preference follows a
widely adopted convention from Ouyang et al.
(2022), consisting of three main stages: SFT, re-
ward modelling, and RL. During SFT, given an
input prompt x and an corresponding completion y
from the dataset D, the generation probability of y
given x i.e. −E(x,y)∼D [log p(y|x)] is maximized.
During the reward modelling stage, a separate re-
ward model is trained to assign appropriate scalar
rewards that reflect human preference to given {
prompt, completion } pairs. Finally, RL is applied
to further align the model gained from SFT, which
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typically involves optimizing a policy using the
obtained reward model.

In the RL stage, it is a common practice to incor-
porate a regularization term that encourages the pol-
icy to remain close to the reference model (Ziegler
et al., 2019; Ouyang et al., 2022):

E(x,y)∼D [r(x, y)]− βKL(πθ(· | x)∥πref(· | x))
(1)

DPO While RLHF with trained reward model
has been shown to be successful, it yields chal-
lenges such as large computational burden and re-
quires an additional training phase. DPO (Rafailov
et al., 2023) demonstrated a clever solution to cir-
cumvent the challenges by showing that the policy
πθ can be directly optimized using the preference
dataset D by using the reward-policy relationship
derived from Equation 1. The implicit reward func-
tion can be defined as a function of the policy such
that rθ(x, y) = β log πθ(y|x)

πref(y|x) without losing gen-
erality in the theoretical foundation behind DPO.
Combining the BT model with the reward model,
the loss function of DPO is

−E(x,yw,yl)∼D [log σ (rθ(x, yw)− rθ(x, yl))] .

Here, yw is a chosen completion and yl is a rejected
completion.

KTO Ethayarajh et al. (2024) proposed align-
ment framework that trains on binary signal of
thumbs-up or thumbs-down of a completion per
prompt. Given a dataset of { prompt, completion }
pairs with respective binary signals, KTO defines a
value function

vKTO(x, y; θ)

=

{
σ(rθ(x, y)− zref) if y ∼ ydesirable | x
σ(zref − rθ(x, y)) if y ∼ yundesirable | x,

(2)

where zref is a reference point. In practice, zref is
implemented as

zref = max


0,

1

|B|
∑

y′∈B\y
log

πθ(y
′|x)

πref(y′|x)


 (3)

for (x, y) ∈ B and B = {(x(i), y(i))}Bi=1 is a batch
of samples.

Finally, the loss function of KTO is defined as

LKTO(θ) = E(x,y)∼D [w(y)(1− vKTO(x, y; θ)]
(4)

where the weighting factor w(y) is λD if y is a
completion from thumbs-up dataset and λU if y is
a completion from thumbs-down dataset.

4 Binary Classifier Optimization

In this section, we explore the theoretical founda-
tion that could explain the effectiveness of aligning
LLMs using binary signals, which are much easier
to collect than pairwise preference datasets. We
propose Binary Classifier Optimization (BCO), a
novel approach that achieves robust alignment from
binary signals upon the theoretical foundation.

Throughout the section, we illustrate alignment
process in terms of optimizing reward. It is im-
portant to note that implicit reward optimization is
sufficient for alignment due to the reward-policy
relationship

rθ(x, y) = β log
πθ(y | x)
πref(y | x)

which already has been shown both theoretically
and empirically in previous works (Rafailov et al.,
2023; Azar et al., 2023; Ethayarajh et al., 2024;
Chen et al., 2024a).

4.1 Theoretical Analysis
For simplicity, let’s momentarily assume that zref
is 0 in Equation 2. As mentioned in section 3,
the DPO loss minimizes − log σ(rθ(x, yw) −
rθ(x, yl)), while the KTO loss minimizes
−σ(rθ(x, yw))− σ(−rθ(x, yl)). By establishing a
connection between the two terms, we can bridge
the gap between DPO and alignment from binary
signals.

Theorem 1. For a binary classifier that assigns a
reward logit, where { prompt, chosen completion
} pairs are mapped to 1 and { prompt, rejected
completion } pairs are mapped to 0, minimizing
the binary cross-entropy loss between the true and
predicted labels upper bounds the direct preference
optimization loss. i.e.

E(x,yw,yl)∼D[− log σ (rθ(x, yw)− rθ(x, yl))]

< E(x,yw,yl)∼D[− log σ(rθ(x, yw))]

+ E(x,yw,yl)∼D[− log σ (−rθ(x, yl))]

To prove the above theorem, we prove the lemma
below.

Lemma 2. The log of sigmoid of a sum exceeds the
sum of the logs of the sigmoids. i.e. log σ(x+y) >
log σ(x) + log σ(y) for all x, y ∈ R
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See subsection A.1 for the proof. Simply apply-
ing Lemma 2 and linearity of expectation concludes
the proof of Theorem 1.

E(x,yw,yl)∼D[− log σ (rθ(x, yw)− rθ(x, yl))]

< E(x,yw,yl)∼D[− log σ(rθ(x, yw))

− log σ(−rθ(x, yl))] (5)

= E(x,yw,yl)∼D[− log σ(rθ(x, yw))]

+ E(x,yw,yl)∼D[− log σ(−rθ(x, yl))] (6)

Equation 6 is the binary cross-entropy (BCE) loss,
where the logit of the binary classifier is the reward
implicitly defined by the policy and reference mod-
els. Since the BCE loss serves an upper bound of
the DPO loss, LLM alignment can be performed
using only binary signals.

According to Equation 9 in subsection A.1, the
tightness of the BCE loss as a bound for the DPO
loss depends on the error term e−x + e−y where
x = rθ(x, yw) and y = −rθ(x, yl). As training
progresses and the BCE loss is minimized, the mag-
nitude of rθ(x, yw) increases while the magnitude
of rθ(x, yl) decreases, leading to decrease of the
error term. Consequently, the BCE loss becomes a
tighter bound for the DPO loss. Empirical evidence
presented in section 5 demonstrates that, despite
the presence of an error term, alignment progresses
solely with the BCE loss.

4.2 Reward Shift
We further minimize the error term e−rθ(x,yw) +
erθ(x,yl) by reward shift.

Consider the case where the reward is shifted by
δ in Equation 5. That says,

E(x,yw,yl)∼D[− log σ(rθ(x, yw)− δ)

− log σ(−(rθ(x, yl)− δ))]

The binary cross-entropy loss still holds as an upper
bound of the DPO loss.
Theorem 3. Binary cross entropy is an upper
bound of Direct Preference Optimization loss even
if the reward is shifted by a constant δ. i.e.

E(x,yw,yl)∼D[− log σ (rθ(x, yw)− rθ(x, yl))]

< E(x,yw,yl)∼D[− log σ(rθ(x, yw)− δ)

− log σ(−(rθ(x, yl)− δ))]

See subsection A.2 for the proof. Expanding the
inside of the expectation as in the proof of Lemma
2 in subsection A.1, we get the error term

e−(rθ(x,yw)−δ) + erθ(x,yl)−δ

Setting appropriate δ minimizes the error term,
leading to closer gap between the BCE loss and the
DPO loss.

Theorem 4. The minimum of the error term
e−(rθ(x,yw)−δ) + erθ(x,yl)−δ can be achieved when
δ = (rθ(x, yw) + rθ(x, yl))/2

See subsection A.3 for the proof. Hence, for
alignment using binary signals, we define δ as fol-
lows:

δ =
E(x,y)∼D+ [rθ(x, y)] + E(x,y)∼D− [rθ(x, y)]

2
(7)

Here, D+ and D− denote thumbs-up and thumbs-
down datasets of prompt-completion pairs respec-
tively. Consequently, the BCO loss for a binary
signal dataset can be expressed as:

E(x,yw,yl)∼D+ [− log σ(rθ(x, yw)− δ)]

+ E(x,yw,yl)∼D− [− log σ(−(rθ(x, yl)− δ))]

(8)

To enhance training stability, we utilize an expo-
nential moving average when computing δ. The
efficacy of this reward shift approach is empirically
demonstrated in section 5.

4.3 Distinctions from Prior Works
So far, we delved into the connection between
BCO and DPO, demonstrating BCO’s applicability
to alignment from binary signal scenarios. This
subsection delineates the key distinctions between
BCO and variants of DPO.

KTO is the first DPO variant we will contrast
with BCO. Both algorithms are quite similar in that
they enable alignment from binary signals, mean-
ing they can learn even when only one completion
is provided for a single prompt along with user
feedback. However, despite the similarity, there
are two critical distinctions between the two algo-
rithms.

While BCO objective in Equation 8 optimizes
the logsigmoid, KTO objective in Equation 4 opti-
mizes the sigmoid. This distinction becomes more
apparent when differentiating the objectives. For
simplicity of analysis, assume zref and δ are both
zero.

∇θLBCO = Ex,y∼D[σ(−rθ)∇θβ log πθ(y | x)]
∇θLKTO = Ex,y∼D[σ(rθ)σ(−rθ)∇θβ log πθ(y | x)]

Here, rθ = rθ(x, y). For brevity, we derive the
gradients for the case where y ∼ ydesirable. The
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difference between the gradients of the two algo-
rithms depends on the presence of the sigmoid term
σ(rθ(x, y)). In KTO, σ(rθ(x, y)) causes samples
(x, y) with low rewards to be learned less, whereas
BCO does not vanish the gradients for such low-
reward samples. A similar analysis can be con-
ducted for y ∼ yundesirable, where BCO better pre-
serves the gradients for high-reward (x, y) samples.
In brief, BCO should be employed if one wishes to
treat all data samples equitably.

BCO and KTO also differ in their reward shift-
ing approach. BCO takes the average implicit re-
ward of (x, y) as the reference point, while KTO
adopts the average reward of (x, y′), where y′ is a
unrelated completion of x, as the reference point.
Notably, KTO’s reference point is clipped at zero
to ensure it remains positive. Ultimately, this zero
clipping hinders seamless model training. Accord-
ing to the KTO loss, for y ∼ ydesirable, the implicit
reward is increased relative to the reference point,
and for y ∼ yundesirable, it is decreased relative to
the reference point. Consequently, the average im-
plicit reward remains anchored at the reference
point. However, as pointed out by Rafailov et al.
(2024), the average implicit reward is equivalent
to −βKL(πref(· | x)∥πθ(· | x)) 1, which needs
to decrease. Otherwise, πθ stay too close to πref
and will not effective learn from preference data.
Therefore, KTO’s reference point zero clipping ob-
structs training, as elaborated in subsection 5.5. In
contrast, BCO avoids this issue by setting the refer-
ence point as the average implicit reward without
artificial clipping.

The second DPO variant to contrast with BCO is
NCA (Chen et al., 2024a). When learning from a
preference dataset, NCA’s loss takes the following
form:

− log σ(rθ(x, yw))−
1

2

∑

y∈{yw,yl}
log σ(rθ(x, y))

The presence of log σ(rθ(x, y)) in the loss bears
similarity to BCO’s loss. However, as evident from
the latter term of the objective, computing the par-
tition function is required, necessitating multiple
completions for a given prompt. Consequently, di-
rect alignment from user feedback is infeasible,
limiting the scope of problems NCA can address
compared to BCO.

1See Appendix B for detailed explanation of why average
implicit reward is equivalent to KL

5 Experiments

In this section, we compare BCO with offline pref-
erence tuning methods. 2 To investigate the effect
of reward shift, we augment the compared methods
with BCE, where δ is set to 0 in the BCO objective
in Equation 8. We aim to answer three key research
questions: 1) Does the simple BCE loss fuses align-
ment capability to LLMs? 2) Does the proposed
reward shift technique contribute to the alignment
process? 3) What is the advantage of BCO over
DPO?

5.1 Experimental Setup

Dataset We utilize three publicly available pref-
erence datasets: UltraFeedback3 (Cui et al., 2023),
Capybara4 (Daniele and Suphavadeeprasit, 2023),
and HelpSteer2 (Wang et al., 2024). UltraFeedback
and Capybara provide sets of chosen and rejected
responses for each prompt. The HelpSteer2 dataset
includes prompts, completions, and various met-
rics, such as a helpfulness score. Each prompt is as-
sociated with two alternative completions, enabling
its conversion into a paired preference dataset.

Model Our experiments involve four model
classes: Llama-3.2-3B, Llama-3.1-8B (Dubey
et al., 2024), Qwen2.5-3B, and Qwen2.5-7B (Team,
2024). Unless specified otherwise, we initially con-
duct Supervised Fine-Tuning (SFT) using the re-
spective datasets. The chosen response is used as
the SFT target as it is recommended by Rafailov
et al. (2023). Detailed training specifications are
available in Appendix C. We maintain consis-
tent hyperparameters across all experiments, with
the exception of the number of training epochs.
Furthermore, for all experiments evaluating win
rate, gpt-4o-2024-08-06 serves as the evaluation
judge.

5.2 Experiments on the Preference Dataset

As illustrated in Figure 1, the performance of KTO
surpasses that of SFT, yet it generally falls short
of DPO across most configurations. Similarly, em-
ploying a basic BCE loss results in diminished per-
formance when compared to DPO. Nonetheless, it

2As recent works (Xu et al., 2024; Tang et al., 2024) have
revealed that online methods outperform offline methods, we
do not include PPO (Schulman et al., 2017) as compared
methods.

3https://huggingface.co/datasets/trl-
lib/ultrafeedback_binarized

4https://huggingface.co/datasets/trl-lib/Capybara-
Preferences
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(a) UltraFeedback

(b) Capybara

Figure 1: Win rates computed by GPT-4o on Ultra-
Feedback and Capybara datasets. The win rates are
calculated against chosen completions in the test set.
Depicted mean and standard deviation of the win rates
are obtained from three different random seeds.

is important to note that the simple BCE loss consis-
tently outperforms the SFT model in all instances,
suggesting that BCE loss contributes to enhancing
the alignment capability of LLMs. On the other
hand, we observe a notable improvement in per-
formance when applying reward shift compared to
BCE. This enhancement, coupled with a reduction
in error terms, empirically underscores the bene-
ficial impact of reward shifts, as outlined in sub-
section 4.2. In most scenarios, BCO achieves per-
formance levels comparable to DPO. While BCO
shows superior outcomes over DPO in training
models such as Llama-3.1-8B and Qwen2.5-7B
with the UltraFeedback dataset, the discrepancy in
their performance is not statistically significant.

5.3 Experiments on the Likert-5 Scale Dataset

To demonstrate the superiority of BCO over DPO,
we present experimental results using a dataset

Figure 2: Win rates computed by GPT-4o for Help-
Steer2 dataset. The win rates are calculated against
completions in the test set. Depicted mean and stan-
dard deviation of the win rates are obtained from three
different random seeds.

with Likert-5 scale feedback. We select the Help-
Steer2 dataset (Wang et al., 2024) for alignment
purposes for two main reasons. First, its reward
model, trained using the Llama-3-70B base model
(Dubey et al., 2024), demonstrated exceptional per-
formance in the RewardBench benchmark (Lam-
bert et al., 2024). Second, the dataset closely re-
sembles real-world data, as most of its prompts
originate from ShareGPT (RyokoAI, 2023). To
facilitate DPO training, we transformed the Help-
Steer2 training set into a preference dataset fol-
lowing the methodology outlined by (Wang et al.,
2024). In the HelpSteer2 dataset, each prompt
is paired with two completions that are assigned
helpfulness scores. The response with the higher
helpfulness score is designated as the preferred
choice, while the other is considered as the rejected
response. Pairs with identical helpfulness scores
were excluded from this process.

To facilitate the training for both BCO and KTO,
we convert HelpSteer2 dataset into a binary signal
dataset. In this conversion, a helpfulness score of
4 is mapped to a thumbs-up, while scores of 3 or
below are mapped to a thumbs-down. To ensure a
fair comparison with DPO, only the prompts used
in DPO training are included in the binary signal
dataset. See Table 3 for statistics after processing
and Appendix E for the generated response of each
methodology.

As shown in Figure 2, KTO outperforms DPO
only in small-sized models. In contrast, BCO out-
performs DPO across all models. In summary, Fig-
ure 2 illustrates that, for the purpose of model align-
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ment, converting a Likert-5 scale dataset directly
into a binary signal dataset is not only feasible but
may also yield superior performance.

5.4 Evaluation on Chat Benchmarks
To further validate the superiority of BCO on
well-known alignment benchmarks, we measure
the MT Bench (Zheng et al., 2023), AlpacaE-
val 2.0 Length Controlled (LC) (Dubois et al.,
2024), and Arena-Hard (Li et al., 2024) scores
of models. All models are trained using Help-
Steer2 dataset. Table 1 presents the bench-
mark performance results after applying align-
ment methods, using Llama-3.1-8B-Instruct
and Qwen2.5-7B-Instruct as the reference mod-
els.

Except for the AlpacaEval 2.0 LC performance,
BCO outperforms other methodologies. For Al-
pacaEval 2.0 LC performance, we observe that only
IPO clearly outperforms BCO. Additionally, it is
encouraging that, in the Arena-Hard benchmark,
BCO demonstrates superior performance despite
having a generated token length similar to that of
DPO.

5.5 Effect of Reward Shift

Figure 3: Error term values per step on the Ultra-
Feedback dataset are presented. These values are
derived from the training of the SFT variant of the
Llama-3.2-3B model. Note that the only difference
between BCE and BCO is the existence of δ in Equa-
tion 7.

As described in subsection 4.2, appropriately
adjusting the reward shift decreases the error term
resulting with a tighter bound on the DPO loss.
In order to empirically show the effect of reward
shift on the error term, we record the change in
the error term yielded by BCE and BCO as the
learning progresses in Figure 3. The figure shows

(a) KL by step of alignment methods

(b) zref by step in KTO

Figure 4: (a) Approximate KL divergence of different
algorithms measured using log ratios. The plot shows
BCO and DPO reaching a relatively high similar KL
values while KTO and BCE similarly converging to
relatively low KL values. (b) Progress of reference
point zref in KTO training. The values are taken from
Llama-3.1-8B training on Capybara dataset. We ob-
served that zref consistently collapses to zero.

that, with our choice of reward shift, BCO achieves
smaller error term compared to BCE, where the
reward shift δ = 0.

We also compare the effect of reward shift on
the KL divergence between the resulting models
and the reference model. Using the relationship
between the expected log ratio and the KL diver-
gence (Rafailov et al., 2024), we plot KL(πref∥πθ)
of BCO and BCE in Figure 4a. The figure shows
that while BCE converges at a relatively small KL
divergence, BCO is able to match the KL diver-
gence reached by DPO.

Gathering the empirical observations, we con-
jecture that appropriate reward shift minimizes the
error term and the resulting model further assimi-
lates that of DPO. On the other hand, in the absence
of the reward shift, the model converges to a point
much closer to the reference model. The perfor-
mance relative to the KL divergence is then con-
veyed by the significant performance gap between
BCE and BCO in Figure 1a.

A similar observation can be made for KTO as
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MT Bench AlpacaEval Arena-Hard Length

Llama-3.1-8B-Instruct 8.28 20.9 26.86 (-2.0, 2.0) 830
+ DPO (Rafailov et al., 2023) 8.17 ± 0.10 25.99 ± 0.48 29.50 (-2.3, 1.9) 746
+ IPO (Azar et al., 2023) 8.19 ± 0.05 30.31 ± 0.75 20.39 (-1.9, 1.9) 432
+ KTO (Ethayarajh et al., 2024) 8.24 ± 0.10 23.42 ± 0.81 27.81 (-1.8, 2.1) 707
+ NCA (Chen et al., 2024a) 8.32 ± 0.14 25.63 ± 0.18 29.64 (-2.3, 2.0) 728
+ BCO (Ours) 8.32 ± 0.10 28.61 ± 0.21 31.37 (-2.1, 2.2) 762

Qwen2.5-7B-Instruct 8.43 31.43 47.73 (-2.4, 2.3) 776
+ DPO 8.40 ± 0.10 30.95 ± 1.28 47.82 (-2.5, 2.5) 772
+ IPO 8.48 ± 0.14 32.97 ± 1.47 50.18 (-2.6, 2.3) 636
+ KTO 8.30 ± 0.07 28.25 ± 0.68 47.76 (-1.9, 2.6) 775
+ NCA 8.45 ± 0.16 30.24 ± 0.70 48.98 (-2.7, 2.3) 791
+ BCO (Ours) 8.59 ± 0.04 30.54 ± 0.53 50.60 (-2.1, 2.2) 754

Table 1: Alignment benchmark results for models are presented. The alignment training is conducted on the
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct models. All models are trained using HelpSteer2 dataset.
For the MT Bench and AlpacaEval 2.0 Length Controlled, the mean and standard deviations across three different
random seeds are reported. For the reference models, we conduct only a single evaluation, so the standard deviations
are set to zero. For the Arena-Hard benchmark, the win rate against the GPT-4-0314 model, along with the
confidence intervals, is provided. The length column indicates the average number of tokens generated in the
Arena-Hard benchmark.

well. First, we show the behavior of zref of KTO
during the learning process in Figure 4b. The plot
displays zref collapsing to 0 at early stage of the
training. When zref = 0, as discussed in subsec-
tion 4.3, the only difference between KTO and BCE
is the existence of sigmoid term σ(rθ) in their gra-
dients. This leads a possible connection between
KTO and BCE and their similarities in performance
shown in Figure 1 and Figure 2.

Additionally, we measure the average length of
generated completions for each method. As de-
tailed in Table 2, we observe a consistent pattern
where the generated token lengths for DPO and
BCO are similar to each other, while KTO and
BCE also exhibit comparable token lengths.

6 Conclusion

This paper presents a theoretical foundation for
aligning Large Language Models (LLMs) using
readily available binary feedback, such as "thumbs-
up" or "thumbs-down". We demonstrate that train-
ing a binary classifier implicitly minimizes the Di-
rect Preference Optimization (DPO) loss by map-
ping desirable outputs to positive labels and un-
desirable outputs to negative labels. The binary
cross-entropy (BCE) loss used in classifier training
acts as an upper bound for minimizing DPO loss,
and our proposed reward shift technique further re-

UltraFeedback Capybara

Llama

DPO 326.3 ± 0.7 387.3 ± 10.7
KTO 298.2 ± 3.5 322.6 ± 5.30
BCE 282.6 ± 4.5 324.1 ± 5.40
BCO 333.1 ± 4.0 417.3 ± 15.5

Qwen

DPO 325.1 ± 2.2 375.2 ± 4.50
KTO 317.1 ± 2.8 344.9 ± 5.00
BCE 310.2 ± 3.5 330.5 ± 9.00
BCO 336.8 ± 2.4 398.0 ± 10.8

Table 2: Token lengths of generated completions of
Llama-3.2-3B and Qwen2.5-3B on UltraFeedback and
Capybara datasets. Mean and standard deviations are
shown. The number of generated tokens is approxi-
mately proportional to the performance of the model,
as illustrated in Figure 1. The generated token lengths
for DPO and BCO are similar to each other, while KTO
and BCE also exhibit comparable token lengths.

duces this discrepancy, resulting in stronger align-
ment. Our theoretical analyses connects DPO and
alignment from binary signal and reveals KTO’s
potential flaw in choosing a reference point.

Building on these insights, we introduce Binary
Classifier Optimization (BCO) as a novel frame-
work for aligning LLMs using binary feedback.
BCO’s efficacy is validated through empirical re-
sults on paired preference datasets and real-world
Likert-5 scale annotation datasets. Our experiments
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demonstrate that BCO outperforms KTO and per-
forms competitively with DPO on paired prefer-
ence datasets. Notably, on real-world data, BCO
consistently surpasses both DPO and KTO across
various LLM configurations, including Qwen and
Llama, showcasing its robustness and applicabil-
ity. This binary classifier perspective on alignment
offers a potential complement to preference-based
alignment and could contribute to a deeper under-
standing of multi-stage preference tuning, paving
the way for future advancements in AI alignment.

7 Limitation

The primary limitation of this research is the ab-
sence of real-world benchmarks utilizing binary
annotations. Practical evaluations, essential for
demonstrating the utility of the proposed approach
in real-world applications, are therefore limited.
Although binary feedback collection is easier and
more natural compared to gathering pairwise prefer-
ence data, particularly in real-world services such
as ChatGPT or Claude, the lack of such bench-
marks restricts the thoroughness of our evaluations.

Second, this research direction is still under de-
velopment, with relatively few algorithms proposed
to address the challenges in this field. Conse-
quently, it is difficult to conduct comprehensive
analyses across different approaches, further limit-
ing the scope of evaluation.

From an algorithmic perspective, the proposed
method focuses on optimizing the upper bound
of the Direct Preference Optimization (DPO) loss
function which introduces a gap between the opti-
mized upper bound and the actual DPO loss. Mini-
mizing an upper bound does not always equate to
minimizing the original objective function, poten-
tially leading to unintended effects on the model’s
generalization and robustness. Further investiga-
tion is needed to understand the impact of this gap
on practical model performance.

Lastly, the algorithm relies on binary feedback,
limiting its ability to fully utilize the rich compar-
ative information available in preference datasets.
Preference data offers nuanced insights through
pairwise comparisons, but the algorithm only cap-
tures binary positive/negative signals, leading to in-
complete utilization of available information. This
limitation could result in suboptimal performance
in tasks aimed at optimizing preference datasets.
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A Proofs

A.1 The log of sigmoid of a sum exceeds the
sum of the logs of the sigmoids

Lemma. The log of sigmoid of a sum exceeds the
sum of the logs of the sigmoids. i.e. log σ(x+y) >
log σ(x) + log σ(y) for all x, y ∈ R

Proof.

log σ(x+ y) = − log
(
1 + e−(x+y)

)

log σ(x) + log σ(y)

= − log(1 + e−x)− log(1 + e−y)

= − log
(
(1 + e−x)(1 + e−y)

)

= − log(1 + e−(x+y) + e−x + e−y) (9)

As e−x and e−y are both greater than 0, the propo-
sition holds.

A.2 BCE loss is the upper bound of DPO loss
even under constant reward shift

Theorem. Binary cross entropy is an upper bound
of Direct Preference Optimization loss even if the
reward is shifted by a constant δ. i.e.

E(x,yw,yl)∼D[− log σ (rθ(x, yw)− rθ(x, yl))]

< E(x,yw,yl)∼D[− log σ(rθ(x, yw)− δ)

− log σ(−(rθ(x, yl)− δ))]

Proof.

ED [− log σ(rθ(x, yw)− rθ(x, yl))]

= ED [− log σ((rθ(x, yw)− δ)− (rθ(x, yl)− δ))]

< ED[− log σ(rθ(x, yw)− δ)

− log σ(−(rθ(x, yl)− δ))]

A.3 Optimal δ to minimizing the error term
Theorem. The minimum of the error term
e−(rθ(x,yw)−δ) + erθ(x,yl)−δ can be achieved when
δ = (rθ(x, yw) + rθ(x, yl))/2

Proof. Due to AM-GM inequality,

e−(rθ(x,yw)−δ)+erθ(x,yl)−δ ≥ 2
√
erθ(x,yl)−rθ(x,yw)

and the minimum is achieved if and only if
e−(rθ(x,yw)−δ) = erθ(x,yl)−δ.

If we take the logarithm of both sides and ap-
propriately rearrange the equation, we get δ =
(rθ(x,Ayw) + rθ(x, yl))/2.

B Average implicit reward is proportional
to negative KL

In this section, we replicate Rafailov et al. (2024)’s
analysis of average implicit reward for self-
completeness.

Expanding KL(πref(· | x)∥πθ(· | x)), we get
expected implicit reward of a policy under the ref-
erence model. i.e.

− βKL(πref(· | x)∥πθ(· | x))

= Ey∼πref(·|x)

[
β log

πθ(y | x)
πref(y | x)

]
(10)

if we run SFT on the preference dataset D, which
is common practice recommended by Rafailov et al.
(2023), Equation 10 is approximately equivalent to

1

2
Eyw,yl∼D

[
β log

πθ(yw | x)
πref(yw | x) + β log

πθ(yl | x)
πref(yl | x)

]

C Implementations

During the initial supervised fine-tuning (SFT)
phase, we trained the model for 3 epochs using
a batch size of 128 and a learning rate of 1e − 5.
We set the maximum sequence length to 4096 and
employed the AdamW optimizer (Loshchilov and
Hutter, 2017) in conjunction with a linear learning
rate scheduler.

For the subsequent alignment training using
DPO, KTO, BCE, or BCO techniques, we im-
plemented a linear scheduler with a warm-up ra-
tio of 0.1 on both the UltraFeedback and Capy-
bara datasets. We constrained the maximum token
length to 2048, with a maximum prompt length of
1536 and a maximum completion length of 512.
The reward-KL trade-off coefficient β was set to
0.1, and we used a learning rate of 5e− 7. Given
the size disparity between the datasets, we trained
the models for 1 epoch on UltraFeedback and 4
epochs on Capybara, as the latter is approximately
one-quarter the size of the former.

For training on the HelpSteer2 dataset Figure 2,
we largely adhered to the methodology outlined
by (Wang et al., 2024). Specifically, we trained
the models for 7 epochs using a constant learning
rate scheduler with a learning rate of 2e− 7. The
conversion of the HelpSteer2 dataset into a pref-
erence dataset resulted in an imbalance, as noted
in Table 3. To address this imbalance, we set λU

in section 3 to 1.58 ≈ (1−0.38)
0.38 . For balancing in

BCO, we employed oversampling of the thumbs-up
dataset. This adjustment was necessary to prevent
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the scale of the expected log-sigmoid rewards for
the thumbs-up dataset in Equation 8 from being
less than that of the thumbs-down dataset, which
could lead to unstable training.

For the models presented in Table 1, we con-
ducted training for 3 epochs using a linear learning
rate scheduler with a warmup ratio of 0.1. The
learning rate was set to 5e − 7. Throughout all
training phases, we utilized mixed precision with
bfloat16 to optimize computational efficiency. Ad-
ditionally, we implemented FlashAttention-2 (Dao,
2024) to further enhance training performance.

For response generation from each model, we
utilize top-p sampling with p = 0.95 and a tem-
perature parameter of 0.7. To measure the win
rate using the "LLM as a judge" method, we bor-
row the judge prompt from FastChat (Zheng et al.,
2023). See Figure 5 for "LLM as a judge" prompts.
Across all experiments we adopt trl (von Werra
et al., 2020) implementations of DPO and KTO.

D HelpSteer2 Dataset statistics

# of preference triplet 7,221
# of binary triplet 14,442
% of thumbs-up 38.65%

Table 3: Statistics of HelpSteer2 dataset after preprocess.
Preference triplet denotes { prompt, chosen, rejected }
triplet and binary triplet denotes { prompt, completion,
label } triplet.

In this section, we describe the statistics of Help-
Steer2 dataset. See Table 3 for the details.

E Qualititive Results

In this section, we include qualitative experimental
results. We include completions of each method
tuned on HelpSteer2; the results are shown in Ta-
ble 4. The completions are written after the prompt
"can I adjust the widgets layout in the wp-admin"
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Please act as an impartial judge and evaluate the quality of the responses provided by two AI 
assistants to the conversation displayed below. 
You should choose the assistant that follows the user's instructions and answers the user's 
question better. 
Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, 
creativity, and level of detail of their responses. 
Begin your evaluation by comparing the two responses and provide a short explanation. 
Avoid any position biases and ensure that the order in which the responses were presented 
does not influence your decision. 
Do not allow the length of the responses to influence your evaluation. 
Do not favor certain names of the assistants. 
Be as objective as possible. 
After providing your explanation, output your final verdict by strictly following this format: 
[[A]] if assistant A is better, [[B]] if assistant B is better, and [[C]] for a tie. 

[Conversation] 
{prompt} 

[The Start of Assistant A's Answer] 
{answer_a} 
[The End of Assistant A's Answer] 

[The Start of Assistant B's Answer] 
{answer_b} 
[The End of Assistant B's Answer]

Figure 5: LLM as a judge prompt for UltraFeedback, Capybara, and HelpSteer2 datasets.
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Method Completion

DPO Yes, you can adjust the layout of widgets in the WordPress administration area
(wp-admin). Widgets are a feature of WordPress that allow you to add various types
of content and functionality to your websiteś sidebar or other widget-ready areas.

To adjust the layout of widgets, you can follow these steps:

1. Log in to your WordPress administration area (wp-admin).
2. Navigate to the "Appearance" menu and select "Widgets."
3. You will see a list of available widget areas, such as the sidebar or footer, and a
list of widgets that you can add to each area.
4. To adjust the layout of the widgets, you can drag and drop the widgets into
different positions within the widget area. You can also add new widgets or remove
existing ones as needed.
5. Once you have arranged the widgets to your liking, click the "Save" button to
apply the changes to your website.

Itś important to note that the exact layout of widgets may vary depending
on the theme you are using and the specific widget areas that are available.
Additionally, some widgets may have their own settings that you can adjust to
customize their appearance and functionality.

KTO Yes, you can adjust the layout of widgets in the WordPress admin area. Here are a
few tips:

1. Customize the sidebar: You can customize the layout of your sidebar by
dragging and dropping widgets into different positions. To do this, go to the
Appearance section of the WordPress admin and select Widgets. From there, you
can drag and drop widgets into the sidebar areas that you want them to appear in.

2. Use a widget-ready theme: Some themes are designed to be widget-
ready, which means that they have pre-defined areas where you can add widgets.
These areas are usually located in the sidebar, but they can also be in other areas of
the page, such as the footer or the header. If your theme is widget-ready, you can
easily add and remove widgets to customize the layout of your site.

3. Use a page builder: If you want more control over the layout of your
site, you can use a page builder plugin. Page builders allow you to create custom
layouts for your pages and posts, and you can add widgets to these layouts. Some
popular page builders include Elementor, Beaver Builder, and Visual Composer.

4. Use a custom plugin: If you want to add widgets to specific areas of
your site that aren’t widget-ready, you can use a custom plugin. There are many
plugins available that allow you to add widgets to custom areas, such as the header,
footer, or anywhere else on your site.

Overall, adjusting the layout of widgets in the WordPress admin area is a
simple process that can help you customize the look and feel of your site.

Continued on next page
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Table 4 – Continued from previous page

Method Completion

BCO Yes, it is possible to adjust the layout of widgets in the WordPress administration
(wp-admin) area. Here are the steps to do it:

1. Log in to your WordPress website administration area.
2. Click on the "Appearance" menu on the left-hand side of the page, and then click
on "Widgets."
3. You will see a list of widget areas, such as the sidebar, footer, and more. Click on
the widget area where you want to adjust the layout.
4. You will see a list of widgets that you can add to the selected widget area. Drag
and drop the widgets to rearrange them in the order you want them to appear on your
website.
5. You can also add new widgets by clicking on the "Add a Widget" button, and
remove widgets by clicking on the "Delete" button.
6. To change the layout of a specific widget, click on the widget to open its settings.
Here, you can adjust the title, content, and other settings for the widget.
7. Some widgets may have additional layout options, such as the ability to change
the number of columns or the size of the widget. These options will vary depending
on the widget you are using.

Once you have adjusted the layout of your widgets, click on the "Save" but-
ton to save your changes. Your website will automatically update with the new
widget layout.

Itś important to note that the exact process for adjusting widget layout may
vary slightly depending on the theme you are using and the specific widgets you
have installed on your website. However, the general steps should be similar to the
ones outlined above. If you encounter any issues, you may want to consult your
themeś documentation or reach out to the theme developer for support. Additionally,
if you are not comfortable making changes to your websiteś code or design, you
may want to consider hiring a professional WordPress developer to assist you with
making these changes.

Table 4: Completions of the prompt "can I adjust the widgets layout in the wp-admin"
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